1
|
Nguyen ML, Demri N, Lapin B, Di Federico F, Gropplero G, Cayrac F, Hennig K, Gomes ER, Wilhelm C, Roman W, Descroix S. Studying the impact of geometrical and cellular cues on myogenesis with a skeletal muscle-on-chip. LAB ON A CHIP 2024; 24:4147-4160. [PMID: 39072529 DOI: 10.1039/d4lc00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In the skeletal muscle tissue, cells are organized following an anisotropic architecture, which is both required during myogenesis when muscle precursor cells fuse to generate myotubes and for its contractile function. To build an in vitro skeletal muscle tissue, it is therefore essential to develop methods to organize cells in an anisotropic fashion, which can be particularly challenging, especially in 3D. In this study, we present a versatile muscle-on-chip system with adjustable collagen hollow tubes that can be seeded with muscle precursor cells. The collagen acts both as a tube-shaped hollow mold and as an extracellular matrix scaffold that can house other cell types for co-culture. We found that the diameter of the channel affects the organization of the muscle cells and that proper myogenesis was obtained at a diameter of 75 μm. In these conditions, muscle precursor cells fused into long myotubes aligned along these collagen channels, resulting in a fascicle-like structure. These myotubes exhibited actin striations and upregulation of multiple myogenic genes, reflecting their maturation. Moreover, we showed that our chip allowed muscle tissue culture and maturation over a month, with the possibility of fibroblast co-culture embedding in the collagen matrix.
Collapse
Affiliation(s)
- M-L Nguyen
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - N Demri
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - B Lapin
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - F Di Federico
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - G Gropplero
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - F Cayrac
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - K Hennig
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - C Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| | - W Roman
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - S Descroix
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005 Paris, France.
| |
Collapse
|
2
|
Wu S, Ruan L, Wu J, Wu M, Chu LT, Kwong HK, Lam ML, Chen TH. Scalable pattern formation of skeletal myotubes by synergizing microtopographic cues and chiral nematics of cells. Biofabrication 2023; 15. [PMID: 36791461 DOI: 10.1088/1758-5090/acbc4d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Topographical cues have been widely used to facilitate cell fusion in skeletal muscle formation. However, an unexpected yet consistent chiral orientation of myotubes deviating from the groove boundaries is commonly observed but has long been unattended. In this study, we report a method to guide the formation of skeletal myotubes into scalable and controlled patterns. By inducing C2C12 myoblasts onto grooved patterns with different widths (from 0.4 to 200μm), we observed an enhanced chiral orientation of cells developing on wide grooves (50 and 100μm width) since the first day of induction. Active chiral nematics of cells involving cell migration and chiral rotation of the cell nucleus subsequently led to a unified chiral orientation of the myotubes. Importantly, these chiral myotubes were formed with enhanced length, diameter, and contractility on wide grooves. Treatment of latrunculin A (Lat A) suppressed the chiral rotation and migration of cells as well as the myotube formation, suggesting the essence of chiral nematics of cells for myogenesis. Finally, by arranging wide grooved/striped patterns with corresponding compensation angles to synergize microtopographic cues and chiral nematics of cells, intricate and scalable patterns of myotubes were formed, providing a strategy for engineering skeletal muscle tissue formation.
