1
|
Jia S, Zhao F. Single-cell transcriptomic profiling of the neonatal oviduct and uterus reveals new insights into upper Müllerian duct regionalization. FASEB J 2024; 38:e23632. [PMID: 38686936 DOI: 10.1096/fj.202400303r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
The upper Müllerian duct (MD) is patterned and specified into two morphologically and functionally distinct organs, the oviduct and uterus. It is known that this regionalization process is instructed by inductive signals from the adjacent mesenchyme. However, the interaction landscape between epithelium and mesenchyme during upper MD development remains largely unknown. Here, we performed single-cell transcriptomic profiling of mouse neonatal oviducts and uteri at the initiation of MD epithelial differentiation (postnatal day 3). We identified major cell types including epithelium, mesenchyme, pericytes, mesothelium, endothelium, and immune cells in both organs with established markers. Moreover, we uncovered region-specific epithelial and mesenchymal subpopulations and then deduced region-specific ligand-receptor pairs mediating mesenchymal-epithelial interactions along the craniocaudal axis. Unexpectedly, we discovered a mesenchymal subpopulation marked by neurofilaments with specific localizations at the mesometrial pole of both the neonatal oviduct and uterus. Lastly, we analyzed and revealed organ-specific signature genes of pericytes and mesothelial cells. Taken together, our study enriches our knowledge of upper MD development, and provides a manageable list of potential genes, pathways, and region-specific cell subtypes for future functional studies.
Collapse
Affiliation(s)
- Shuai Jia
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Seok MC, Koo HW, Jeong JH, Ko MJ, Lee BJ. Bone Substitute Options for Spine Fusion in Patients With Spine Trauma-Part II: The Role of rhBMP. Korean J Neurotrauma 2024; 20:35-44. [PMID: 38576507 PMCID: PMC10990692 DOI: 10.13004/kjnt.2024.20.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 04/06/2024] Open
Abstract
In Part II, we focus on an important aspect of spine fusion in patients with spine trauma: the pivotal role of recombinant human bone morphogenetic protein-2 (rhBMP-2). Despite the influx of diverse techniques facilitated by technological advancements in spinal surgery, spinal fusion surgery remains widely used globally. The persistent challenge of spinal pseudarthrosis has driven extensive efforts to achieve clinically favorable fusion outcomes, with particular emphasis on the evolution of bone graft substitutes. Part II of this review aims to build upon the foundation laid out in Part I by providing a comprehensive summary of commonly utilized bone graft substitutes for spinal fusion in patients with spinal trauma. Additionally, it will delve into the latest advancements and insights regarding the application of rhBMP-2, offering an updated perspective on its role in enhancing the success of spinal fusion procedures.
Collapse
Affiliation(s)
- Min cheol Seok
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Hae-Won Koo
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Myeong Jin Ko
- Department of Neurosurgery, College of Medicine, Chung-Ang University Hospital, Seoul, Korea
| | - Byung-Jou Lee
- Department of Neurosurgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
3
|
Jia S, Zhao F. Single-cell transcriptomic profiling of the neonatal oviduct and uterus reveals new insights into upper Müllerian duct regionalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572607. [PMID: 38187777 PMCID: PMC10769252 DOI: 10.1101/2023.12.20.572607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The upper Müllerian duct (MD) is patterned and specified into two morphologically and functionally distinct organs, the oviduct and uterus. It is known that this regionalization process is instructed by inductive signals from the adjacent mesenchyme. However, the interaction landscape between epithelium and mesenchyme during upper MD development remains largely unknown. Here, we performed single-cell transcriptomic profiling of mouse neonatal oviducts and uteri at the initiation of MD epithelial differentiation (postnatal day 3). We identified major cell types including epithelium, mesenchyme, pericytes, mesothelium, endothelium, and immune cells in both organs with established markers. Moreover, we uncovered region-specific epithelial and mesenchymal subpopulations and then deduced region-specific ligand-receptor pairs mediating mesenchymal-epithelial interactions along the craniocaudal axis. Unexpectedly, we discovered a mesenchymal subpopulation marked by neurofilaments with specific localizations at the mesometrial pole of both the neonatal oviduct and uterus. Lastly, we analyzed and revealed organ-specific signature genes of pericytes and mesothelial cells. Taken together, our study enriches our knowledge of upper Müllerian duct development, and provides a manageable list of potential genes, pathways, and region-specific cell subtypes for future functional studies.
Collapse
|
4
|
Tao H, Li L, Dong L, Chen H, Shan X, Zhuge L, Lou H. Growth differentiation factor 7 pretreatment enhances the therapeutic capacity of bone marrow-derived mesenchymal stromal cells against cerebral ischemia-reperfusion injury. Chem Biol Interact 2023; 386:110779. [PMID: 37879595 DOI: 10.1016/j.cbi.2023.110779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/13/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) transplantation is a promising therapeutic strategy for cerebral ischemia/reperfusion (I/R) injury; however, the clinical outcome is barely satisfactory and demands further improvement. The present study aimed to investigate whether preconditioning of BMSCs by recombinant human growth differentiation factor 7 (rhGDF7) could enhance its therapeutic capacity against cerebral I/R injury. Mouse BMSCs and primary neurons were co-cultured and exposed to oxygen glucose deprivation/reperfusion (OGD/R) stimulation. To investigate the role of exosomal microRNA-369-3p (miR-369-3p), inhibitors, RNAi and the miR-369-3p antagomir were used. Meanwhile, mice were intravenously injected with rhGDF7-preconditioned BMSCs and then received cerebral I/R surgery. Markers of inflammation, oxidative stress and neural damage were evaluated. To inhibit AMP-activated protein kinase (AMPK), compound C was used in vivo and in vitro. Compared with cell-free transwell or vehicle-preconditioned BMSCs, rhGDF7-preconditioned BMSCs significantly prevented OGD/R-induced inflammation, oxidative stress and neural damage in vitro. Meanwhile, rhGDF7-preconditioned BMSCs could prevent I/R-induced cerebral inflammation and oxidative stress in vivo. Mechanistically, rhGDF7 preconditioning significantly increased exosomal miR-369-3p expression in BMSCs and then transferred exosomal miR-369-3p to primary neurons, where it bound to phosphodiesterase 4 D (Pde4d) 3'-UTR and downregulated PDE4D expression, thereby preventing I/R-induced inflammation, oxidative stress and neural damage through activating AMPK pathway. Our study identify GDF7 pretreatment as a promising adjuvant reagent to improve the therapeutic potency of BMSCs for cerebral I/R injury and ischemic stroke.
Collapse
Affiliation(s)
- Hongmiao Tao
- Medical College, Jinhua Polytechnic, Jinhua, 321017, Zhejiang, China
| | - Lin Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Lihua Dong
- Medical College, Jinhua Polytechnic, Jinhua, 321017, Zhejiang, China
| | - Haohao Chen
- Medical College, Jinhua Polytechnic, Jinhua, 321017, Zhejiang, China
| | - Xiaoyun Shan
- Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Lujie Zhuge
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Hongqiang Lou
- Medical College, Jinhua Polytechnic, Jinhua, 321017, Zhejiang, China.
| |
Collapse
|
5
|
Ahmad SF, Chandrababu Shailaja C, Vaishnav S, Kumar A, Gaur GK, Janga SC, Ahmad SM, Malla WA, Dutt T. Read-depth based approach on whole genome resequencing data reveals important insights into the copy number variation (CNV) map of major global buffalo breeds. BMC Genomics 2023; 24:616. [PMID: 37845620 PMCID: PMC10580622 DOI: 10.1186/s12864-023-09720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Elucidating genome-wide structural variants including copy number variations (CNVs) have gained increased significance in recent times owing to their contribution to genetic diversity and association with important pathophysiological states. The present study aimed to elucidate the high-resolution CNV map of six different global buffalo breeds using whole genome resequencing data at two coverages (10X and 30X). Post-quality control, the sequence reads were aligned to the latest draft release of the Bubaline genome. The genome-wide CNVs were elucidated using a read-depth approach in CNVnator with different bin sizes. Adjacent CNVs were concatenated into copy number variation regions (CNVRs) in different breeds and their genomic coverage was elucidated. RESULTS Overall, the average size of CNVR was lower at 30X coverage, providing finer details. Most of the CNVRs were either deletion or duplication type while the occurrence of mixed events was lesser in number on a comparative basis in all breeds. The average CNVR size was lower at 30X coverage (0.201 Mb) as compared to 10X (0.013 Mb) with the finest variants in Banni buffaloes. The maximum number of CNVs was observed in Murrah (2627) and Pandharpuri (25,688) at 10X and 30X coverages, respectively. Whereas the minimum number of CNVs were scored in Surti at both coverages (2092 and 17,373). On the other hand, the highest and lowest number of CNVRs were scored in Jaffarabadi (833 and 10,179 events) and Surti (783 and 7553 events) at both coverages. Deletion events overnumbered duplications in all breeds at both coverages. Gene profiling of common overlapped genes and longest CNVRs provided important insights into the evolutionary history of these breeds and indicate the genomic regions under selection in respective breeds. CONCLUSION The present study is the first of its kind to elucidate the high-resolution CNV map in major buffalo populations using a read-depth approach on whole genome resequencing data. The results revealed important insights into the divergence of major global buffalo breeds along the evolutionary timescale.
Collapse
Affiliation(s)
- Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Celus Chandrababu Shailaja
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Sakshi Vaishnav
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Gyanendra Kumar Gaur
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Sarath Chandra Janga
- Luddy School of Informatics, Computing & Engineering, Indiana University Indianapolis (IUI), Indianapolis, 46202, USA
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and AH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu & Kashmir, 190006, India.
