1
|
Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos. Cells 2021; 10:cells10082148. [PMID: 34440915 PMCID: PMC8391977 DOI: 10.3390/cells10082148] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles. Although FGFs have been the focus of research for therapeutic approaches in cancer, cardiovascular disease, and metabolic syndrome, in this review, we mainly focused on their role in germ layer specification and axis patterning during early vertebrate embryogenesis. We discussed the functional roles of FGFs and their interacting partners as part of the gene regulatory network for germ layer specification, dorsal-ventral (DV), and anterior-posterior (AP) patterning. Finally, we briefly reviewed the regulatory molecules and pharmacological agents discovered that may allow modulation of FGF signaling in research.
Collapse
|
2
|
Aguirre CE, Murgan S, Carrasco AE, López SL. An intact brachyury function is necessary to prevent spurious axial development in Xenopus laevis. PLoS One 2013; 8:e54777. [PMID: 23359630 PMCID: PMC3554630 DOI: 10.1371/journal.pone.0054777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
We have previously shown that the member of the HES family hairy2 induces the ectopic expression of dorsal markers when it is overexpressed in the ventral side of Xenopus embryos. Intriguingly, hairy2 represses the mesoderm transcription factor brachyury (bra) throughout its domain in the marginal zone. Here we show that in early gastrula, bra and hairy2 are expressed in complementary domains. Overexpression of bra repressed hairy2. Interference of bra function with a dominant-negative construct expanded the hairy2 domain and, like hairy2 overexpression, promoted ectopic expression of dorsal axial markers in the ventral side and induced secondary axes without head and notochord. Hairy2 depletion rescued the ectopic dorsal development induced by interference of bra function. We concluded that an intact bra function is necessary to exclude hairy2 expression from the non-organiser field, to impede the ectopic specification of dorsal axial fates and the appearance of incomplete secondary axes. This evidence supports a previously unrecognised role for bra in maintaining the dorsal fates inhibited in the ventral marginal zone, preventing the appearance of trunk duplications.
Collapse
Affiliation(s)
- Cecilia E. Aguirre
- Laboratorio de Embriología Molecular, Instituto de Biología Celular y Neurociencia ‘‘Prof. E. De Robertis’’ (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sabrina Murgan
- Laboratorio de Embriología Molecular, Instituto de Biología Celular y Neurociencia ‘‘Prof. E. De Robertis’’ (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés E. Carrasco
- Laboratorio de Embriología Molecular, Instituto de Biología Celular y Neurociencia ‘‘Prof. E. De Robertis’’ (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia L. López
- Laboratorio de Embriología Molecular, Instituto de Biología Celular y Neurociencia ‘‘Prof. E. De Robertis’’ (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
3
|
Wang R, Liu X, Küster-Schöck E, Fagotto F. Proteomic analysis of differences in ectoderm and mesoderm membranes by DiGE. J Proteome Res 2012; 11:4575-93. [PMID: 22852788 DOI: 10.1021/pr300379m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ectoderm and mesoderm can be considered as prototypes for epithelial and mesenchymal cell types. These two embryonic tissues display clear differences in adhesive and motility properties, which are phenomenologically well characterized but remain largely unexplored at the molecular level. Because the key downstream regulations must occur at the plasma membrane and in the underlying actin cortical structures, we have set out to compare the protein content of membrane fractions from Xenopus ectoderm and mesoderm tissues using 2-dimensional difference gel electrophoresis (DiGE). We have thus identified several proteins that are enriched in one or the other tissues, including regulators of the cytoskeleton and of cell signaling. This study represents to our knowledge the first attempt to use proteomics specifically targeted to the membrane-cortex compartment of embryonic tissues. The identified components should help unraveling a variety of tissue-specific functions in the embryo.
Collapse
Affiliation(s)
- Renee Wang
- Department of Biology, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
4
|
Le Bouffant R, Wang JH, Futel M, Buisson I, Umbhauer M, Riou JF. Retinoic acid-dependent control of MAP kinase phosphatase-3 is necessary for early kidney development in Xenopus. Biol Cell 2012; 104:516-32. [DOI: 10.1111/boc.201200005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/20/2012] [Indexed: 11/28/2022]
|
5
|
Abstract
Fibroblast growth factor (FGF) signalling has been implicated during several phases of early embryogenesis, including the patterning of the embryonic axes, the induction and/or maintenance of several cell lineages and the coordination of morphogenetic movements. Here, we summarise our current understanding of the regulation and roles of FGF signalling during early vertebrate development.