Collapse
Affiliation(s)
- Siying Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Lingyan Ruan
- School of Creative Media, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Jianpeng Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Minghui Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Lok Ting Chu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hoi Kwan Kwong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Miu Ling Lam
- School of Creative Media, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
3
|
Furusawa K, Kawahana Y, Miyashita R. Construction of Engineered Muscle Tissue Consisting of Myotube Bundles in a Collagen Gel Matrix. Gels 2023; 9:gels9020141. [PMID: 36826311 PMCID: PMC9956229 DOI: 10.3390/gels9020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Tissue engineering methods that aim to mimic the hierarchical structure of skeletal muscle tissue have been widely developed due to utilities in various fields of biology, including regenerative medicine, food technology, and soft robotics. Most methods have aimed to reproduce the microscopical morphology of skeletal muscles, such as the orientation of myotubes and the sarcomere structure, and there is still a need to develop a method to reproduce the macroscopical morphology. Therefore, in this study, we aim to establish a method to reproduce the macroscopic morphology of skeletal muscle by constructing an engineered muscle tissue (EMT) by culturing embryonic chicken myoblast-like cells that are unidirectionally aligned in collagen hydrogels with micro-channels (i.e., MCCG). Whole mount fluorescent imaging of the EMT showed that the myotubes were unidirectionally aligned and that they were bundled in the collagen gel matrix. The myotubes contracted in response to periodic electrostimulations with a frequency range of 0.5-2.0 Hz, but not at 5.0 Hz. Compression tests of the EMT showed that the EMT had anisotropic elasticity. In addition, by measuring the relaxation moduli of the EMTs, an anisotropy of relaxation strengths was observed. The observed anisotropies could be attributed to differences in maturation and connectivity of myotubes in the directions perpendicular and parallel to the long axis of the micro-channels of the MCCG.
Collapse
|
4
|
Nishiguchi A, Taguchi T. Engineering thixotropic supramolecular gelatin-based hydrogel as an injectable scaffold for cell transplantation. Biomed Mater 2022; 18. [PMID: 36541468 DOI: 10.1088/1748-605x/aca501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Despite many efforts focusing on regenerative medicine, there are few clinically-available cell-delivery carriers to improve the efficacy of cell transplantation due to the lack of adequate scaffolds. Herein, we report an injectable scaffold composed of functionalized gelatin for application in cell transplantation. Injectable functionalized gelatin-based hydrogels crosslinked with reversible hydrogen bonding based on supramolecular chemistry were designed. The hydrogel exhibited thixotropy, enabling single syringe injection of cell-encapsulating hydrogels. Highly biocompatible and cell-adhesive hydrogels provide cellular scaffolds that promote cellular adhesion, spreading, and migration. Thein vivodegradation study revealed that the hydrogel gradually degraded for seven days, which may lead to prolonged retention of transplanted cells and efficient integration into host tissues. In volumetric muscle loss models of mice, cells were transplanted using hydrogels and proliferated in injured muscle tissues. Thixotropic and injectable hydrogels may serve as cell delivery scaffolds to improve graft survival in regenerative medicine.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
5
|
Luttrell SM, Smith AST, Mack DL. Creating stem cell-derived neuromuscular junctions in vitro. Muscle Nerve 2021; 64:388-403. [PMID: 34328673 PMCID: PMC9292444 DOI: 10.1002/mus.27360] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Recent development of novel therapies has improved mobility and quality of life for people suffering from inheritable neuromuscular disorders. Despite this progress, the majority of neuromuscular disorders are still incurable, in part due to a lack of predictive models of neuromuscular junction (NMJ) breakdown. Improvement of predictive models of a human NMJ would be transformative in terms of expanding our understanding of the mechanisms that underpin development, maintenance, and disease, and as a testbed with which to evaluate novel therapeutics. Induced pluripotent stem cells (iPSCs) are emerging as a clinically relevant and non‐invasive cell source to create human NMJs to study synaptic development and maturation, as well as disease modeling and drug discovery. This review will highlight the recent advances and remaining challenges to generating an NMJ capable of eliciting contraction of stem cell‐derived skeletal muscle in vitro. We explore the advantages and shortcomings of traditional NMJ culturing platforms, as well as the pioneering technologies and novel, biomimetic culturing systems currently in use to guide development and maturation of the neuromuscular synapse and extracellular microenvironment. Then, we will explore how this NMJ‐in‐a‐dish can be used to study normal assembly and function of the efferent portion of the neuromuscular arc, and how neuromuscular disease‐causing mutations disrupt structure, signaling, and function.