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Triveni Dutt
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
6
|
Ciller I, Palanisamy S, Ciller U, Al-Ali I, Coumans J, McFarlane J. Steroidogenic enzyme gene expression and testosterone production are developmentally modulated by bone morphogenetic protein receptor-1B in mouse testis. Physiol Res 2023; 72:359-369. [PMID: 37455641 PMCID: PMC10668998 DOI: 10.33549/physiolres.935014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/07/2023] [Indexed: 08/26/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) and receptors (BMPR-1A, BMPR-1B, BMPR-2) have been shown to be vital for female reproduction, while their roles in males are poorly described. Our study was undertaken to specify the function of BMPR-1B in steroidogenic enzyme gene expression, testosterone production and reproductive development in male mice, given that Bmpr1b mRNA is expressed in mouse testis and Bmpr1b knockout results in compromised fertility. Male mice were passively immunized for 6 days with anti-BMPR-1B in the presence or absence of exogenous gonadotrophins. We then measured the effects of anti-BMPR-1B on testicular hydroxysteroid dehydrogenase isoforms (Hsd3b1, Hsd3b6, and Hsd17b3) and aromatase (Cyp19) mRNA expression, testicular and serum testosterone levels, and testis and seminal vesicle weight. In vitro testosterone production in response to anti-BMPR-1B was determined using testicular culture, and Leydig cell culture in the presence or absence of gonadotrophins. In Leydig cell culture the contribution of seminiferous tubules and Leydig cells were examined by preconditioning the media with these testicular constituents. In adult mice, anti-BMPR-1B increased testosterone and Hsd3b1 but decreased Hsd3b6 and Cyp19 mRNA. In adult testicular culture and seminiferous tubule conditioned Leydig cell culture, anti-BMPR-1B reduced testosterone, while in normal and Leydig cell conditioned Leydig cell culture it increased testosterone levels. In pubertal mice, anti-BMPR-1B reduced gonadotrophin stimulated seminal vesicle growth. In conclusion, BMPR-1B has specific developmental functions in the autocrine and paracrine regulation of testicular steroidogenic enzyme gene expression and testosterone production in adults and in the development of seminal vesicles during puberty.
Collapse
Affiliation(s)
- I Ciller
- School of Rural Medicine, University of New England, Armidale, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
7
|
Amato CM, Yao HHC, Zhao F. One Tool for Many Jobs: Divergent and Conserved Actions of Androgen Signaling in Male Internal Reproductive Tract and External Genitalia. Front Endocrinol (Lausanne) 2022; 13:910964. [PMID: 35846302 PMCID: PMC9280649 DOI: 10.3389/fendo.2022.910964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In the 1940s, Alfred Jost demonstrated the necessity of testicular secretions, particularly androgens, for male internal and external genitalia differentiation. Since then, our knowledge of androgen impacts on differentiation of the male internal (Wolffian duct) and external genitalia (penis) has been drastically expanded upon. Between these two morphologically and functionally distinct organs, divergent signals facilitate the establishment of tissue-specific identities. Conversely, conserved actions of androgen signaling are present in both tissues and are largely responsible for the growth and expansion of the organs. In this review we synthesize the existing knowledge of the cell type-specific, organ specific, and conserved signaling mechanisms of androgens. Mechanistic studies on androgen signaling in the Wolffian duct and male external genitalia have largely been conducted in mouse model organisms. Therefore, the majority of the review is focused on mouse model studies.
Collapse
Affiliation(s)
- Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C. Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
8
|
Magro-Lopez E, Muñoz-Fernández MÁ. The Role of BMP Signaling in Female Reproductive System Development and Function. Int J Mol Sci 2021; 22:11927. [PMID: 34769360 PMCID: PMC8584982 DOI: 10.3390/ijms222111927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 01/22/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of multifunctional growth factors that belong to the transforming growth factor-β (TGF-β) superfamily of proteins. Originally identified by their ability to induce bone formation, they are now known as essential signaling molecules that regulate the development and function of the female reproductive system (FRS). Several BMPs play key roles in aspects of reproductive system development. BMPs have also been described to be involved in the differentiation of human pluripotent stem cells (hPSCs) into reproductive system tissues or organoids. The role of BMPs in the reproductive system is still poorly understood and the use of FRS tissue or organoids generated from hPSCs would provide a powerful tool for the study of FRS development and the generation of new therapeutic perspectives for the treatment of FRS diseases. Therefore, the aim of this review is to summarize the current knowledge about BMP signaling in FRS development and function.
Collapse
Affiliation(s)
- Esmeralda Magro-Lopez
- Section Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), 28007 Madrid, Spain;
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Section Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), 28007 Madrid, Spain;
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28007 Madrid, Spain
- Spanish HIV-HGM BioBank, 28007 Madrid, Spain
| |
Collapse
|
9
|
Hou Y, He YX, Zhang JH, Wang SR, Zhang Y. Effects of bone morphogenetic proteins on epithelial repair. Exp Biol Med (Maywood) 2021; 246:2269-2277. [PMID: 34233522 DOI: 10.1177/15353702211028193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epithelial tissue has important functions such as protection, secretion, and sensation. Epithelial damage is involved in various pathological processes. Bone morphogenetic proteins (BMPs) are a class of growth factors with multiple functions. They play important roles in epithelial cells, including in differentiation, proliferation, and migration during the repair of the epithelium. This article reviews the functions and mechanisms of the most profoundly studied BMPs in the process of epithelial damage repair and their clinical significance.
Collapse
Affiliation(s)
- Yu Hou
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China.,Norman Bethune Health Science Center of Jilin University, Changchun 130021, China
| | - Yu-Xi He
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China
| | - Jia-Hao Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China.,Norman Bethune Health Science Center of Jilin University, Changchun 130021, China
| | - Shu-Rong Wang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China
| | - Yan Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, China
| |
Collapse
|
10
|
Yu Y, Creighton EK, Buckley RM, Lyons LA. A Deletion in GDF7 is Associated with a Heritable Forebrain Commissural Malformation Concurrent with Ventriculomegaly and Interhemispheric Cysts in Cats. Genes (Basel) 2020; 11:E672. [PMID: 32575532 PMCID: PMC7349246 DOI: 10.3390/genes11060672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
An inherited neurologic syndrome in a family of mixed-breed Oriental cats has been characterized as forebrain commissural malformation, concurrent with ventriculomegaly and interhemispheric cysts. However, the genetic basis for this autosomal recessive syndrome in cats is unknown. Forty-three cats were genotyped on the Illumina Infinium Feline 63K iSelect DNA Array and used for analyses. Genome-wide association studies, including a sib-transmission disequilibrium test and a case-control association analysis, and homozygosity mapping, identified a critical region on cat chromosome A3. Short-read whole genome sequencing was completed for a cat trio segregating with the syndrome. A homozygous 7 bp deletion in growth differentiation factor 7 (GDF7) (c.221_227delGCCGCGC [p.Arg74Profs]) was identified in affected cats, by comparison to the 99 Lives Cat variant dataset, validated using Sanger sequencing and genotyped by fragment analyses. This variant was not identified in 192 unaffected cats in the 99 Lives dataset. The variant segregated concordantly in an extended pedigree. In mice, GDF7 mRNA is expressed within the roof plate when commissural axons initiate ventrally-directed growth. This finding emphasized the importance of GDF7 in the neurodevelopmental process in the mammalian brain. A genetic test can be developed for use by cat breeders to eradicate this variant.
Collapse
Affiliation(s)
- Yoshihiko Yu
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (Y.Y.); (E.K.C.); (R.M.B.)
- Laboratory of Veterinary Radiology, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Erica K. Creighton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (Y.Y.); (E.K.C.); (R.M.B.)
| | - Reuben M. Buckley
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (Y.Y.); (E.K.C.); (R.M.B.)
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (Y.Y.); (E.K.C.); (R.M.B.)
| | | |
Collapse
|
11
|
May RD, Frauchiger DA, Albers CE, Tekari A, Benneker LM, Klenke FM, Hofstetter W, Gantenbein B. Application of Cytokines of the Bone Morphogenetic Protein (BMP) Family in Spinal Fusion - Effects on the Bone, Intervertebral Disc and Mesenchymal Stromal Cells. Curr Stem Cell Res Ther 2020; 14:618-643. [PMID: 31455201 PMCID: PMC7040507 DOI: 10.2174/1574888x14666190628103528] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
Low back pain is a prevalent socio-economic burden and is often associated with damaged or degenerated intervertebral discs (IVDs). When conservative therapy fails, removal of the IVD (discectomy), followed by intersomatic spinal fusion, is currently the standard practice in clinics. The remaining space is filled with an intersomatic device (cage) and with bone substitutes to achieve disc height compensation and bone fusion. As a complication, in up to 30% of cases, spinal non-fusions result in a painful pseudoarthrosis. Bone morphogenetic proteins (BMPs) have been clinically applied with varied outcomes. Several members of the BMP family, such as BMP2, BMP4, BMP6, BMP7, and BMP9, are known to induce osteogenesis. Questions remain on why hyper-physiological doses of BMPs do not show beneficial effects in certain patients. In this respect, BMP antagonists secreted by mesenchymal cells, which might interfere with or block the action of BMPs, have drawn research attention as possible targets for the enhancement of spinal fusion or the prevention of non-unions. Examples of these antagonists are noggin, gremlin1 and 2, chordin, follistatin, BMP3, and twisted gastrulation. In this review, we discuss current evidence of the osteogenic effects of several members of the BMP family on osteoblasts, IVD cells, and mesenchymal stromal cells. We consider in vitro and in vivo studies performed in human, mouse, rat, and rabbit related to BMP and BMP antagonists in the last two decades. We give insights into the effects that BMP have on the ossification of the spine. Furthermore, the benefits, pitfalls, and possible safety concerns using these cytokines for the improvement of spinal fusion are discussed.
