1
|
Gentile GM, Gamarra JR, Engels NM, Blue RE, Hoerr I, Wiedner HJ, Hinkle ER, Cote JL, Leverence E, Mills CA, Herring LE, Tan X, Giudice J. The synaptosome-associated protein 23 (SNAP23) is necessary for proper myogenesis. FASEB J 2022; 36:e22441. [PMID: 35816155 PMCID: PMC9836321 DOI: 10.1096/fj.202101627rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 01/14/2023]
Abstract
Vesicle-mediated transport is necessary for maintaining cellular homeostasis and proper signaling. The synaptosome-associated protein 23 (SNAP23) is a member of the SNARE protein family and mediates the vesicle docking and membrane fusion steps of secretion during exocytosis. Skeletal muscle has been established as a secretory organ; however, the role of SNAP23 in the context of skeletal muscle development is still unknown. Here, we show that depletion of SNAP23 in C2C12 mouse myoblasts reduces their ability to differentiate into myotubes as a result of premature cell cycle exit and early activation of the myogenic transcriptional program. This effect is rescued when cells are seeded at a high density or when cultured in conditioned medium from wild type cells. Proteomic analysis of collected medium indicates that SNAP23 depletion leads to a misregulation of exocytosis, including decreased secretion of the insulin-like growth factor 1 (IGF1), a critical protein for muscle growth, development, and function. We further demonstrate that treatment of SNAP23-depleted cells with exogenous IGF1 rescues their myogenic capacity. We propose that SNAP23 mediates the secretion of specific proteins, such as IGF1, that are important for achieving proper differentiation of skeletal muscle cells during myogenesis. This work highlights the underappreciated role of skeletal muscle as a secretory organ and contributes to the understanding of factors necessary for myogenesis.
Collapse
Affiliation(s)
- Gabrielle M. Gentile
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer R. Gamarra
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nichlas M. Engels
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Isabel Hoerr
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emma R. Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica L. Cote
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elise Leverence
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christine A. Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xianming Tan
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
MicroRNA-17-92 regulates myoblast proliferation and differentiation by targeting the ENH1/Id1 signaling axis. Cell Death Differ 2016; 23:1658-69. [PMID: 27315298 PMCID: PMC5041193 DOI: 10.1038/cdd.2016.56] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 05/19/2015] [Accepted: 05/20/2016] [Indexed: 12/21/2022] Open
Abstract
Myogenesis is an important biological process that occurs during both skeletal muscle regeneration and postnatal growth. Growing evidence points to the critical role of microRNAs (miRNAs) in myogenesis. Our analysis of miRNA expression patterns reveal that miRNAs of miR-17-92 cluster are dramatically downregulated in C2C12 cells after myogenesis stimulation, are strongly induced in mouse skeletal muscle after injury and decrease steadily thereafter and are downregulated with age in skeletal muscle during mouse and porcine postnatal growth. However, their roles in muscle developmental processes remain elusive. We show that the miR-17-92 cluster promotes mouse myoblast proliferation but inhibits myotube formation. miR-17, -20a and -92a target the actin-associated protein enigma homolog 1 (ENH1). The silencing of ENH1 increased the nuclear accumulation of the inhibitor of differentiation 1 (Id1) and represses myogenic differentiation. Furthermore, the injection of adenovirus expressing miR-20a into the tibialia anterior muscle downregulates ENH1 and delays regeneration. In addition, the downregulation of miR-17-92 during myogenesis is transcriptionally regulated by E2F1. Overall, our results reveal a E2F1/miR-17-92/ENH1/Id1 regulatory axis during myogenesis.