Collapse
Affiliation(s)
- Shawn M Luttrell
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Alec S T Smith
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Intensive Care Unit-Acquired Weakness: Not just Another Muscle Atrophying Condition. Int J Mol Sci 2020; 21:ijms21217840. [PMID: 33105809 PMCID: PMC7660068 DOI: 10.3390/ijms21217840] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Intensive care unit-acquired weakness (ICUAW) occurs in critically ill patients stemming from the critical illness itself, and results in sustained disability long after the ICU stay. Weakness can be attributed to muscle wasting, impaired contractility, neuropathy, and major pathways associated with muscle protein degradation such as the ubiquitin proteasome system and dysregulated autophagy. Furthermore, it is characterized by the preferential loss of myosin, a distinct feature of the condition. While many risk factors for ICUAW have been identified, effective interventions to offset these changes remain elusive. In addition, our understanding of the mechanisms underlying the long-term, sustained weakness observed in a subset of patients after discharge is minimal. Herein, we discuss the various proposed pathways involved in the pathophysiology of ICUAW, with a focus on the mechanisms underpinning skeletal muscle wasting and impaired contractility, and the animal models used to study them. Furthermore, we will explore the contributions of inflammation, steroid use, and paralysis to the development of ICUAW and how it pertains to those with the corona virus disease of 2019 (COVID-19). We then elaborate on interventions tested as a means to offset these decrements in muscle function that occur as a result of critical illness, and we propose new strategies to explore the molecular mechanisms of ICUAW, including serum-related biomarkers and 3D human skeletal muscle culture models.
Collapse
|
7
|
Kim J, Kasukonis B, Roberts K, Dunlap G, Brown L, Washington T, Wolchok J. Graft alignment impacts the regenerative response of skeletal muscle after volumetric muscle loss in a rat model. Acta Biomater 2020; 105:191-202. [PMID: 31978621 DOI: 10.1016/j.actbio.2020.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
A key event in the etiology of volumetric muscle loss (VML) injury is the bulk loss of structural cues provided by the underlying extracellular matrix (ECM). To re-establish the lost cues, there is broad consensus within the literature supporting the utilization of implantable scaffolding. However, while scaffold based regenerative medicine strategies have shown potential, there remains a significant amount of outcome variability observed across the field. We suggest that an overlooked source of outcome variability is differences in scaffolding architecture. The goal of this study was to test the hypothesis that implant alignment has a significant impact on genotypic and phenotypic outcomes following the repair of VML injuries. Using a rat VML model, outcomes across three autograft implant treatment groups (aligned implants, 45° misaligned, and 90° misaligned) and two recovery time points (2 weeks and 12 weeks) were examined (n = 6-8/group). At 2 weeks post-repair there were no significant differences in muscle mass and torque recovery between the treatment groups, however we did observe a significant upregulation of MyoD (2.5 fold increase) and Pax7 (2 fold increase) gene expression as well as the presence of immature myofibers at the implant site for those animals repaired with aligned autografts. By 12 weeks post-repair, functional and structural differences between the treatment groups could be detected. Aligned autografts had significantly greater mass and torque recovery (77 ± 10% of normal) when compared to 45° and 90° misaligned autografts (64 ± 10% and 61 ± 11%, respectively). Examination of tissue structure revealed extensive fibrosis and a significant increase in non-contractile tissue area fraction for only those animals treated using misaligned autografts. When taken together, the results suggest that implant graft orientation has a significant impact on in-vivo outcomes and indicate that the effect of graft alignment on muscle phenotype may be mediated through genotypic changes to myogenesis and fibrosis at the site of injury and repair. STATEMENT OF SIGNIFICANCE: A key event in the etiology of volumetric muscle loss injury is the bulk loss of architectural cues provided by the underlying extracellular matrix. To re-establish the lost cues, there is broad consensus within the literature supporting the utilization of implantable scaffolding. Yet, although native muscle is a highly organized tissue with network and cellular alignment in the direction of contraction, there is little evidence within the field concerning the importance of re-establishing native architectural alignment. The results of this study suggest that critical interactions exist between implant and native muscle alignment cues during healing, which influence the balance between myogenesis and fibrosis. Specifically, it appears that alignment of implant architectural cues with native muscle cues is necessary to create a pro-myogenic environment and contractile force recovery. The results also suggest that misaligned cues may be pathological, leading to fibrosis and poor contractile force recovery.