Collapse
Affiliation(s)
- Rahel Deborah May
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | | | - Christoph Emmanuel Albers
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Lorin Michael Benneker
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland
| | - Frank Michael Klenke
- Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Benjamin Gantenbein
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Genome-Wide Runs of Homozygosity, Effective Population Size, and Detection of Positive Selection Signatures in Six Chinese Goat Breeds. Genes (Basel) 2019; 10:genes10110938. [PMID: 31744198 PMCID: PMC6895971 DOI: 10.3390/genes10110938] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
Detection of selection footprints provides insight into the evolution process and the underlying mechanisms controlling the phenotypic diversity of traits that have been exposed to selection. Selection focused on certain characters, mapping certain genomic regions often shows a loss of genetic diversity with an increased level of homozygosity. Therefore, the runs of homozygosity (ROHs), homozygosity by descent (HBD), and effective population size (Ne) are effective tools for exploring the genetic diversity, understanding the demographic history, foretelling the signature of directional selection, and improving the breeding strategies to use and conserve genetic resources. We characterized the ROH, HBD, Ne, and signature of selection of six Chinese goat populations using single nucleotide polymorphism (SNP) 50K Illumina beadchips. Our results show an inverse relationship between the length and frequency of ROH. A long ROH length, higher level of inbreeding, long HBD segment, and smaller Ne in Guangfeng (GF) goats suggested intensive selection pressure and recent inbreeding in this breed. We identified six reproduction-related genes within the genomic regions with a high ROH frequency, of which two genes overlapped with a putative selection signature. The estimated pair-wise genetic differentiation (FST) among the populations is 9.60% and the inter- and intra-population molecular variations are 9.68% and 89.6%, respectively, indicating low to moderate genetic differentiation. Our selection signatures analysis revealed 54 loci harboring 86 putative candidate genes, with a strong signature of selection. Further analysis showed that several candidate genes, including MARF1, SYCP2, TMEM200C, SF1, ADCY1, and BMP5, are involved in goat fecundity. We identified 11 candidate genes by using cross-population extended haplotype homozygosity (XP-EHH) estimates, of which MARF1 and SF1 are under strong positive selection, as they are differentiated in high and low reproduction groups according to the three approaches used. Gene ontology enrichment analysis revealed that different biological pathways could be involved in the variation of fecundity in female goats. This study provides a new insight into the ROHs patterns for maintenance of within breed diversity and suggests a role of positive selection for genetic variation influencing fecundity in Chinese goat.
Collapse
|
13
|
Dietrich MA, Irnazarow I, Inglot M, Adamek M, Jurecka P, Steinhagen D, Ciereszko A. Hormonal stimulation of carp is accompanied by changes in seminal plasma proteins associated with the immune and stress responses. J Proteomics 2019; 202:103369. [PMID: 31028945 DOI: 10.1016/j.jprot.2019.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 01/04/2023]
Abstract
Hormonal stimulation in common carp is a routine practice to enhance sperm production and control gamete maturation. This study aimed to compare the proteome of carp seminal plasma between control and Ovopel-induced males using two-dimensional differential in-gel electrophoresis. Ovopel induction increased sperm volume, total sperm count, seminal plasma osmolality, and pH and decreased seminal plasma protein concentration. In total, 36 spots were identified (23 up- and 13 downregulated), corresponding to 23 proteins differentially abundant in seminal plasma after Ovopel induction (p < .05; fold change 1.2). The majority of proteins were associated with the immune and stress responses including the transport protein (hephaestin), antiproteases (fetuin, α2-macroglobulin, TIMP2), complement components (C3, complement factor B/C2A), regulator of the coagulation cascade (plasminogen), modulators of the innate immune response, such as intelectin, ApoA and ApoE, and the cathepsin/cystatin system, and stress response (enolase1). In addition, hormonal stimulation seems to be related to the proteins involved in lipid metabolism, signal transduction, and tissue remodeling. Our results suggest that hormonal stimulation is not just concomitant with the hydration of testis but also induces the synthesis and secretion of seminal plasma proteins involved in sperm maturation and protection against stress induced by administration of the exogenous hormone. SIGNIFICANCE: It is well known that hormonal stimulation of male fish induces the final maturation of spermatozoa. However, molecular and biochemical basis underlying hormone-induced changes in semen is unknown at present. This study for the first time reveals, using proteomic approach, that hormonal stimulation in addition to hydration of testis is accompanied by significant changes in seminal plasma proteins related mainly to immune and stress response, lipid metabolism, signal transduction and tissue remodeling. These changes are associated with gene expression and synthesis and secretion of seminal plasma proteins by reproductive tissues. Overall, our results provide a framework for understanding the molecular mechanism responsible for hormonal stimulation in the reproductive tract of fish males.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Ilgiz Irnazarow
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Gołysz, Poland
| | - Michał Inglot
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Gołysz, Poland
| | - Mikołaj Adamek
- University of Veterinary Medicine in Hanover, Fish Disease Research Unit, Germany
| | - Patrycja Jurecka
- Institute of Ichthyobiology and Aquaculture, Polish Academy of Sciences, Gołysz, Poland
| | - Dieter Steinhagen
- University of Veterinary Medicine in Hanover, Fish Disease Research Unit, Germany
| | - Andrzej Ciereszko
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
14
|
Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, Mishina Y. TGF-β Family Signaling in Mesenchymal Differentiation. Cold Spring Harb Perspect Biol 2018; 10:a022202. [PMID: 28507020 PMCID: PMC5932590 DOI: 10.1101/cshperspect.a022202] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into several lineages during development and also contribute to tissue homeostasis and regeneration, although the requirements for both may be distinct. MSC lineage commitment and progression in differentiation are regulated by members of the transforming growth factor-β (TGF-β) family. This review focuses on the roles of TGF-β family signaling in mesenchymal lineage commitment and differentiation into osteoblasts, chondrocytes, myoblasts, adipocytes, and tenocytes. We summarize the reported findings of cell culture studies, animal models, and interactions with other signaling pathways and highlight how aberrations in TGF-β family signaling can drive human disease by affecting mesenchymal differentiation.
Collapse
Affiliation(s)
- Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Stefanie Alexander
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Jonathan R Peterson
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Taylor Nicholas Snider
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Benjamin Levi
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
15
|
TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031997. [PMID: 28289061 DOI: 10.1101/cshperspect.a031997] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-β (TGF-β) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-β family members in the control of the ductal tissues in the vertebrate body.
Collapse
|
16
|
Cimino L, Salemi M, Cannarella R, Condorelli RA, Giurato G, Marchese G, La Vignera S, Calogero AE. Decreased miRNA expression in Klinefelter syndrome. Sci Rep 2017; 7:16672. [PMID: 29192217 PMCID: PMC5709391 DOI: 10.1038/s41598-017-16892-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/13/2017] [Indexed: 01/18/2023] Open
Abstract
The widelyvariable phenotypic spectrum and the different severity of symptoms in men with Klinefelter syndrome (KS) suggest a role for epigenetic mediators. Therefore, the aim of this study is to evaluate the possible involvement of miRNAs in the clinical manifestations of KS. To accomplish this, we performed a transcriptome analysis in peripheral blood mononuclear cells (PBMCs) of 10 non-mosaic KS patients, 10 aged-matched healthy men and 10 aged-matched healthy female controls with normal karyotype. After RNA extraction from PBMC and the preparation of RNA libraries, the samples were sequenced using next generation high-throughput sequencing technology. Expression profiling analysis revealed a significant differential expression of 2 miRNAs in KS compared to male controls. In particular, MIR3648 resulted significantly (q-value < 0.0001) down-regulated by -19.084- fold, while MIR3687was strongly down-regulated (q-value < 0.0001) considering KS patients. These results were confirmed by qRT-PCR. The functional analysis of the two transcripts showed that they seem to play a role in breast cancer, hemopoietic abnormalities, immune defects and adipocyte differentiation and fat cell maturation. Therefore, we speculate that both miRNAs may play a role in the immune and metabolic disorders and in the risk of breast cancer development in men with KS.
Collapse
Affiliation(s)
- Laura Cimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Michele Salemi
- Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, 94018, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, 84081, Italy
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi (SA), 84081, Italy
| | - Giovanna Marchese
- Genomix4Life Srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi (SA), 84081, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, 95123, Italy.
| |
Collapse
|
17
|
CILLER IM, PALANISAMY SKA, CILLER UA, MCFARLANE JR. Postnatal Expression of Bone Morphogenetic Proteins and Their Receptors in the Mouse Testis. Physiol Res 2016; 65:673-682. [DOI: 10.33549/physiolres.933193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
TGF-β superfamily members including bone morphogenetic proteins (BMPs) and their receptors (BMPR-1A, -1B and -2) have been shown to be important for reproductive function in both males and females, while information on the role of BMPs in males is limited. Functional studies on select BMPs and BMP receptors have demonstrated vital roles for these proteins in somatic and germ cell proliferation, steroidogenesis and overall fertility. In order to gain insight into the importance of these genes during postnatal reproductive development in males, our study was undertaken to specify the distribution of BMP and BMPR mRNA in male reproductive and steroidogenic tissues and quantify these genes in the testis using the mouse as our model. We screened testis at two, four, six and eight weeks of age for the expression of ten BMPs and three BMP receptors using RT-qPCR. All three BMP receptor mRNAs – Bmpr1a, Bmpr1b and Bmpr2, and ten BMP mRNAs – Bmp2, Bmp3, Bmp3b, Bmp4, Bmp5, Bmp6, Bmp7, Bmp8a, Bmp8b and Bmp15 were expressed in mouse testis at all stages screened. Testicular expression of genes varied within age groups and at specific developmental stages. Our study establishes an extensive BMP system in mouse reproductive and steroidogenic tissues.