Collapse
Affiliation(s)
- Karel Dorey
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Enrique Amaya
- The Healing Foundation Centre, Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
6
|
Kaneda T, Iwamoto Y, Motoki JYD. Origin of the prechordal plate and patterning of the anteroposterior regional specificity of the involuting and extending archenteron roof of a urodele, Cynops pyrrhogaster. Dev Biol 2009; 334:84-96. [DOI: 10.1016/j.ydbio.2009.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/12/2009] [Accepted: 07/09/2009] [Indexed: 11/28/2022]
|
7
|
Fletcher RB, Harland RM. The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus. Dev Dyn 2008; 237:1243-54. [PMID: 18386826 DOI: 10.1002/dvdy.21517] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
FGF signaling is important for the formation of mesoderm in vertebrates, and when it is perturbed in Xenopus, most trunk and tail mesoderm fails to form. Here we have further dissected the activities of FGF in patterning the embryo by addressing its inductive and maintenance roles. We show that FGF signaling is necessary for the establishment of xbra expression in addition to its well-characterized role in maintaining xbra expression. The role of FGF signaling in organizer formation is not clear in Xenopus. We find that FGF signaling is essential for the initial specification of paraxial mesoderm but not for activation of several pan-mesodermal and most organizer genes; however, early FGF signaling is necessary for the maintenance of organizer gene expression into the neurula stage. Inhibition of FGF signaling prevents VegT activation of specific mesodermal transcripts. These findings illuminate how FGF signaling contributes to the establishment of distinct types of mesoderm.
Collapse
Affiliation(s)
- Russell B Fletcher
- Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
8
|
Colas A, Cartry J, Buisson I, Umbhauer M, Smith JC, Riou JF. Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus. Dev Biol 2008; 320:351-65. [DOI: 10.1016/j.ydbio.2008.05.547] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 04/30/2008] [Accepted: 05/20/2008] [Indexed: 10/22/2022]
|
9
|
Keller R, Shook D. Dynamic determinations: patterning the cell behaviours that close the amphibian blastopore. Philos Trans R Soc Lond B Biol Sci 2008; 363:1317-32. [PMID: 18192174 DOI: 10.1098/rstb.2007.2250] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We review the dynamic patterns of cell behaviours in the marginal zone of amphibians with a focus on how the progressive nature and the geometry of these behaviours drive blastopore closure. Mediolateral cell intercalation behaviour and epithelial-mesenchymal transition are used in different combinations in several species of amphibian to generate a conserved pattern of circumblastoporal hoop stresses. Although these cell behaviours are quite different and involve different germ layers and tissue organization, they are expressed in similar patterns. They are expressed progressively along presumptive lateral-medial and anterior-posterior axes of the body plan in highly ordered geometries of functional significance in the context of the biomechanics of blastopore closure, thereby accounting for the production of similar patterns of circumblastoporal forces. It is not the nature of the cell behaviour alone, but the context, the biomechanical connectivity and spatial and temporal pattern of its expression that determine specificity of morphogenic output during gastrulation and blastopore closure. Understanding the patterning of these dynamic features of cell behaviour is important and will require analysis of signalling at much greater spatial and temporal resolution than that has been typical in the analysis of patterning tissue differentiation.
Collapse
Affiliation(s)
- Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
10
|
Hes6 is required for MyoD induction during gastrulation. Dev Biol 2007; 312:61-76. [PMID: 17950722 DOI: 10.1016/j.ydbio.2007.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/22/2007] [Accepted: 09/05/2007] [Indexed: 11/24/2022]
Abstract
The specification of mesoderm into distinct compartments sharing the same lineage restricted fates is a crucial step occurring during gastrulation, and is regulated by morphogenic signals such as the FGF/MAPK and activin pathways. One target of these pathways is the transcription factor XmyoD, which in early gastrulation is expressed in the lateral and ventral mesoderm. Expression of the hairy/enhancer of split transcription factor hes6, is also restricted to lateral and ventral mesoderm in gastrula stage Xenopus embryos, leading us to investigate whether it has a role in XmyoD regulation. In vivo, Xhes6 is required for FGF-mediated induction of XmyoD expression but not for induction of early mesoderm. The WRPW domain of Xhes6, which binds Groucho family transcriptional co-regulators, is essential for the XmyoD-inducing activity of Xhes6. Two Groucho proteins, Xgrg2 and Xgrg4, are expressed in lateral and ventral mesoderm, and inhibit expression of XmyoD. Xhes6 binds both Xgrg2 and Xgrg4 and relieves their inhibition of XmyoD expression. We also find that lowering Xhes6 expression levels blocks normal myogenic differentiation at tail bud stage. We conclude that Xhes6 is essential for XmyoD induction and acts by relieving Groucho-mediated repression of gene expression.