Collapse
Affiliation(s)
- John Kim
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Ben Kasukonis
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Kevin Roberts
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States; Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Grady Dunlap
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Lemuel Brown
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Tyrone Washington
- Department of Health, Human Performance, and Recreation, College of Education and Health Professions, University of Arkansas, Fayetteville, AR, United States
| | - Jeffrey Wolchok
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, United States.
| |
Collapse
|
8
|
Actomyosin contractility scales with myoblast elongation and enhances differentiation through YAP nuclear export. Sci Rep 2019; 9:15565. [PMID: 31664178 PMCID: PMC6820726 DOI: 10.1038/s41598-019-52129-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/10/2019] [Indexed: 01/14/2023] Open
Abstract
Skeletal muscle fibers are formed by the fusion of mononucleated myoblasts into long linear myotubes, which differentiate and reorganize into multinucleated myofibers that assemble in bundles to form skeletal muscles. This fundamental process requires the elongation of myoblasts into a bipolar shape, although a complete understanding of the mechanisms governing skeletal muscle fusion is lacking. To address this question, we consider cell aspect ratio, actomyosin contractility and the Hippo pathway member YAP as potential regulators of the fusion of myoblasts into myotubes. Using fibronectin micropatterns of different geometries and traction force microscopy, we investigated how myoblast elongation affects actomyosin contractility. Our findings indicate that cell elongation enhances actomyosin contractility in myoblasts, which regulate their actin network to their spreading area. Interestingly, we found that the contractility of cell pairs increased after their fusion and raise on elongated morphologies. Furthermore, our findings indicate that myoblast elongation modulates nuclear orientation and triggers cytoplasmic localization of YAP, increasing evidence that YAP is a key regulator of mechanotransduction in myoblasts. Taken together, our findings support a mechanical model where actomyosin contractility scales with myoblast elongation and enhances the differentiation of myoblasts into myotubes through YAP nuclear export.
Collapse
|
9
|
Vajanthri KY, Sidu RK, Poddar S, Singh AK, Mahto SK. Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance. Cytoskeleton (Hoboken) 2019; 76:269-285. [DOI: 10.1002/cm.21527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Kiran Yellappa Vajanthri
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Rakesh Kumar Sidu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Suruchi Poddar
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Ashish Kumar Singh
- School of Biochemical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
- Center for Advanced Biomaterials and Tissue EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| |
Collapse
|
10
|
Post A, Wang E, Cosgriff-Hernandez E. A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices. Ann Biomed Eng 2018; 47:366-380. [PMID: 30488311 DOI: 10.1007/s10439-018-02171-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Abstract
Sustained biomaterial thromboresistance has long been a goal and challenge in blood-contacting device design. Endothelialization is one of the most successful strategies to achieve long-term thromboresistance of blood-contacting devices, with the endothelial cell layer providing dynamic hemostatic regulation. It is well established that endothelial cell behavior is influenced by interactions with the underlying extracellular matrix (ECM). Numerous researchers have sought to exploit these interactions to generate improved blood-contacting devices by investigating the expression of hemostatic regulators in endothelial cells on various ECM coatings. The ability to select substrates that promote endothelial cell-mediated thromboresistance is crucial to advancing material design strategies to improve cardiovascular device outcomes. This review provides an overview of endothelial cell regulation of hemostasis, the major components found within the cardiovascular basal lamina, and the interactions of endothelial cells with prominent ECM components of the basement membrane. A summary of ECM-mimetic strategies used in cardiovascular devices is provided with a focus on the effects of key adhesion modalities on endothelial cell regulators of hemostasis.