Collapse
Affiliation(s)
- I. M. CILLER
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, Australia
| | | | | | | |
Collapse
|
18
|
Jurberg AD, Vasconcelos-Fontes L, Cotta-de-Almeida V. A Tale from TGF-β Superfamily for Thymus Ontogeny and Function. Front Immunol 2015; 6:442. [PMID: 26441956 PMCID: PMC4564722 DOI: 10.3389/fimmu.2015.00442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/14/2015] [Indexed: 12/16/2022] Open
Abstract
Multiple signaling pathways control every aspect of cell behavior, organ formation, and tissue homeostasis throughout the lifespan of any individual. This review takes an ontogenetic view focused on the large superfamily of TGF-β/bone morphogenetic protein ligands to address thymus morphogenesis and function in T cell differentiation. Recent findings on a role of GDF11 for reversing aging-related phenotypes are also discussed.
Collapse
Affiliation(s)
- Arnon Dias Jurberg
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil ; Graduate Program in Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Larissa Vasconcelos-Fontes
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil
| |
Collapse
|
19
|
Abstract
Tendon is a crucial component of the musculoskeletal system. Tendons connect muscle to bone and transmit forces to produce motion. Chronic and acute tendon injuries are very common and result in considerable pain and disability. The management of tendon injuries remains a challenge for clinicians. Effective treatments for tendon injuries are lacking because the understanding of tendon biology lags behind that of the other components of the musculoskeletal system. Animal and cellular models have been developed to study tendon-cell differentiation and tendon repair following injury. These studies have highlighted specific growth factors and transcription factors involved in tenogenesis during developmental and repair processes. Mechanical factors also seem to be essential for tendon development, homeostasis and repair. Mechanical signals are transduced via molecular signalling pathways that trigger adaptive responses in the tendon. Understanding the links between the mechanical and biological parameters involved in tendon development, homeostasis and repair is prerequisite for the identification of effective treatments for chronic and acute tendon injuries.
Collapse
Affiliation(s)
- Geoffroy Nourissat
- Service de chirurgie orthopédique et traumatologique, INSERM UMR_S938, DHU i2B, Assistance Publique-Hopitaux de Paris, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
| | - Francis Berenbaum
- Service de rhumatologie, INSERM UMR_S938, DHU i2B, Assistance Publique-Hopitaux de Paris, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
| | - Delphine Duprez
- Centre national de la recherche scientifique UMR 7622, IBPS Developmental Biology Laboratory, F-75005, Paris 5005, France
| |
Collapse
|
20
|
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis 2014; 1:87-105. [PMID: 25401122 PMCID: PMC4232216 DOI: 10.1016/j.gendis.2014.07.005] [Citation(s) in RCA: 691] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Bone Morphogenetic Proteins (BMPs) are a group of signaling molecules that belongs to the Transforming Growth Factor-β (TGF-β) superfamily of proteins. Initially discovered for their ability to induce bone formation, BMPs are now known to play crucial roles in all organ systems. BMPs are important in embryogenesis and development, and also in maintenance of adult tissue homeostasis. Mouse knockout models of various components of the BMP signaling pathway result in embryonic lethality or marked defects, highlighting the essential functions of BMPs. In this review, we first outline the basic aspects of BMP signaling and then focus on genetically manipulated mouse knockout models that have helped elucidate the role of BMPs in development. A significant portion of this review is devoted to the prominent human pathologies associated with dysregulated BMP signaling.
Collapse
Affiliation(s)
- Richard N. Wang
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jordan Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhongliang Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Michael Peabody
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Qian Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery, Medicine, and Gynecology, the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Sahitya Denduluri
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Olumuyiwa Idowu
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Melissa Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Christine Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Alan Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - James Mok
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue L. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Lin H, Wang L, Jiang M, Huang J, Qi L. P-glycoprotein(ABCB1)inhibited network of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum by systems-theoretical analysis. Cell Biochem Funct 2012; 30:582-7. [DOI: 10.1002/cbf.2837] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 03/01/2012] [Accepted: 04/02/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Hong Lin
- Biomedical Center, School of Electronic Engineering; Beijing University of Posts and Telecommunications; Beijing; China
| | - Lin Wang
- Biomedical Center, School of Electronic Engineering; Beijing University of Posts and Telecommunications; Beijing; China
| | - Minghu Jiang
- Lab of Computational Linguistics, School of Humanities and Social Sciences; Tsinghua University; Beijing; China
| | - Juxiang Huang
- Biomedical Center, School of Electronic Engineering; Beijing University of Posts and Telecommunications; Beijing; China
| | - Lianxiu Qi
- Biomedical Center, School of Electronic Engineering; Beijing University of Posts and Telecommunications; Beijing; China
| |
Collapse
|
22
|
Clendenning DE, Mortlock DP. The BMP ligand Gdf6 prevents differentiation of coronal suture mesenchyme in early cranial development. PLoS One 2012; 7:e36789. [PMID: 22693558 PMCID: PMC3365063 DOI: 10.1371/journal.pone.0036789] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 04/13/2012] [Indexed: 01/28/2023] Open
Abstract
Growth Differentiation Factor-6 (Gdf6) is a member of the Bone Morphogenetic Protein (BMP) family of secreted signaling molecules. Previous studies have shown that Gdf6 plays a role in formation of a diverse subset of skeletal joints. In mice, loss of Gdf6 results in fusion of the coronal suture, the intramembranous joint that separates the frontal and parietal bones. Although the role of GDFs in the development of cartilaginous limb joints has been studied, limb joints are developmentally quite distinct from cranial sutures and how Gdf6 controls suture formation has remained unclear. In this study we show that coronal suture fusion in the Gdf6-/- mouse is due to accelerated differentiation of suture mesenchyme, prior to the onset of calvarial ossification. Gdf6 is expressed in the mouse frontal bone primordia from embryonic day (E) 10.5 through 12.5. In the Gdf6-/- embryo, the coronal suture fuses prematurely and concurrently with the initiation of osteogenesis in the cranial bones. Alkaline phosphatase (ALP) activity and Runx2 expression assays both showed that the suture width is reduced in Gdf6+/- embryos and is completely absent in Gdf6-/- embryos by E12.5. ALP activity is also increased in the suture mesenchyme of Gdf6+/- embryos compared to wild-type. This suggests Gdf6 delays differentiation of the mesenchyme occupying the suture, prior to the onset of ossification. Therefore, although BMPs are known to promote bone formation, Gdf6 plays an inhibitory role to prevent the osteogenic differentiation of the coronal suture mesenchyme.
Collapse
Affiliation(s)
- Dawn E. Clendenning
- Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Douglas P. Mortlock
- Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
23
|
Matzuk MM, Burns KH. Genetics of Mammalian Reproduction: Modeling the End of the Germline. Annu Rev Physiol 2012; 74:503-28. [DOI: 10.1146/annurev-physiol-020911-153248] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Martin M. Matzuk
- Departments of Pathology and Immunology, Molecular and Cellular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030;
| | - Kathleen H. Burns
- Departments of Pathology and Oncology, McKusick-Nathans Institute of Genetic Medicine, and High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
24
|
Promiscuity and specificity in BMP receptor activation. FEBS Lett 2012; 586:1846-59. [PMID: 22710174 DOI: 10.1016/j.febslet.2012.02.043] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 02/03/2023]
Abstract
Bone Morphogenetic Proteins (BMPs), together with Transforming Growth Factor (TGF)-β and Activins/Inhibins constitute the TGF-β superfamily of ligands. This superfamily is formed by more than 30 structurally related secreted proteins. Since TGF-β members act as morphogens, either a strict relation between a particular ligand to a distinct cellular receptor and/or temporospatial expression patterns of ligands and receptors is expected. Instead, only a limited number of receptors exist implicating promiscuous interactions of ligands and receptors. Furthermore, in complex tissues a multitude of different ligands can be found, which signal via overlapping subsets of receptors. This raises the intriguing question how concerted interactions of different ligands and receptors generate highly specific cellular signals, which are required during development and tissue homeostasis.
Collapse
|
25
|
Yeh LCC, Lee JC. Effects of cartilage-derived morphogenetic protein-3 on the expression of chondrogenic and osteoblastic markers in the pluripotent mesenchymal C3H10T1/2 cell line. Growth Factors 2010; 28:117-28. [PMID: 20102312 DOI: 10.3109/08977190903512586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CDMP-3/GDF-7/BMP-12 treatment of pluripotent mesenchymal C3H10T1/2 cells resulted in a dose- and time-dependent change in cell morphology and in the expression of alkaline phosphatase, mRNA expression of osteocalcin, and bone sialoprotein, as well as mineralized bone nodule formation. CDMP-3 also stimulated Alcian Blue staining indicative of extracellular matrix formation without affecting aggrecan expression. CDMP-3 downregulated mRNA expression of BMP-4 and BMP-8A. CDMP-3 stimulated mRNA expression of ALK-1, ALK-2(ActR-IA), ALK-3(BMPR-IA), and ALK-4 without affecting that of ALK-6(BMPR-IB), ALK-7, and BMPR-II. These findings suggest that, under the experimental conditions studied, CDMP-3 induces the pluripotent mesenchymal C3H10T1/2 cells to express both chondrocytic and osteoblastic markers. The results further reveal potential complex interplay between the different bone morphogenetic proteins and their receptors in these processes.