Collapse
|
11
|
Isaacs HV, Deconinck AE, Pownall ME. FGF4 regulates blood and muscle specification in Xenopus laevis. Biol Cell 2007; 99:165-73. [PMID: 17092209 DOI: 10.1042/bc20060103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION FGF (fibroblast growth factor) signalling is known to be required for many aspects of mesoderm formation and patterning during Xenopus development and has been implicated in regulating genes required for the specification of both blood and skeletal muscle lineages. RESULTS In the present study, we have specifically knocked down the expression of FGF4 using AMO (antisense morpholino oligonucleotide)-mediated inhibition and demonstrate that FGF4 acts in the dorsal marginal zone to restrict blood development and promote the development of skeletal muscle. In addition, we used a drug inhibitor of FGF signalling and an inducible form of FGFR1 (FGF receptor 1) to identify a period of competence during late blastula and gastrula stages when FGF signalling acts to regulate blood versus muscle specification. Notably, we found that it is the dorsal activity of FGF that is required to restrict the expression of SCL (stem cell leukaemia) to the ventral blood island. CONCLUSIONS Our data indicate that FGF4 is a key organizer-derived signal involved in the process of dorsoventral patterning of the mesoderm.
Collapse
Affiliation(s)
- Harry V Isaacs
- Area 11, Department of Biology, University of York, York YO10 5YW, U.K
| | | | | |
Collapse
|
12
|
Kumano G, Nishida H. Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Dev Dyn 2007; 236:1732-47. [PMID: 17366575 DOI: 10.1002/dvdy.21108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ascidian tadpole larva represents the basic body plan of all chordates in a relatively small number of cells and tissue types. Although it had been considered that ascidians develop largely in a determinative way, whereas vertebrates develop in an inductive way, recent studies at the molecular and cellular levels have uncovered several similarities in the way developmental fates are specified. In this review, we describe ascidian embryogenesis and its cell lineages, introduce several characteristics of ascidian embryos, describe recent advances in understanding of the mechanisms of cell fate specification, and discuss them in the context of what is known in vertebrates and other organisms.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
13
|
Kumano G, Ezal C, Smith WC. ADMP2 is essential for primitive blood and heart development in Xenopus. Dev Biol 2006; 299:411-23. [PMID: 16959239 DOI: 10.1016/j.ydbio.2006.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 06/29/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
We describe here the cloning of a new member of the TGF-beta family with similarity to the anti-dorsalizing morphogenetic proteins (ADMPs). This new gene, ADMP2, is expressed in a broad band of mesendoderm cells that appear to include the progenitors of the endoderm and the ventral mesoderm. Antisense morpholino oligonucleotide knockdown of ADMP2 results in near-complete disruption of primitive blood and heart development, while the development of other mesoderm derivatives, including pronephros, muscle and lateral plate is not disrupted. Moreover, the development of the primitive blood in ADMP2 knockdown embryos cannot be rescued by BMP. These results suggests that ADMP2 plays an early role in specifying presumptive ventral mesoderm in the leading edge mesoderm, and that ADMP2 activity may be necessary to respond to BMP signaling in the context of ventral mesoderm induction.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
14
|
Kumano G, Yamaguchi S, Nishida H. Overlapping expression of FoxA and Zic confers responsiveness to FGF signaling to specify notochord in ascidian embryos. Dev Biol 2006; 300:770-84. [PMID: 16950241 DOI: 10.1016/j.ydbio.2006.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 07/18/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
Differences in cell responsiveness to an inductive signal contribute to the emergence of a variety of tissue types during animal development. In ascidian embryos, the Fibroblast Growth Factor (FGF) signal secreted from endoderm cells induces several different tissue types, such as notochord, mesenchyme and brain, at different positions in the embryo at the 32-cell stage. We show here in Halocynthia roretzi that FoxA and Zic are required for notochord formation in cells that receive the FGF signal. We also show that these transcription factors, only when both are supplied, are able to induce ectopic expression of the brachyury gene, a notochord-specific marker, in cells of all the three germ layers in an FGF-dependent manner. These results suggest that FoxA and Zic confer notochord-specific responsiveness to FGF signaling. Further analyses including knockdown and over-expression experiments showed that combinatorial inputs from maternally supplied and zigotically activated factors lead to overlapping expression of FoxA and Zic in the presumptive notochord cells, which eventually activate the expression of the brachyury gene in cooperation with FGF signaling. Our data illustrate how a complex gene network specifies the notochord at its specific position within the embryo.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
15
|
Lane MC, Sheets MD. Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development. Dev Biol 2006; 296:12-28. [PMID: 16750823 DOI: 10.1016/j.ydbio.2006.04.447] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 03/09/2006] [Accepted: 04/09/2006] [Indexed: 11/21/2022]
Abstract
Amphibian embryos have served as a model system for vertebrate axial patterning for more than a century. Recent changes to the Xenopus laevis fate map revised the assignment of the embryonic dorsal/ventral (back-to-belly) axis in pre-gastrula embryos and allowed the assignment of the rostral/caudal (head-to-tail) axis for the first time. Revising the embryonic axes after many years of experimentation changes our view of axial patterning in amphibians. In this review, we discuss the revised maps and axes, and show by example how the new map alters the interpretation of three experiments that form the foundations of amphibian embryology. We compare the revised amphibian fate map to the general maps of the protochordates, and discuss which features of the maps and early development are shared by chordates and which distinguish vertebrates. Finally, we offer an explanation for the formation of both complete and incomplete axes in the rescue assays routinely used to study axial patterning in Xenopus, and a model of amphibian axial patterning.