Collapse
Affiliation(s)
- Allison Post
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Ellen Wang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Elizabeth Cosgriff-Hernandez
- Department of Biomedical Engineering, University of Texas, 107 W. Dean Keaton, BME 3.503D, 1 University Station, C0800, Austin, TX, 78712, USA.
| |
Collapse
|
11
|
Liu X, Liu Y, Zhao F, Hun T, Li S, Wang Y, Sun W, Wang W, Sun Y, Fan Y. Regulation of cell arrangement using a novel composite micropattern. J Biomed Mater Res A 2017; 105:3093-3101. [DOI: 10.1002/jbm.a.36157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/16/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoyi Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University; Beijing 100871 People's Republic of China
| | - Feng Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Tingting Hun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Shan Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yuguang Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; 100083 People's Republic of China
| | - Weijie Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; 100083 People's Republic of China
| | - Wei Wang
- Institute of Microelectronics, Peking University; Beijing 100871 People's Republic of China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing 100871 China
- Innovation Center for Micro-Nano-electronics and Integrated System; Beijing 100871 China
| | - Yan Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- State Key Laboratory of Transducer Technology; Chinese Academy of Sciences; Shanghai 200050 People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 People's Republic of China
- National Research Center for Rehabilitation Technical Aids; Beijing 100176 People's Republic of China
| |
Collapse
|
12
|
Li Y, Xiao Y, Liu C. The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chem Rev 2017; 117:4376-4421. [PMID: 28221776 DOI: 10.1021/acs.chemrev.6b00654] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the biological functions of cell and tissue can be regulated by biochemical factors (e.g., growth factors, hormones), the biophysical effects of materials on the regulation of biological activity are receiving more attention. In this Review, we systematically summarize the recent progress on how biomaterials with controllable properties (e.g., compositional/degradable dynamics, mechanical properties, 2D topography, and 3D geometry) can regulate cell behaviors (e.g., cell adhesion, spreading, proliferation, cell alignment, and the differentiation or self-maintenance of stem cells) and tissue/organ functions. How the biophysical features of materials influence tissue/organ regeneration have been elucidated. Current challenges and a perspective on the development of novel materials that can modulate specific biological functions are discussed. The interdependent relationship between biomaterials and biology leads us to propose the concept of "materiobiology", which is a scientific discipline that studies the biological effects of the properties of biomaterials on biological functions at cell, tissue, organ, and the whole organism levels. This Review highlights that it is more important to develop ECM-mimicking biomaterials having a self-regenerative capacity to stimulate tissue regeneration, instead of attempting to recreate the complexity of living tissues or tissue constructs ex vivo. The principles of materiobiology may benefit the development of novel biomaterials providing combinative bioactive cues to activate the migration of stem cells from endogenous reservoirs (i.e., cell niches), stimulate robust and scalable self-healing mechanisms, and unlock the body's innate powers of regeneration.
Collapse
Affiliation(s)
- Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology , Meilong Road 130, Shanghai 200237, People's Republic of China
| |
Collapse
|
13
|
Ngan CGY, Quigley A, Kapsa RMI, Choong PFM. Engineering skeletal muscle - from two to three dimensions. J Tissue Eng Regen Med 2017; 12:e1-e6. [PMID: 28066991 DOI: 10.1002/term.2265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/13/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Catherine G Y Ngan
- Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Anita Quigley
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW, Australia
| | - Robert M I Kapsa
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia.,ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW, Australia
| | - Peter F M Choong
- Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia.,Department of Orthopaedics, St Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Garg K, Boppart MD. Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche. J Appl Physiol (1985) 2016; 121:1053-1058. [PMID: 27539500 DOI: 10.1152/japplphysiol.00594.2016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle is endowed with a remarkable capacity for regeneration, primarily due to the reserve pool of muscle resident satellite cells. The satellite cell is the physiologically quiescent muscle stem cell that resides beneath the basal lamina and adjacent to the sarcolemma. The anatomic location of satellite cells is in close proximity to vasculature where they interact with other muscle resident stem/stromal cells (e.g., mesenchymal stem cells and pericytes) through paracrine mechanisms. This mini-review describes the components of the muscle stem cell niche, as well as the influence of exercise and aging on the muscle stem cell niche. Although exercise promotes ECM reorganization and stem cell accumulation, aging is associated with dense ECM deposition and loss of stem cell function resulting in reduced regenerative capacity and strength. An improved understanding of the niche elements will be valuable to inform the development of therapeutic interventions aimed at improving skeletal muscle regeneration and adaptation over the life span.