Collapse
Affiliation(s)
- Lee-Chuan C Yeh
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
26
|
Ruggeri B, Ubaldi M, Lourdusamy A, Soverchia L, Ciccocioppo R, Hardiman G, Baker ME, Palermo F, Polzonetti-Magni AM. Variation of the genetic expression pattern after exposure to estradiol-17beta and 4-nonylphenol in male zebrafish (Danio rerio). Gen Comp Endocrinol 2008; 158:138-44. [PMID: 18602103 DOI: 10.1016/j.ygcen.2008.05.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/15/2008] [Accepted: 05/22/2008] [Indexed: 11/24/2022]
Abstract
There is much concern about the increasing presence in the environment of synthetic chemicals that are able to disrupt the endocrine system. Among these compounds, 4-nonylphenol (4-NP) is one of the most studied xenoestrogens, due to its widespread accumulation in water sediment and consequent presence in fatty acid of aquatic organisms. Here, we have used a zebrafish microarray representing 16,399 genes to study the effects of 4-NP and estradiol-17beta (E2) in adult male zebrafish in order to elucidate the mechanism of action of 4-NP compared with that of E2. The microarray results showed that both 4-NP and E2 induced a strong expression of vitellogenin (VTG), the sex related precursor of the yolk proteins in oviparous vertebrates. Both treatments induced elevated protein turnover upregulating genes involved in proteolysis and those that are constituents of the ribosome. Many genes regulated by 4-NP and E2 are involved in energy metabolism, oxidative stress defense mechanisms, xenobiotic metabolism, and lipid metabolism. A different pattern of expression in the two treatments was found for genes involved in oxidative stress, since E2 seems to induce the mechanism of detoxification, while 4-NP seems to inhibit this protective mechanism of the cell. Overall, these findings demonstrate that the microarray approach can contribute significantly to the understanding of expression patterns induced by E2 and 4-NP in male zebrafish. The results also demonstrate that 4-NP is able to act through an alternative pattern to that of estradiol-17beta, modulating the expression of the same genes in a different manner.
Collapse
Affiliation(s)
- B Ruggeri
- Department of Experimental Medicine and Public Health, University of Camerino, via Madonna delle Carceri, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mikic B, Ferreira MP, Battaglia TC, Hunziker EB. Accelerated hypertrophic chondrocyte kinetics in GDF-7 deficient murine tibial growth plates. J Orthop Res 2008; 26:986-90. [PMID: 18302280 DOI: 10.1002/jor.20574] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Growth/Differentiation Factors (GDFs) are a subgroup of the Bone Morphogenetic Proteins (BMPs) well known for their role in joint formation and chondrogenesis. Mice deficient in one of these signaling molecules, GDF-5, have recently been shown to exhibit a decreased rate of endochondral bone growth in the proximal tibia due to a significantly longer hypertrophic phase duration. GDF-7 is a related family member, which exhibits a high degree of sequence identity with GDF-5. The purpose of the present study was to determine whether GDF-7 deficiency also alters the endochondral bone growth rate in mice and, if so, how this is achieved. Stereologic and cell kinetic parameters in proximal tibial growth plates from 5-week-old female GDF-7 -/- mice and wild type control littermates were examined. GDF-7 deficiency resulted in a statistically significant increase in growth rate (+26%; p = 0.0084) and rate of cell loss at the chondrosseous junction (+25%; p = 0.0217). Cells from GDF-7 deficient mice also exhibited a significantly shorter hypertrophic phase duration compared to wild type controls (-27%; p = 0.0326). These data demonstrate that, in the absence of GDF-7, the rate of endochondral bone growth is affected through the modulation of hypertrophic phase duration in growth plate chondrocytes. These findings further support a growing body of evidence implicating the GDFs in the formation, maturation, and maintenance of healthy cartilage.
Collapse
Affiliation(s)
- Borjana Mikic
- Picker Engineering Program, Smith College, 51 College Lane, Northampton, Massachusetts 01063, USA.
| | | | | | | |
Collapse
|
28
|
Mikic B, Entwistle R, Rossmeier K, Bierwert L. Effect of GDF-7 deficiency on tail tendon phenotype in mice. J Orthop Res 2008; 26:834-9. [PMID: 18240333 DOI: 10.1002/jor.20581] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The subfamily of growth/differentiation factors (GDFs) known as GDFs 5, 6, and 7 appears to be involved in tendon maintenance and repair, although the precise nature of this role has yet to be elucidated. The aim of the present study was to examine the role of GDF-7 in tendon maintenance by studying tail tendon fascicle gene expression, composition, and material property strain rate dependency in 16-week-old male and female GDF-7 deficient mice. GDF-7 deficiency did not affect the biochemical composition of tail tendon fascicles, nor did it significantly affect the tensile material properties obtained at either slow (5%/s) or fast (50%/s) strain rates. Further, no difference was found between genotypes in the strain rate sensitivity of any tensile material property. Consistent with the compositional analyses, QRT-PCR data did not reveal any differences of twofold or greater in the gene expression levels of collagens I, III, V, nor in the proteoglycans decorin, fibromodulin, lumican, biglycan, versican, or aggrecan. Gdf5 expression was upregulated twofold in GDF-7 deficient tail tendons, and Bmp7 expression was downregulated twofold. No notable differences in expression levels for Bmp1-6 or Gdf6 were detected. GDF-5 protein levels were 50% higher in GDF-7 deficient tail tendon compared to wild type tail tendon. The results of this study support the intriguing possibility that compensation by Gdf-5 may be at least in part responsible for the absence of a strong phenotype in GDF-7 deficient mice.
Collapse
Affiliation(s)
- Borjana Mikic
- Picker Engineering Program, Smith College, 51 College Lane, Northampton, Massachusetts 01063, USA.
| | | | | | | |
Collapse
|
29
|
Cotton LM, O'Bryan MK, Hinton BT. Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocr Rev 2008; 29:193-216. [PMID: 18216218 PMCID: PMC2528845 DOI: 10.1210/er.2007-0028] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 11/29/2007] [Indexed: 12/25/2022]
Abstract
The major function of the reproductive system is to ensure the survival of the species by passing on hereditary traits from one generation to the next. This is accomplished through the production of gametes and the generation of hormones that function in the maturation and regulation of the reproductive system. It is well established that normal development and function of the male reproductive system is mediated by endocrine and paracrine signaling pathways. Fibroblast growth factors (FGFs), their receptors (FGFRs), and signaling cascades have been implicated in a diverse range of cellular processes including: proliferation, apoptosis, cell survival, chemotaxis, cell adhesion, motility, and differentiation. The maintenance and regulation of correct FGF signaling is evident from human and mouse genetic studies which demonstrate that mutations leading to disruption of FGF signaling cause a variety of developmental disorders including dominant skeletal diseases, infertility, and cancer. Over the course of this review, we will provide evidence for differential expression of FGFs/FGFRs in the testis, male germ cells, the epididymis, the seminal vesicle, and the prostate. We will show that this signaling cascade has an important role in sperm development and maturation. Furthermore, we will demonstrate that FGF/FGFR signaling is essential for normal epididymal function and prostate development. To this end, we will provide evidence for the involvement of the FGF signaling system in the regulation and maintenance of the male reproductive system.
Collapse
Affiliation(s)
- Leanne M Cotton
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
30
|
Kuslak SL, Thielen JL, Marker PC. The mouse seminal vesicle shape mutation is allelic with Fgfr2. Development 2007; 134:557-65. [PMID: 17202188 DOI: 10.1242/dev.02741] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mouse seminal vesicle shape (svs) mutation is a spontaneous recessive mutation that causes branching morphogenesis defects in the prostate gland and seminal vesicles. Unlike many other mutations that reduce prostatic and/or seminal vesicle branching, the svs mutation dramatically reduces branching without reducing organ growth. Using a positional cloning approach, we identified the svs mutant lesion as a 491 bp insertion in the tenth intron of Fgfr2 that results in changes in the pattern of Fgfr2 alternative splicing. An engineered null allele of Fgfr2 failed to complement the svs mutation proving that a partial loss of FGFR2(IIIb) isoforms causes svs phenotypes. Thus, the svs mutation represents a new type of adult viable Fgfr2 allele that can be used to elucidate receptor function during normal development and in the adult. In the developing seminal vesicles, sustained activation of ERK1/2 was associated with branching morphogenesis and this was absent in svs mutant seminal vesicles. This defect appears to be the immediate downstream effect of partial loss of FGFR2(IIIb) because activation of FGFR2(IIIb) by FGF10 rapidly induced ERK1/2 activation, and inhibition of ERK1/2 activation blocked seminal vesicle branching morphogenesis. Partial loss of FGFR2(IIIb) was also associated with down-regulation of several branching morphogenesis regulators including Shh, Ptch1, Gli1, Gli2, Bmp4, and Bmp7. Together with previous studies, these data suggest that peak levels of FGFR2(IIIb) signaling are required to induce branching and sustain ERK1/2 activation, whereas reduced levels support ductal outgrowth in the prostate gland and seminal vesicles.
Collapse
MESH Headings
- Alleles
- Alternative Splicing
- Animals
- Base Sequence
- Crosses, Genetic
- DNA Primers/genetics
- Female
- Gene Expression Regulation, Developmental
- Male
- Mice/genetics
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Molecular Sequence Data
- Mutation
- Phenotype
- Pregnancy
- Prostate/abnormalities
- Prostate/growth & development
- Prostate/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Seminal Vesicles/abnormalities
- Seminal Vesicles/growth & development
- Seminal Vesicles/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Sheri L Kuslak
- Department of Genetics, Cell Biology and Development, University of Minnesota Comprehensive Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
31
|
Khan IM, Redman SN, Williams R, Dowthwaite GP, Oldfield SF, Archer CW. The development of synovial joints. Curr Top Dev Biol 2007; 79:1-36. [PMID: 17498545 DOI: 10.1016/s0070-2153(06)79001-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During vertebrate evolution, successful adaptation of animal limbs to a variety of ecological niches depended largely on the formation and positioning of synovial joints. The function of a joint is to allow smooth articulation between opposing skeletal elements and to transmit biomechanical loads through the structure, and this is achieved through covering the ends of bones with articular cartilage, lubricating the joint with synovial fluid, using ligaments to bind the skeletal elements together, and encapsulating the joint in a protective fibrous layer of tissue. The diversity of limb generation has been proposed to occur through sequential branching and segmentation of precartilaginous skeletal elements along the proximodistal axis of the limb. The position of future joints is first delimited by areas of higher cell density called interzones initially through an as yet unidentified inductive signal, subsequently specification of these regions is controlled hierarchically by wnt14 and gdf5, respectively. Joint-forming cell fate although specified is not fixed, and joints will fuse if growth factor signaling is perturbed. Cavitation, the separation of the two opposing skeletal elements, and joint morphogenesis, the process whereby the joint cells organize and mature to establish a functional interlocking and reciprocally shaped joint, are slowly being unraveled through studying the plethora of molecules that make up the unique extracellular matrix of the forming structure. The joint lining tissue, articular cartilage, is avascular, and this limits its reparative capacity such that arthritis and associated joint pathologies are the single largest cause of disability in the adult population. Recent discoveries of adult stem cells and more specifically the isolation of chondroprogenitor cells from articular cartilage are extending available therapeutic options, though only with a more complete understanding of synovial joint development can such options have greater chances of success.