Collapse
|
3
|
Cerino G, Gaudiello E, Grussenmeyer T, Melly L, Massai D, Banfi A, Martin I, Eckstein F, Grapow M, Marsano A. Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors. Biotechnol Bioeng 2015; 113:226-36. [PMID: 26126766 DOI: 10.1002/bit.25688] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/20/2015] [Accepted: 06/22/2015] [Indexed: 12/13/2022]
Abstract
Conventional tissue engineering strategies often rely on the use of a single progenitor cell source to engineer in vitro biological models; however, multi-cellular environments can better resemble the complexity of native tissues. Previous described co-culture models used skeletal myoblasts, as parenchymal cell source, and mesenchymal or endothelial cells, as stromal component. Here, we propose instead the use of adipose tissue-derived stromal vascular fraction cells, which include both mesenchymal and endothelial cells, to better resemble the native stroma. Percentage of serum supplementation is one of the crucial parameters to steer skeletal myoblasts toward either proliferation (20%) or differentiation (5%) in two-dimensional culture conditions. On the contrary, three-dimensional (3D) skeletal myoblast culture often simply adopts the serum content used in monolayer, without taking into account the new cell environment. When considering 3D cultures of mm-thick engineered tissues, homogeneous and sufficient oxygen supply is paramount to avoid formation of necrotic cores. Perfusion-based bioreactor culture can significantly improve the oxygen access to the cells, enhancing the viability and the contractility of the engineered tissues. In this study, we first investigated the influence of different serum supplementations on the skeletal myoblast ability to proliferate and differentiate during 3D perfusion-based culture. We tested percentages of serum promoting monolayer skeletal myoblast-proliferation (20%) and differentiation (5%) and suitable for stromal cell culture (10%) with a view to identify the most suitable condition for the subsequent co-culture. The 10% serum medium composition resulted in the highest number of mature myotubes and construct functionality. Co-culture with stromal vascular fraction cells at 10% serum also supported the skeletal myoblast differentiation and maturation, hence providing a functional engineered 3D muscle model that resembles the native multi-cellular environment.
Collapse
Affiliation(s)
- Giulia Cerino
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Emanuele Gaudiello
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Thomas Grussenmeyer
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Ludovic Melly
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Banfi
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Friedrich Eckstein
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Martin Grapow
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland
| | - Anna Marsano
- Department of Biomedicine, University of Basel and Department of Surgery, University Hospital of Basel, 4031, Basel, Switzerland.
| |
Collapse
|
4
|
Cantini M, Sousa M, Moratal D, Mano JF, Salmerón-Sánchez M. Non-monotonic cell differentiation pattern on extreme wettability gradients. Biomater Sci 2012; 1:202-212. [PMID: 32481800 DOI: 10.1039/c2bm00063f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we propose a methodology to obtain a family of biomimetic substrates with a hierarchical rough topography at the micro and nanoscale that span the entire range of wettability, from the superhydrophobic to the superhydrophilic regime, through an Ar-plasma treatment at increasing durations. Moreover, we employ the same approach to produce a superhydrophobic-to-superhydrophilic surface gradient along centimetre-length scale distances within the same sample. We characterize the biological activity of these surfaces in terms of protein adsorption and cell response, using fibronectin, a major component of the extracellular matrix, and C2C12 cells, a myoblast cell line. Fibronectin conformation, assessed via binding of the monoclonal antibody HFN7.1, exhibits a non-monotonic dependence on surface wettability, with higher activity on hydrophilic substrates (WCA = 38.6 ± 8.1°). On the other hand, the exposition of cell-binding epitopes is diminished on the surfaces with extreme wetting properties, the conformation being particularly altered on the superhydrophobic substrate. The assessment of cell response via the myogenic differentiation process reveals that a gradient surface promotes a different response with respect to cells cultured on discrete uniform samples: even though in both cases the same non-monotonic differentiation pattern is found, the differential response to the various wettabilities is enhanced along the gradient while the overall levels of differentiation are diminished. On a gradient surface cells are in fact exposed to a range of continuously changing stimuli that foster cell migration and detain the differentiation process.
Collapse
Affiliation(s)
- Marco Cantini
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.
| | | | | | | | | |
Collapse
|
5
|
Smith A, Passey S, Greensmith L, Mudera V, Lewis M. Characterization and optimization of a simple, repeatable system for the long term in vitro culture of aligned myotubes in 3D. J Cell Biochem 2012; 113:1044-53. [DOI: 10.1002/jcb.23437] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Tanaka K, Sato K, Yoshida T, Fukuda T, Hanamura K, Kojima N, Shirao T, Yanagawa T, Watanabe H. Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle Nerve 2012; 44:968-77. [PMID: 22102468 DOI: 10.1002/mus.22224] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Community effect is a phenomenon caused by cell-cell communication during myogenesis. In myogenic C2C12 cells in vitro, the confluent phase is needed for myogenesis induction. METHODS To examine the cell-density effect, growth kinetics and myogenic differentiation were investigated in cells plated at four different cell densities. RESULTS We found that expression of a myogenic differentiation marker was high in a density-dependent manner. At high density, where cell-cell contact was obvious, contact inhibition after the proliferation stage was accompanied by microarray findings demonstrating upregulation of negative regulating cell-cycle markers, including CDKI p21 and the muscle differentiation markers MyoD and myogenin. Interestingly, developmentally regulated protein expression (drebrin) protein expression was also upregulated in a density-dependent manner. CONCLUSIONS These results suggest that contact inhibition after the proliferation stage may induce growth arrest via cell-cell communication through the expression of CDKI p21 and may be responsible for progressing cell fusion.