Collapse
Affiliation(s)
- Koyal Garg
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois; and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois; and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
15
|
Parker F, White K, Phillips S, Peckham M. Promoting differentiation of cultured myoblasts using biomimetic surfaces that present alpha-laminin-2 peptides. Cytotechnology 2016; 68:2159-69. [PMID: 27507643 PMCID: PMC5023573 DOI: 10.1007/s10616-016-0006-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/16/2016] [Indexed: 12/01/2022] Open
Abstract
Traditionally, muscle cell lines are cultured on glass coverslips and differentiated to investigate myoblast fusion and differentiation. Efficient differentiation of myoblasts produces a dense network of myotubes with the correct organisation for contraction. Here we have tested the ability of artificially generated, precisely controlled peptide surfaces to enhance the efficiency of myoblast differentiation. We focused on specific short peptides from α-laminin-2 (IKVSV, VQLRNGFPYFSY and GLLFYMARINHA) as well as residues 15–155 from FGF1. We tested if these peptides in isolation, and/or in combination promoted muscle differentiation in culture, by promoting fusion and/or by improving sarcomere organisation. The majority of these peptides promoted fusion and differentiation in two different mouse myogenic cell lines and in primary human myoblasts. The additive effects of all four peptides gave the best results for both mouse cell lines tested, while primary human cell cultures differentiated equally well on most peptide surfaces tested. These data show that a mixture of short biomimetic peptides can reliably promote differentiation in mouse and human myoblasts.
Collapse
Affiliation(s)
- Francine Parker
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK
| | - Kathryn White
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK
| | - Siȏn Phillips
- Bioscience Centre, International Centre for Life, Orla Protein Technologies Ltd, Newcastle upon Tyne, NE1 4EP, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
16
|
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2016; 5:1027-59. [PMID: 26140708 DOI: 10.1002/cphy.c140068] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscles are essential for vital functions such as movement, postural support, breathing, and thermogenesis. Muscle tissue is largely composed of long, postmitotic multinucleated fibers. The life-long maintenance of muscle tissue is mediated by satellite cells, lying in close proximity to the muscle fibers. Muscle satellite cells are a heterogeneous population with a small subset of muscle stem cells, termed satellite stem cells. Under homeostatic conditions all satellite cells are poised for activation by stimuli such as physical trauma or growth signals. After activation, satellite stem cells undergo symmetric divisions to expand their number or asymmetric divisions to give rise to cohorts of committed satellite cells and thus progenitors. Myogenic progenitors proliferate, and eventually differentiate through fusion with each other or to damaged fibers to reconstitute fiber integrity and function. In the recent years, research has begun to unravel the intrinsic and extrinsic mechanisms controlling satellite cell behavior. Nonetheless, an understanding of the complex cellular and molecular interactions of satellite cells with their dynamic microenvironment remains a major challenge, especially in pathological conditions. The goal of this review is to comprehensively summarize the current knowledge on satellite cell characteristics, functions, and behavior in muscle regeneration and in pathological conditions.