Collapse
Affiliation(s)
- Mary Constance Lane
- Department of Biomolecular Chemistry, School of Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
16
|
Cha YR, Takahashi S, Wright CVE. Cooperative non-cell and cell autonomous regulation of Nodal gene expression and signaling by Lefty/Antivin and Brachyury in Xenopus. Dev Biol 2006; 290:246-64. [PMID: 16405884 DOI: 10.1016/j.ydbio.2005.10.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/20/2005] [Accepted: 10/28/2005] [Indexed: 11/25/2022]
Abstract
Dynamic spatiotemporal expression of the nodal gene and its orthologs is involved in the dose-dependent induction and patterning of mesendoderm during early vertebrate embryogenesis. We report loss-of-function studies that define a high degree of synergistic negative regulation on the Xenopus nodal-related genes (Xnrs) by extracellular Xenopus antivin/lefty (Xatv/Xlefty)-mediated functional antagonism and Brachyury-mediated transcriptional suppression. A strong knockdown of Xlefty/Xatv function was achieved by mixing translation- and splicing-blocking morpholino oligonucleotides that target both the A and B alloalleles of Xatv. Secreted and cell-autonomous inhibitors of Xnr signaling were used to provide evidence that Xnr-mediated induction was inherently long-range in this situation in the large amphibian embryo, essentially being capable of spreading over the entire animal hemisphere. There was a greater expansion of the Organizer and mesendoderm tissues associated with dorsal specification than noted in previous Xatv knockdown experiments in Xenopus, with consequent exogastrulation and long-term maintenance of expanded axial tissues. Xatv deficiency caused a modest animal-ward expansion of the marginal zone expression territory of the Xnr1 and Xnr2 genes. In contrast, introducing inhibitory Xbra-En(R) fusion constructs into Xatv-deficient embryos caused a much larger increase in the level and spatial extent of Xnr expression. However, in both cases (Xatv/Xlefty-deficiency alone, or combined with Xbra interference), Xnr2 expression was constrained to the superficial cell layer, suggesting a fundamental tissue-specific competence in the ability to express Xnrs, an observation with direct implications regarding the induction of endodermal vs. mesodermal fates. Our experiments reveal a two-level suppressive mechanism for restricting the level, range, and duration of Xnr signaling via extracellular inhibition by Xatv/Xlefty coupled with potent indirect transcriptional repression by Xbra.
Collapse
Affiliation(s)
- Young Ryun Cha
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, TN 37232, USA
| | | | | |
Collapse
|
17
|
Kourakis MJ, Smith WC. Did the first chordates organize without the organizer? Trends Genet 2005; 21:506-10. [PMID: 16023252 DOI: 10.1016/j.tig.2005.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/11/2005] [Accepted: 07/03/2005] [Indexed: 11/21/2022]
Abstract
Models of vertebrate development frequently portray the organizer as acting on a largely unpatterned embryo to induce major components of the body plan, such as the neural plate and somites. Recent experiments examining the molecular and genetic basis of major inductive events of vertebrate embryogenesis force a re-examination of this view. These newer observations, along with a proposed revised fate map for the frog Xenopus laevis, suggest a possible reconciliation between the seemingly disparate mechanisms present in the ontogeny of the common chordate body plan of vertebrate and invertebrate chordates. Here, we review data from vertebrates and from an ascidian urochordate and propose that the organizer was not present at the base of the chordate lineage, but could have been a later innovation in the lineage leading to vertebrates, where its role was more permissive than instructive.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
18
|
Kumano G, Smith WC. Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning. Dev Dyn 2002; 225:409-21. [PMID: 12454919 DOI: 10.1002/dvdy.10177] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A revised fate map of the gastrula Xenopus embryo predicts the existence of patterning mechanisms that operate within the animal/vegetal axis of the mesoderm-forming marginal zone. We review here molecular and embryologic data that demonstrate that such mechanisms are present and that they operate independently of the Spemann organizer. Evidence suggests that polarized fibroblast growth factor activity in the animal/vegetal axis patterns this axis. We present a model of mesoderm induction and patterning that integrates the new data on Spemann organizer-independent animal/vegetal patterning with data on other inductive pathways known to act on the gastrula marginal zone.