Collapse
Affiliation(s)
- Kanako Tanaka
- Course of Health Sciences, Gunma University Graduate School of Health Sciences, Showa, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Myhre JL, Pilgrim DB. Cellular Differentiation in Primary Cell Cultures from Single Zebrafish Embryos as a Model for the Study of Myogenesis. Zebrafish 2010; 7:255-66. [DOI: 10.1089/zeb.2010.0665] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. Layne Myhre
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David B. Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Chowdhury SR, Muneyuki Y, Takezawa Y, Kino-oka M, Saito A, Sawa Y, Taya M. Growth and differentiation potentials in confluent state of culture of human skeletal muscle myoblasts. J Biosci Bioeng 2010; 109:310-3. [PMID: 20159584 DOI: 10.1016/j.jbiosc.2009.09.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/03/2009] [Accepted: 09/08/2009] [Indexed: 12/11/2022]
Abstract
The transitional behaviors of myoblasts toward differentiation were investigated in the cultures at the low and high seeding densities (respectively, X(0)=1.0x10(3) and 2.0x10(5) cells/cm(2)). In the culture at the low seeding density, an increase in confluence degree accompanied a decrease in growth potential (R(p)), being R(p)=0.85 and 0.11 at t=48 and 672 h, respectively. Myoblasts seeded at the high density resulted in the immediate cessation of growth with keeping the low range of R(p)=0.02-0.09 throughout the culture. The reduction of R(p) led to the generation of three subpopulations of cells in proliferative, quiescent and differentiated states. Close cell contacts in the confluent state of high seeding culture induced cell quiescence to a higher extent with suppressing differentiation.
Collapse
Affiliation(s)
- Shiplu Roy Chowdhury
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Diffuse myogenin expression by immunohistochemistry is an independent marker of poor survival in pediatric rhabdomyosarcoma: a tissue microarray study of 71 primary tumors including correlation with molecular phenotype. Am J Surg Pathol 2008; 32:1513-22. [PMID: 18708938 DOI: 10.1097/pas.0b013e31817a909a] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathologic classification of rhabdomyosarcoma (RMS) into embryonal or alveolar subtype is an important prognostic factor guiding the therapeutic protocol chosen for an individual patient. Unfortunately, this classification is not always straightforward, and the diagnostic criteria are controversial in a subset of cases. Ancillary studies are used to aid in the classification, but their potential use as independent prognostic factors is rarely studied. The aim of this study is to identify immunohistochemical markers of potential prognostic significance in pediatric RMS and to correlate their expression with PAX-3/FKHR and PAX-7/FKHR fusion status. A single tissue microarray containing 71 paraffin-embedded pediatric RMSs was immunostained with antibodies against p53, bcl-2, Ki-67, CD44, myogenin, and MyoD1. The tissue microarray and whole paraffin blocks were studied for PAX-3/FKHR and PAX-7/FKHR gene fusions by fluorescence in situ hybridization and reverse transcription-polymerase chain reaction. Clinical follow-up data were available for each patient. Immunohistochemical staining results and translocation status were correlated with recurrence-free interval (RFI) and overall survival (OS) using the Kaplan-Meier method, the log-rank test, and Cox proportional hazard regression. The minimum clinical follow-up interval was 24 months (median follow-up=57 mo). On univariable analysis, immunohistochemical expression of myogenin, bcl-2, and identification of a gene fusion were associated with decreased 5-year RFI and 10-year OS (myogenin RFI P=0.0028, OS P=0.0021; bcl-2 RFI P=0.037, OS P=0.032; gene fusion RFI P=0.0001, OS P=0.0058). After adjustment for Intergroup Rhabdomyosarcoma Study-TNM stage, tumor site, age, tumor histology, and translocation status by multivariable analysis, only myogenin retained an independent association with RFI (P=0.034) and OS (P=0.0069). In this retrospective analysis, diffuse immunohistochemical reactivity for myogenin in RMS correlates with decreased RFI and OS, independent of histologic subtype, translocation status, tumor site, or stage.