Collapse
Affiliation(s)
- I M Khan
- Cardiff School of Biosciences, Cardiff University, Cardiff CF103US, Wales, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Qiu T, Grizzle WE, Oelschlager DK, Shen X, Cao X. Control of prostate cell growth: BMP antagonizes androgen mitogenic activity with incorporation of MAPK signals in Smad1. EMBO J 2006; 26:346-57. [PMID: 17183365 PMCID: PMC1783451 DOI: 10.1038/sj.emboj.7601499] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 11/15/2006] [Indexed: 01/12/2023] Open
Abstract
Alterations in the signaling pathways of bone morphogenetic proteins (BMPs) and activation of the ERK/MAP kinase (MAPK) pathway by growth factors have been implicated in the development and progression of prostate cancer. Smad1 acts as a substrate for MAPKs and also performs a central role in transmitting signals from BMPs. We found that BMPs/Smad1 signaling inhibits the growth of androgen-sensitive prostate cancer cells. Upon the incorporation of ERK/MAPK signals at its linker region, Smad1 physically interacts with androgen-activated androgen receptor (AR) and suppresses its functions. BMPs induce the function of Smad1 as an AR transcriptional corepressor. We demonstrated in vivo that Smad1 signaling is low in androgen-regulated growth of prostate cancer, is activated after castration, and also is decreased in hormone-independent tumors. The activation status of ERK/MAPK parallels Smad1 in the progression of prostate cancer; thus, our findings indicate a molecular basis for the integration of signals of MAPK and Smad1 in the progression and androgen regulation of prostate cancer.
Collapse
Affiliation(s)
- Tao Qiu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Denise K Oelschlager
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xing Shen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xu Cao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA. Tel.: +1 205 934 0162; Fax: +1 205 934 1775; E-mail:
| |
Collapse
|
33
|
Abstract
The prostate gland and seminal vesicles are the major exocrine glands in the male reproductive tracts of mammals. Although the morphology of these organs varies widely among species, epithelial branching morphogenesis is a key feature of organ development in most mammals including rodents and humans. Insight into the mechanisms that control prostatic and seminal vesicle branching morphogenesis has come from experimental embryological work as well as from the study of mice and humans harboring mutations that alter branching morphogenesis. These studies have demonstrated a requirement for androgens to initiate branching morphogenesis as well as a role for androgens in sustaining the normal rate and extent of branching. In addition, these studies have revealed a series of reciprocal paracrine signals between the developing prostatic epithelium and prostatic mesenchyme that are essential for regulating branching morphogenesis. Key growth factors that participate in these signaling events include members of the fibroblast growth factor, Hedgehog, and transforming growth factor-beta families. Additional genes including several homeobox-containing transcription factors have also been implicated as key regulators of prostatic and seminal vesicle branching morphogenesis. While research in recent years has greatly enhanced our understanding of the molecular control of prostatic and seminal vesicle development, known genes cannot yet explain in molecular terms the complex biological interactions that descriptive and experimental embryological studies have elucidated in the control of branching morphogenesis in these organs.
Collapse
Affiliation(s)
- Axel A Thomson
- MRC Human Reproductive Sciences Unit, 37 Chalmers Street, Edinburgh EH3 9ET, UK
| | | |
Collapse
|
34
|
Jones RL, Stoikos C, Findlay JK, Salamonsen LA. TGF-β superfamily expression and actions in the endometrium and placenta. Reproduction 2006; 132:217-32. [PMID: 16885531 DOI: 10.1530/rep.1.01076] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transforming growth factor β (TGFβ) superfamily members are closely associated with tissue remodelling events and reproductive processes. This review summarises the current state of knowledge regarding the expression and actions of TGFβ superfamily members in the uterus, during the menstrual cycle and establishment of pregnancy. TGFβs and activin β subunits are abundantly expressed in the endometrium, where roles in preparation events for implantation have been delineated, particularly in promoting decidualisation of endometrial stroma. These growth factors are also expressed by epithelial glands and secreted into uterine fluid, where interactions with preimplantation embryos are anticipated. Knockout models and embryo culture experiments implicate activins, TGFβs, nodal and bone morphogenetic proteins (BMPs) in promoting pre- and post-implantation embryo development. TGFβ superfamily members may therefore be important in the maternal support of embryo development. Following implantation, invasion of the decidua by fetal trophoblasts is tightly modulated. Activin promotes, whilst TGFβ and macrophage inhibitory cytokine-1 (MIC-1) inhibit, trophoblast migration in vitro, suggesting the relative balance of TGFβ superfamily members participate in modulating the extent of decidual invasion. Activins and TGFβs have similar opposing actions in regulating placental hormone production. Inhibins and activins are produced by the placenta throughout pregnancy, and have explored as a potential markers in maternal serum for pregnancy and placental pathologies, including miscarriage, Down’s syndrome and pre-eclampsia. Finally, additional roles in immunomodulation at the materno-fetal interface, and in endometrial inflammatory events associated with menstruation and repair, are discussed.
Collapse
Affiliation(s)
- Rebecca L Jones
- Prince Henry's Institute of Medical Research, PO Box 5152, Clayton, VIC 3166, Australia.
| | | | | | | |
Collapse
|
35
|
Wilhelm D, Koopman P. The makings of maleness: towards an integrated view of male sexual development. Nat Rev Genet 2006; 7:620-31. [PMID: 16832429 DOI: 10.1038/nrg1903] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As the mammalian embryo develops, it must engage one of the two distinct programmes of gene activity, morphogenesis and organogenesis that characterize males and females. In males, sexual development hinges on testis determination and differentiation, but also involves many coordinated transcriptional, signalling and endocrine networks that underpin the masculinization of other organs and tissues, including the brain. Here we bring together current knowledge about these networks, identify gaps in the overall picture, and highlight the known defects that lead to disorders of male sexual development.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
36
|
Mazerbourg S, Hsueh AJW. Genomic analyses facilitate identification of receptors and signalling pathways for growth differentiation factor 9 and related orphan bone morphogenetic protein/growth differentiation factor ligands. Hum Reprod Update 2006; 12:373-83. [PMID: 16603567 DOI: 10.1093/humupd/dml014] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent advances in genomic sequencing allow a new paradigm in hormonal research, and a comparative genomic approach facilitates the identification of receptors and signalling mechanisms for orphan ligands of the transforming growth factor beta (TGFbeta) superfamily. Instead of purifying growth differentiation factor 9 (GDF9) receptor proteins for identification, we hypothesized that GDF9, like other ligands in the TGFbeta family, activates type II and type I serine/threonine kinase receptors. Because searches of the human genome for genes with sequence homology to known serine/threonine kinase receptors failed to reveal uncharacterized receptor genes, GDF9 likely interacts with the known type II and type I activin receptor-like kinase (ALK) receptors in granulosa cells. We found that co-treatment with the bone morphogenetic protein (BMP) type II receptor (BMPRII) ectodomain blocks GDF9 activity. Likewise, in a GDF9-non-responsive cell line, overexpression of ALK5, but none of the other six type I receptors, conferred GDF9 responsiveness. The roles of BMPRII and ALK5 as receptors for GDF9 were validated in granulosa cells using gene "knock-down" approaches. Furthermore, we demonstrated the roles of BMPRII, ALK3 and ALK6 as the receptors for the orphan ligands GDF6, GDF7 and BMP10. Thus, evolutionary tracing of polypeptide ligands, receptors and downstream signalling molecules in their respective 'subgenomes' facilitates a new approach for hormonal research.
Collapse
Affiliation(s)
- Sabine Mazerbourg
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | |
Collapse
|
37
|
Abstract
Growth/differentiation factors (GDFs) play a significant role in numerous skeletal tissues and processes. Previous work using the brachypod mouse has suggested that GDF-5 affects Achilles tendon composition, ultrastructure, and material behavior, as well as tendon repair. The aim of the present study was to examine the role of a related GDF family member, GDF-7 (BMP-12), in intact tendon by studying the Achilles tendon of genetically engineered knockout mice. Achilles tendons from 16-week-old GDF-7 -/- mice contained 14% less GAG/DNA than did wild type littermates (p = 0.0481), although collagen content was comparable to controls. Quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) results show that GDF-5 was upregulated two-threefold in response to the absence of GDF-7 protein. GDF-6 was also upregulated in knockouts, but to a lesser extent (twofold, p = 0.0013). On an ultrastructural level, GDF-7 deficient Achilles tendons exhibited a shift towards smaller diameter fibrils which resulted in a small but significant reduction in mean fibril diameter (-8%, p = 0.05). GDF-7 deficiency did not noticeably affect the expression of fibrillar collagens (I, III, V) or tendon proteoglycans (decorin, fibromodulin, lumican, biglycan, versican, aggrecan). Differences in tendon composition and ultrastructure were not biologically significant enough to have a noticeable effect on the structural or material behavior of the tendons. These results demonstrate that GDF-7 deficiency has a subtle effect on the composition and ultrastructure of murine Achilles tendon. The small magnitude of the observed differences may be due to overcompensation by related GDF family members.