Collapse
Affiliation(s)
- Gaku Kumano
- Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
19
|
Iraha F, Saito Y, Yoshida K, Kawakami M, Izutsu Y, Daar IO, Maéno M. Common and distinct signals specify the distribution of blood and vascular cell lineages in Xenopus laevis embryos. Dev Growth Differ 2002; 44:395-407. [PMID: 12392573 DOI: 10.1046/j.1440-169x.2002.00653.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In an effort to elucidate the regulatory mechanisms that determine the fate of blood cells and vascular cells in the ventral blood island mesoderm, the embryonic expression of Xtie-2, a Xenopus homolog of the tie-2 receptor tyrosine kinase, was examined. Whole-mount in situ hybridization analysis revealed that Xtie-2 mRNA is expressed at the late tailbud stage within the regions where endothelial precursor cells exist. On the ventral side of embryos, Xtie-2-positive cells are predominantly present just outside the boundary of alpha-globin-positive cells, thus the expression pattern of these two markers seems mutually exclusive. Further experiments revealed that there is a consistent and strong correlation between the induction of Xtie-2 and alpha-globin expression in embryos and explant tissues. First, these two markers displayed overlapping expression in embryos ventralized by the removal of a "dorsal determinant" from the vegetal cytoplasm at the 1-cell stage. Second, expression of both Xtie-2 and alpha-globin were markedly induced in ectodermal explants (animal caps) from embryos co-injected with activin and bone morphogenetic protein (BMP)-4 RNA. Furthermore, both Xtie-2 and alpha-globin messages were strongly positive in dorsal marginal zone explants that had been injected with BMP-4 RNA. In contrast, however, there was a clear distinction in the localization of these two transcripts in embryos dorsalized by LiCl treatment. Distinct localization was also found in the ventral marginal zone (VMZ) explants. Using the VMZ explant system, we demonstrate a role of fibroblast growth factor (FGF) signaling in enhancing the vascular cell marker and reducing the blood cell marker. The present study suggests that the early steps of blood and vascular cell differentiation are regulated by a common BMP-4-dependent signaling; however, distinct factor(s) such as FGF are involved in different distribution of these two cell lineages.
Collapse
Affiliation(s)
- Fumie Iraha
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Kumano G, Smith WC. The nodal target gene Xmenf is a component of an FGF-independent pathway of ventral mesoderm induction in Xenopus. Mech Dev 2002; 118:45-56. [PMID: 12351169 DOI: 10.1016/s0925-4773(02)00186-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interplay of fibroblast growth factor (FGF) and nodal signaling in the Xenopus gastrula marginal zone specifies distinct populations of presumptive mesodermal cells. Cells in the vegetal marginal zone, making up the presumptive leading edge mesoderm, are exposed to nodal signaling, as evidenced by SMAD2 activation, but do not appear to be exposed to FGF signaling, as evidenced by the lack of MAP kinase (MAPK) activation. However, in the animal marginal zone, activation of both SMAD2 and MAPK occurs. The differential activation of these two signaling pathways in the marginal zone results in the vegetal and animal marginal zones expressing different genes at gastrulation, and subsequently having different fates, with the vegetal marginal zone contributing to ventral mesoderm (e.g. ventral blood island) and the animal marginal zone giving rise to dorsal fates (e.g. notochord and somite). We report here the cloning of a cDNA encoding a novel nuclear protein, Xmenf, that is expressed in the vegetal marginal zone. The expression of Xmenf is induced by nodal signaling and negatively regulated by FGF signaling. Results from animal cap studies indicate that Xmenf plays a role in the pathway of ventral mesoderm induction in the vegetal marginal zone.
Collapse
Affiliation(s)
- Gaku Kumano
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|