Collapse
|
10
|
Ribeiro AS. Dynamics of a two-dimensional model of cell tissues with coupled stochastic gene networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:051915. [PMID: 18233695 DOI: 10.1103/physreve.76.051915] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 08/21/2007] [Indexed: 05/25/2023]
Abstract
Gene expression and differentiation were shown to be stochastic processes. However, cells in a tissue can coordinate their behavior, including gene expression and differentiation pathways choice. A tissue of coupled cells is modeled as a two-dimensional regular square lattice of identical cells, each a three-dimensional compartment with a gene regulatory network (GRN) and a toggle switch (TS). The dynamics is driven by a delayed stochastic simulation algorithm, nearest neighbor cells are coupled by normally distributed time delayed reactions allowing interchange of proteins, and gene expression is a multiple time delayed reaction. It is defined the coupling strength (C), to characterize the lattice structure as a function of the rate constants of the reactions coupling nearest neighbor cells. Conditions are investigated for the emergence of synchronization and stable differentiation of cells within a tissue. From the time series of the cells GRNs, the tissue dynamical stability (S) is computed from the average toggling period of each GRN. The synchronization of cells' proteins expression levels is measured by their time series entropy (H). It is shown that the tissue goes through various dynamical regimes as C is increased, by measuring H and S . For null C, the cells GRNs toggle asynchronously. For weak C, cells synchronize by regions of space. Increasing C, the tissue becomes homogeneously synchronous. As C is further increased, S goes through a phase transition, from synchronized toggling to stable, where all cells produce one and the same protein. Finally, increasing C even further, a new stable state emerges where both genes of all cells are expressed and bistability is lost. This state, resembling an infinitely long transient, is an emergent behavior not observable in a single TS. The results provide an explanation of how cells with bistable GRNs, inherently stochastic, can synchronize or uniformly differentiate into stable states, by interacting with nearest neighbors.
Collapse
Affiliation(s)
- Andre S Ribeiro
- Institute of Signal Processing, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland.
| |
Collapse
|
11
|
Rajesh S, Sinha S, Sinha S. Synchronization in coupled cells with activator-inhibitor pathways. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:011906. [PMID: 17358183 DOI: 10.1103/physreve.75.011906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 10/16/2006] [Indexed: 05/14/2023]
Abstract
The functional dynamics exhibited by cell collectives are fascinating examples of robust, synchronized, collective behavior in spatially extended biological systems. To investigate the roles of local cellular dynamics and interaction strength in the spatiotemporal dynamics of cell collectives of different sizes, we study a model system consisting of a ring of coupled cells incorporating a three-step biochemical pathway of regulated activator-inhibitor reactions. The isolated individual cells display very complex dynamics as a result of the nonlinear interactions common in cellular processes. On coupling the cells to nearest neighbors, through diffusion of the pathway end product, the ring of cells yields a host of interesting and unusual dynamical features such as, suppression of chaos, phase synchronization, traveling waves, and intermittency, for varying interaction strengths and system sizes. But robust complete synchronization can be induced in these coupled cells with a small degree of random coupling among them even where regular coupling yielded only intermittent synchronization. Our studies indicate that robustness in synchronized functional dynamics in tissues and cell populations in nature can be ensured by a few transient random connections among the cells. Such connections are being discovered only recently in real cellular systems.