Collapse
Affiliation(s)
- Borjana Mikic
- Picker Engineering Program, Smith College, 51 College Lane, Northampton, Massachusetts 01063, USA.
| | | | | |
Collapse
|
38
|
Grishina IB, Kim SY, Ferrara C, Makarenkova HP, Walden PD. BMP7 inhibits branching morphogenesis in the prostate gland and interferes with Notch signaling. Dev Biol 2006; 288:334-47. [PMID: 16324690 PMCID: PMC2644052 DOI: 10.1016/j.ydbio.2005.08.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 08/11/2005] [Accepted: 08/11/2005] [Indexed: 02/07/2023]
Abstract
The mouse prostate gland develops by branching morphogenesis from the urogenital epithelium and mesenchyme. Androgens and developmental factors, including FGF10 and SHH, promote prostate growth (Berman, D.M., Desai, N., Wang, X., Karhadkar, S.S., Reynon, M., Abate-Shen, C., Beachy, P.A., Shen, M.M., 2004. Roles for Hedgehog signaling in androgen production and prostate ductal morphogenesis. Dev. Biol. 267, 387-398; Donjacour, A.A., Thomson, A.A., Cunha, G.R., 2003. FGF-10 plays an essential role in the growth of the fetal prostate. Dev. Biol. 261, 39-54), while BMP4 signaling from the mesenchyme has been shown to suppresses prostate branching (Lamm, M.L., Podlasek, C.A., Barnett, D.H., Lee, J., Clemens, J.Q., Hebner, C.M., Bushman, W., 2001. Mesenchymal factor bone morphogenetic protein 4 restricts ductal budding and branching morphogenesis in the developing prostate. Dev. Biol. 232, 301-314). Here, we show that Bone Morphogenetic Protein 7 (BMP7) restricts branching of the prostate epithelium. BMP7 is expressed in the periurethral urogenital mesenchyme prior to formation of the prostate buds and, subsequently, in the prostate epithelium. We show that BMP7(lacZ/lacZ) null prostates show a two-fold increase in prostate branching, while recombinant BMP7 inhibits prostate morphogenesis in organ culture in a concentration-dependent manner. We further explore the mechanisms by which the developmental signals may be interpreted in the urogenital epithelium to regulate branching morphogenesis. We show that Notch1 activity is associated with the formation of the prostate buds, and that Notch1 signaling is derepressed in BMP7 null urogenital epithelium. Based on our studies, we propose a model that BMP7 inhibits branching morphogenesis in the prostate and limits the number of domains with high Notch1/Hes1 activity.
Collapse
Affiliation(s)
- Irina B Grishina
- Department of Urology, New York University School of Medicine, VAMC, 423 East 23rd Street, 18064-South, New York, NY 10010, USA.
| | | | | | | | | |
Collapse
|
39
|
Maloul A, Rossmeier K, Mikic B, Pogue V, Battaglia T. Geometric and material contributions to whole bone structural behavior in GDF-7-deficient mice. Connect Tissue Res 2006; 47:157-62. [PMID: 16753809 DOI: 10.1080/03008200600719142] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The growth/differentiation factors (GDFs) are a subfamily of bone morphogenetic proteins (BMPs) known to play a role in a variety of skeletal processes. Previous work using the brachypod mouse demonstrated that mice deficient in GDF-5 have long bones with diminished material properties and ash content compared with control littermates. Our aim was to examine the role of a related GDF family member, GDF-7 (BMP-12), in cortical bone by examining the geometric and material contributions to whole bone structural behavior in GDF-7-deficient mice. Femora from 16-week-old GDF-7 -/- animals had significantly smaller bone cross-sectional geometric parameters (e.g., -20% medial/lateral and anterior/posterior moments of inertia). Despite having smaller bone cross-sections, all structural parameters obtained from four-point bending tests were comparable to those of wild-type bones due to elevated cortical bone material properties (+18% modulus of elasticity, +28% yield strength, and +18% ultimate strength). No significant differences in ash content or collagen content were detected, however. These data suggest that GDF-7 deficiency is associated with elevated cortical bone material properties that compensate for decreased geometric properties, thereby preserving bone structural integrity. The compositional and/or microstructural bases for these altered material properties remain to be determined, however.
Collapse
Affiliation(s)
- A Maloul
- Picker Engineering Program, Smith College, Northampton, Massachusetts 01063, USA
| | | | | | | | | |
Collapse
|
40
|
Mesenchymal stem cells differentiate into tenocytes by bone morphogenetic protein (BMP) 12 gene transfer. J Biosci Bioeng 2005; 6:e17531. [PMID: 21412429 PMCID: PMC3055887 DOI: 10.1371/journal.pone.0017531] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 02/03/2011] [Indexed: 01/09/2023]
Abstract
We characterized the differentiation of rat bone marrow-derived mesenchymal stem cells (BM-MSCs) into tenocyte-like cells in response to bone morphogenetic protein-12 (BMP-12). BM-MSCs were prepared from Sprague-Dawley rats and cultured as monolayers. Recombinant BMP-12 treatment (10 ng/ml) of BM-MSCs for 12 hours in vitro markedly increased expression of the tenocyte lineage markers scleraxis (Scx) and tenomodulin (Tnmd) over 14 days. Treatment with BMP-12 for a further 12-hour period had no additional effect. Colony formation assays revealed that ∼80% of treated cells and their progeny were Scx- and Tnmd-positive. BM-MSCs seeded in collagen scaffolds and similarly treated with a single dose of BMP-12 also expressed high levels of Scx and Tnmd, as well as type I collagen and tenascin-c. Furthermore, when the treated BM-MSC-seeded scaffolds were implanted into surgically created tendon defects in vivo, robust formation of tendon-like tissue was observed after 21 days as evidenced by increased cell number, elongation and alignment along the tensile axis, greater matrix deposition and the elevated expression of tendon markers. These results indicate that brief stimulation with BMP-12 in vitro is sufficient to induce BM-MSC differentiation into tenocytes, and that this phenotype is sustained in vivo. This strategy of pretreating BM-MSCs with BMP-12 prior to in vivo transplantation may be useful in MSC-based tendon reconstruction or tissue engineering.
Collapse
|
41
|
Mazerbourg S, Sangkuhl K, Luo CW, Sudo S, Klein C, Hsueh AJW. Identification of receptors and signaling pathways for orphan bone morphogenetic protein/growth differentiation factor ligands based on genomic analyses. J Biol Chem 2005; 280:32122-32. [PMID: 16049014 DOI: 10.1074/jbc.m504629200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There are more than 30 human transforming growth factor beta/bone morphogenetic protein/growth differentiation factor (TGFbeta/BMP/GDF)-related ligands known to be important during embryonic development, organogenesis, bone formation, reproduction, and other physiological processes. Although select TGFbeta/BMP/GDF proteins were found to interact with type II and type I serine/threonine receptors to activate downstream Smad and other proteins, the receptors and signaling pathways for one-third of these TGFbeta/BMP/GDF paralogs are still unclear. Based on a genomic analysis of the entire repertoire of TGFbeta/BMP/GDF ligands and serine/threonine kinase receptors, we tested the ability of three orphan BMP/GDF ligands to activate a limited number of phylogenetically related receptors. We characterized the dimeric nature of recombinant GDF6 (also known as BMP13), GDF7 (also known as BMP12), and BMP10. We demonstrated their bioactivities based on the activation of Smad1/5/8-, but not Smad2/3-, responsive promoter constructs in the MC3T3 cell line. Furthermore, we showed their ability to induce the phosphorylation of Smad1, but not Smad2, in these cells. In COS7 cells transfected with the seven known type I receptors, overexpression of ALK3 or ALK6 conferred ligand signaling by GDF6, GDF7, and BMP10. In contrast, transfection of MC3T3 cells with ALK3 small hairpin RNA suppressed Smad signaling induced by all three ligands. Based on the coevolution of ligands and receptors, we also tested the role of BMPRII and ActRIIA as the type II receptor candidates for the three orphan ligands. We found that transfection of small hairpin RNA for BMPRII and ActRIIA in MC3T3 cells suppressed the signaling of GDF6, GDF7, and BMP10. Thus, the present approach provides a genomic paradigm for matching paralogous polypeptide ligands with a limited number of evolutionarily related receptors capable of activating specific downstream Smad proteins.
Collapse
Affiliation(s)
- Sabine Mazerbourg
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, California 94305-5317, USA
| | | | | | | | | | | |
Collapse
|
42
|
Jorgez CJ, Lin YN, Matzuk MM. Genetic manipulations to study reproduction. Mol Cell Endocrinol 2005; 234:127-35. [PMID: 15836961 DOI: 10.1016/j.mce.2004.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Accepted: 08/17/2004] [Indexed: 10/25/2022]
Abstract
Fertility disorders affect approximately 15% of individuals worldwide. With the imminent completion of the human and mouse genome sequence, it will be more feasible to identify the relevant genes underlying many fertility disorders. Already, the mouse has been utilized extensively as a genetic tool for the dissection of gene function, often providing significant insights into the relationship between gene and disease. In fact, there are over 200 mouse models that display reproductive defects. However, the available mouse mutant resources provide functional information for a mere 10% of the total number of genes in the mouse or human genomes at best. The improvement of available genome annotations together with more powerful techniques to manipulate the mouse genome provide substantial improvements in our ability to identify genes involved in reproduction, and in the future will likely benefit patients with fertility problems.