Collapse
Affiliation(s)
- S Rajesh
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | | | |
Collapse
|
12
|
Kee HJ, Kim JR, Nam KI, Park HY, Shin S, Kim JC, Shimono Y, Takahashi M, Jeong MH, Kim N, Kim KK, Kook H. Enhancer of polycomb1, a novel homeodomain only protein-binding partner, induces skeletal muscle differentiation. J Biol Chem 2006; 282:7700-9. [PMID: 17192267 DOI: 10.1074/jbc.m611198200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Homeodomain only protein, Hop, is an unusual small protein that modulates target gene transcription without direct binding to DNA. Here we show that Hop interacts with Enhancer of Polycomb1 (Epc1), a homolog of a Drosophila polycomb group gene product that regulates transcription, to induce the skeletal muscle differentiation. Yeast two-hybrid assay with the human adult heart cDNA library revealed that Hop can associate with Epc1. The amino-terminal domain of Epc1 as well as full Epc1 physically interacted with Hop in mammalian cells and in yeast. Epc1 is highly expressed in the embryonic heart and adult skeletal muscles. Serum deprivation induced differentiation of H9c2, a myoblast cell line, into skeletal myocytes, and Epc1 was up-regulated. Differentiation of H9c2 was induced by Epc1 overexpression, although it was severely impaired in Epc1-knockdown cells. Co-transfection of Hop potentiated Epc1-induced transactivation of myogenin and myotube formation. Hop knock-out mice elicited a decrease in myosin heavy chain and myogenin expressions in skeletal muscle and showed delay in hamstring muscle healing after injury. Differentiation was impaired in skeletal myoblasts from Hop knock-out mice. These results suggest that Epc1 plays a role in the initiation of skeletal muscle differentiation, and its interaction with Hop is required for the full activity.
Collapse
Affiliation(s)
- Hae Jin Kee
- Medical Research Center for Gene Regulation, Research Institute of Medical Sciences, and Brain Korea 21 Project, Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Doucet C, Gutierrez GJ, Lindon C, Lorca T, Lledo G, Pinset C, Coux O. Multiple phosphorylation events control mitotic degradation of the muscle transcription factor Myf5. BMC BIOCHEMISTRY 2005; 6:27. [PMID: 16321160 PMCID: PMC1322219 DOI: 10.1186/1471-2091-6-27] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 12/01/2005] [Indexed: 11/30/2022]
Abstract
Background The two myogenic regulatory factors Myf5 and MyoD are basic helix-loop-helix muscle transcription factors undergoing differential cell cycle dependent proteolysis in proliferating myoblasts. This regulated degradation results in the striking expression of these two factors at distinct phases of the cell cycle, and suggests that their precise and alternated disappearance is an important feature of myoblasts, maybe connected to the maintenance of the proliferative status and/or commitment to the myogenic lineage of these cells. One way to understand the biological function(s) of the cyclic expression of these proteins is to specifically alter their degradation, and to analyze the effects of their stabilization on cells. To this aim, we undertook the biochemical analysis of the mechanisms governing Myf5 mitotic degradation, using heterologous systems. Results We show here that mitotic degradation of Myf5 is conserved in non-myogenic cells, and is thus strictly under the control of the cell cycle apparatus. Using Xenopus egg extracts as an in vitro system to dissect the main steps of Myf5 mitotic proteolysis, we show that (1) Myf5 stability is regulated by a complex interplay of phosphorylation/dephosphorylation, probably involving various kinases and phosphatases, (2) Myf5 is ubiquitylated in mitotic extracts, and this is a prerequisite to its degradation by the proteasome and (3) at least in the Xenopus system, the E3 responsible for its mitotic degradation is not the APC/C (the major E3 during mitosis). Conclusion Altogether, our data strongly suggest that the mitotic degradation of Myf5 by the ubiquitin-proteasome system is precisely controlled by multiple phosphorylation of the protein, and that the APC/C is not involved in this process.
Collapse
Affiliation(s)
- Christine Doucet
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| | - Gustavo J Gutierrez
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
- Present address: Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Catherine Lindon
- Wellcome Trust/Cancer Research UK, Gurdon Institute, Cambridge, UK
| | - Thierry Lorca
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| | - Gwendaline Lledo
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| | | | - Olivier Coux
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| |
Collapse
|
14
|
Abstract
Mutations in the von Hippel-Lindau (VHL) gene are involved in the VHL family cancer syndrome and sporadic renal cell carcinoma. Previous studies indicated that VHL-induced growth arrest required high cell density and growth on extracellular matrix. In the present study, VHL protein (pVHL) levels were observed to be dramatically increased in cells grown to high cell density compared to cells grown at low cell density. Reverse transcription-polymerase chain reaction and Northern blot analysis indicated that VHL mRNA levels were equivalent in sparse and dense cells. The pVHL was rapidly degraded when cell-cell contact was disturbed by trypsinization or EDTA release. Treatment of cells with a proteasome inhibitor blocked the degradation of pVHL. Using a set of VHL deletions fused to GFP, a cell density-dependent region (CDDR) was identified and localized to the c-terminus of pVHL. In addition, other members of the VBC protein complex also showed a cell density-dependent regulation similar to pVHL. Cell density regulation of VHL did not require elongin binding and density-dependent regulation of other VBC components was not dependent on pVHL. In addition, hypoxia inducible factor-2alpha protein levels were elevated in sparse cells with low levels of pVHL and reduced or absent in confluent cells containing abundant VHL. These results indicate that pVHL levels and thus function are tightly regulated by cell-cell signaling. In addition, care must be taken when interpreting studies of VHL function and subcellular localization of cells grown at subconfluent conditions.
Collapse
Affiliation(s)
- Sankar Mohan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
15
|
Olguin HC, Santander C, Brandan E. Inhibition of myoblast migration via decorin expression is critical for normal skeletal muscle differentiation. Dev Biol 2003; 259:209-24. [PMID: 12871697 DOI: 10.1016/s0012-1606(03)00180-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During limb skeletal muscle formation, committed muscle cells proliferate and differentiate in the presence of extracellular signals that stimulate or repress each process. Proteoglycans are extracellular matrix organizers and modulators of growth factor activities, regulating muscle differentiation in vitro. Previously, we characterized proteoglycan expression during early limb muscle formation and showed a spatiotemporal relation between the onset of myogenesis and the expression of decorin, an important muscle extracellular matrix component and potent regulator of TGF-beta activity. To evaluate decorin's role during in vivo differentiation in committed muscle cells, we grafted wild type and decorin-null myoblasts onto chick limb buds. The absence of decorin enhanced the migration and distribution of myoblasts in the limb, correlating with the inhibition of skeletal muscle differentiation. Both phenotypes were reverted by de novo decorin expression. In vitro, we determined that both decorin core protein and its glycosaminoglycan chain were required to reverse the migration phenotype. Results presented here suggest that the enhanced migration observed in decorin-null myoblasts may not be dependent on chemotactic growth factor signaling nor the differentiation status of the cells. Decorin may be involved in the establishment and/or coordination of a critical myoblast density, through inhibition of migration, that permits normal muscle differentiation during embryonic myogenesis.
Collapse
Affiliation(s)
- Hugo C Olguin
- Centro de Regulación Celular y Patología, Departamento de Biologia Celular y Molecular, Facultad de Ciencias Biológicas, MIFAB, P. Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
16
|
Chen YH, Tsai HJ. Treatment with Myf5-morpholino results in somite patterning and brain formation defects in zebrafish. Differentiation 2002; 70:447-56. [PMID: 12366382 DOI: 10.1046/j.1432-0436.2002.700807.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myf-5 is a stage-dependent transcription factor associated with somitogenesis. To study its biological functions in zebrafish, we injected the Myf5-morpholinos ZMF-MO (antisense nucleotides 28 to 52) and ZMF-OTHER (antisense nucleotides 3 to 27) into zebrafish embryos to establish a myf-5 gene knockdown. No phenotypic abnormalities were observed following injection with 0.2 ng of ZMF-MO, but defects were displayed in 2 of 118 (1.7%) surviving embryos injected with 1 ng ZMF-MO. Morphological defects became more severe with increased dosages: 105 of 270 (38.9%) surviving embryos injected with 4.5 ng of ZMF-MO displayed such abnormalities as the absence of eyes or brains in addition to the following low-dosage defects in 24 hpf embryos: longitudinal yolk sacs, incomplete epiboly coverage, abnormal and suspended tail buds, diffused somite boundaries, and head shrinkage. Similar results were observed in the 4.5 ng ZMF-OTHER injection group. However, when fish were co-injected with 4.5 ng ZMF-MO and 4.5 ng myf-5 mRNA, abnormality rates decreased from 49.6% to 5.5%. Our results show that the brain krox20 gene was down-regulated at rhombomere 3; the pax2.1 gene was completely down-regulated; myoD was expressed normally; myogenin was substantially down-regulated in whole somites; and desmin was partly inhibited in newly forming somites. Our conclusion is that zebrafish Myf-5 may play important roles in brain formation and in the convergence and extension of shield epiblasts and tail buds during early embryogenesis, in addition to its well-understood role as a muscle regulatory factor in somites.
Collapse
Affiliation(s)
- Yau-Hung Chen
- Institute of Fisheries Science, National Taiwan University,1 Roosevelt Road, Sec 4, Taipei, Taiwan
| | | |
Collapse
|