Collapse
Affiliation(s)
- Carolina J Jorgez
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
43
|
Dudas M, Kaartinen V. Tgf-beta superfamily and mouse craniofacial development: interplay of morphogenetic proteins and receptor signaling controls normal formation of the face. Curr Top Dev Biol 2005; 66:65-133. [PMID: 15797452 DOI: 10.1016/s0070-2153(05)66003-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Marek Dudas
- Developmental Biology Program at the Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | | |
Collapse
|
44
|
Wanigasekara Y, Airaksinen MS, Heuckeroth RO, Milbrandt J, Keast JR. Neurturin signalling via GFRα2 is essential for innervation of glandular but not muscle targets of sacral parasympathetic ganglion neurons. Mol Cell Neurosci 2004; 25:288-300. [PMID: 15019945 DOI: 10.1016/j.mcn.2003.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 10/20/2003] [Accepted: 10/23/2003] [Indexed: 10/26/2022] Open
Abstract
Neurturin, a member of the glial cell-derived neurotrophic factor familys of ligands, is important for development of many cranial parasympathetic ganglion neurons. We have investigated the sacral component of the parasympathetic nervous system in mice with gene deletions for neurturin or its preferred receptor, GFRalpha2. Disruption of neurturin signalling decreased cholinergic VIP innervation to the mucosa of the reproductive organs, but not to the smooth muscle layers of these organs or to the urinary bladder. Thus, neurturin and its receptor are involved in parasympathetic innervation of a select group of pelvic visceral tissues. In contrast, noradrenergic innervation was not affected by the gene ablations. The epithelium of reproductive organs from knockout animals was atrophied, indicating that cholinergic innervation may be important for the maintenance of normal structure. Cholinergic neurons express GFRalpha2 on their terminals and somata, indicating they can respond to neurotrophic support, and their somata are smaller when neurturin signalling is disrupted. Colocalisation studies showed that many peripheral glia express GFRalpha2 although its role in these cells is yet to be determined. Our results indicate that neurturin, acting through GFRalpha2, is essential for parasympathetic innervation of the mucosae of reproductive organs, as well as for maintenance of a broader group of sacral parasympathetic neurons.
Collapse
Affiliation(s)
- Y Wanigasekara
- Prince of Wales Medical Research Institute and University of New South Wales, Randwick 2031, Australia
| | | | | | | | | |
Collapse
|
45
|
Mortlock DP, Guenther C, Kingsley DM. A general approach for identifying distant regulatory elements applied to the Gdf6 gene. Genome Res 2003; 13:2069-81. [PMID: 12915490 PMCID: PMC403689 DOI: 10.1101/gr.1306003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Regulatory sequences in higher genomes can map large distances from gene coding regions, and cannot yet be identified by simple inspection of primary DNA sequence information. Here we describe an efficient method of surveying large genomic regions for gene regulatory information, and subdividing complex sets of distant regulatory elements into smaller intervals for detailed study. The mouse Gdf6 gene is expressed in a number of distinct embryonic locations that are involved in the patterning of skeletal and soft tissues. To identify sequences responsible for Gdf6 regulation, we first isolated a series of overlapping bacterial artificial chromosomes (BACs) that extend varying distances upstream and downstream of the gene. A LacZ reporter cassette was integrated into the Gdf6 transcription unit of each BAC using homologous recombination in bacteria. Each modified BAC was injected into fertilized mouse eggs, and founder transgenic embryos were analyzed for LacZ expression mid-gestation. The overlapping segments defined by the BAC clones revealed five separate regulatory regions that drive LacZ expression in 11 distinct anatomical locations. To further localize sequences that control expression in developing skeletal joints, we created a series of BAC constructs with precise deletions across a putative joint-control region. This approach further narrowed the critical control region to an area containing several stretches of sequence that are highly conserved between mice and humans. A distant 2.9-kilobase fragment containing the highly conserved regions is able to direct very specific expression of a minimal promoter/LacZ reporter in proximal limb joints. These results demonstrate that even distant, complex regulatory sequences can be identified using a combination of BAC scanning, BAC deletion, and comparative sequencing approaches.
Collapse
Affiliation(s)
- Douglas P Mortlock
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| | | | | |
Collapse
|
46
|
Abstract
During spinal cord development, commissural neurons extend their axons ventrally, away from the roof plate. The roof plate is the source of a diffusible repellent that orients commissural axons in vitro and, thus, may regulate the trajectory of commissural axons in vivo. Of three Bmps expressed in the roof plate, BMP7, but not BMP6 or GDF7, mimics the roof plate activity in vitro. We show here that expression of both Bmp7 and Gdf7 by roof plate cells is required for the fidelity of commissural axon growth in vivo. We also demonstrate that BMP7 and GDF7 heterodimerize in vitro and that, under these conditions, GDF7 enhances the axon-orienting activity of BMP7. Our findings suggest that a GDF7:BMP7 heterodimer functions as a roof plate-derived repellent that establishes the initial ventral trajectory of commissural axons.
Collapse
Affiliation(s)
- Samantha J Butler
- Department of Physiology and Cellular Biophysics, Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
47
|
Settle SH, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 2003; 254:116-30. [PMID: 12606286 DOI: 10.1016/s0012-1606(02)00022-2] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growth/differentiation factors 5, 6, and 7 (GDF5/6/7) represent a distinct subgroup within the bone morphogenetic protein (BMP) family of secreted signaling molecules. Previous studies have shown that the Gdf5 gene is expressed in transverse stripes across developing skeletal elements and is one of the earliest known markers of joint formation during embryonic development. Although null mutations in this gene disrupt formation of some bones and joints in the skeleton, many sites are unaffected. Here, we show that the closely related family members Gdf6 and Gdf7 are expressed in different subsets of developing joints. Inactivation of the Gdf6 gene causes defects in joint, ligament, and cartilage formation at sites distinct from those seen in Gdf5 mutants, including the wrist and ankle, the middle ear, and the coronal suture between bones in the skull. Mice lacking both Gdf5 and Gdf6 show additional defects, including severe reduction or loss of some skeletal elements in the limb, additional fusions between skeletal structures, scoliosis, and altered cartilage in the intervertebral joints of the spinal column. These results show that members of the GDF5/6/7 subgroup are required for normal formation of bones and joints in the limbs, skull, and axial skeleton. The diverse effects on joint development and the different types of joints affected in the mutants suggest that members of the GDF family play a key role in establishing boundaries between many different skeletal elements during normal development. Some of the skeletal defects seen in single or double mutant mice resemble defects seen in human skeletal diseases, which suggests that these genes may be candidates that underlie some forms of carpal/tarsal coalition, conductive deafness, scoliosis, and craniosynostosis.
Collapse
Affiliation(s)
- Stephen H Settle
- Department of Developmental Biology and Howard Hughes Medical Institute, Beckman Center B300, Stanford University School of Medicine, Stanford, CA 94305-5327, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
During the past two decades, a significant amount of data has been accumulated revealing the intriguing functions of bone morphogenetic proteins (BMPs) in all aspects of embryonic development and organogenesis. Numerous genes encoding BMPs, BMP receptors, and their downstream signal transducers have been mutated in the mouse through targeted mutagenesis. This review focuses on what is known about the role of BMP signaling in gastrulation, mesoderm formation, left-right asymmetry, neural patterning, skeletal and limb development, organogenesis, and gametogenesis as revealed by BMP-signaling mutants.
Collapse
Affiliation(s)
- Guang-Quan Zhao
- Cecil H. & Ida Green Center for Reproductive Biology Sciences, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
49
|
Abstract
Members of the TGF-beta superfamily, which includes TGF-betas, growth differentiation factors, bone morphogenetic proteins, activins, inhibins, and glial cell line-derived neurotrophic factor, are synthesized as prepropeptide precursors and then processed and secreted as homodimers or heterodimers. Most ligands of the family signal through transmembrane serine/threonine kinase receptors and SMAD proteins to regulate cellular functions. Many studies have reported the characterization of knockout and knock-in transgenic mice as well as humans or other mammals with naturally occurring genetic mutations in superfamily members or their regulatory proteins. These investigations have revealed that TGF-beta superfamily ligands, receptors, SMADs, and upstream and downstream regulators function in diverse developmental and physiological pathways. This review attempts to collate and integrate the extensive body of in vivo mammalian studies produced over the last decade.
Collapse
Affiliation(s)
- Hua Chang
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
50
|
Abstract
Protein-protein interactions play crucial roles in biological processes. Experimental methods have been developed to survey the proteome for interacting partners and some computational approaches have been developed to extend the impact of these experimental methods. Computational methods are routinely applied to newly discovered genes to infer protein function and plausible protein-protein interactions. Here, we develop and extend a quantitative method that identifies interacting proteins based upon the correlated behavior of the evolutionary histories of protein ligands and their receptors. We have studied six families of ligand-receptor pairs including: the syntaxin/Unc-18 family, the GPCR/G-alpha's, the TGF-beta/TGF-beta receptor system, the immunity/colicin domain collection from bacteria, the chemokine/chemokine receptors, and the VEGF/VEGF receptor family. For correlation scores above a defined threshold, we were able to find an average of 79% of all known binding partners. We then applied this method to find plausible binding partners for proteins with uncharacterized binding specificities in the syntaxin/Unc-18 protein and TGF-beta/TGF-beta receptor families. Analysis of the results shows that co-evolutionary analysis of interacting protein families can reduce the search space for identifying binding partners by not only finding binding partners for uncharacterized proteins but also recognizing potentially new binding partners for previously characterized proteins. We believe that correlated evolutionary histories provide a route to exploit the wealth of whole genome sequences and recent systematic proteomic results to extend the impact of these studies and focus experimental efforts to categorize physiologically or pathologically relevant protein-protein interactions.
Collapse
Affiliation(s)
- Chern-Sing Goh
- Program in Biological and Medical Informatics, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|