Collapse
Affiliation(s)
- Nicolas A Dumont
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - C Florian Bentzinger
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Nestlé Institute of Health Sciences, EPFL Campus, Lausanne, Switzerland
| | - Marie-Claude Sincennes
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Patel A, Mukundan S, Wang W, Karumuri A, Sant V, Mukhopadhyay SM, Sant S. Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment. Acta Biomater 2016; 32:77-88. [PMID: 26768231 DOI: 10.1016/j.actbio.2016.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
While several scaffolds have been proposed for skeletal muscle regeneration, multiscale hierarchical scaffolds with the complexity of extracellular matrix (ECM) haven't been engineered successfully. By precise control over nano- and microscale features, comprehensive understanding of the effect of multiple factors on skeletal muscle regeneration can be derived. In this study, we engineered carbon-based scaffolds with hierarchical nano- and microscale architecture with controlled physico-chemical properties. More specifically, we built multiscale hierarchy by growing carbon nanotube (CNT) carpets on two types of scaffolds, namely, interconnected microporous carbon foams and aligned carbon fiber mats. Nanostructured CNT carpets offered fine control over nano-roughness and wettability facilitating myoblast adhesion, growth and differentiation into myocytes. However, microporous foam architecture failed to promote their fusion into multinucleated myotubes. On the other hand, aligned fibrous architecture stimulated formation of multinucleated myotubes. Most importantly, nanostructured CNT carpets interfaced with microscale aligned fibrous architecture significantly enhanced myocyte fusion into multinucleated mature myotubes highlighting synergy between nanoscale surface features and micro-/macroscale aligned fibrous architecture in the process of myogenesis. STATEMENT OF SIGNIFICANCE Due to limited regenerative potential of skeletal muscle, strategies stimulating regeneration of functional muscles are important. These strategies are aimed at promoting differentiation of progenitor cells (myoblasts) into multinucleated myotubes, a key initial step in functional muscle regeneration. Recent tissue engineering approaches utilize various scaffolds ranging from decellularized matrices to aligned biomaterial scaffolds. Although, majority of them have focused on nano- or microscale organization, a systematic approach to build the multiscale hierarchy into these scaffolds is lacking. Here, we engineered multiscale hierarchy into carbon-based materials and demonstrated that the nanoscale features govern the differentiation of individual myoblasts into myocytes whereas microscale alignment cues orchestrate fusion of multiple myocytes into multinucleated myotubes underlining the importance of multiscale hierarchy in enhancing coordinated tissue regeneration.
Collapse
Affiliation(s)
- Akhil Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Shilpaa Mukundan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Wenhu Wang
- Center for Nanoscale Multifunctional Materials, Mechanical & Materials Engineering, Wright State University, Dayton, OH 45324, United States
| | - Anil Karumuri
- Center for Nanoscale Multifunctional Materials, Mechanical & Materials Engineering, Wright State University, Dayton, OH 45324, United States
| | - Vinayak Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Sharmila M Mukhopadhyay
- Center for Nanoscale Multifunctional Materials, Mechanical & Materials Engineering, Wright State University, Dayton, OH 45324, United States
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States.
| |
Collapse
|
18
|
Chen S, Nakamoto T, Kawazoe N, Chen G. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds. Biomaterials 2015; 73:23-31. [PMID: 26398306 DOI: 10.1016/j.biomaterials.2015.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022]
Abstract
Preparation of three-dimensional (3D) micropatterned porous scaffolds remains a great challenge for engineering of highly organized tissues such as skeletal muscle tissue and cardiac tissue. Two-dimensional (2D) micropatterned surfaces with periodic features (several nanometers to less than 100 μm) are commonly used to guide the alignment of muscle myoblasts and myotubes and lead to formation of pre-patterned cell sheets. However, cell sheets from 2D patterned surfaces have limited thickness, and harvesting the cell sheets for implantation is inconvenient and can lead to less alignment of myotubes. 3D micropatterned scaffolds can promote cell alignment and muscle tissue formation. In this study, we developed a novel type of 3D porous collagen scaffolds with concave microgrooves that mimic muscle basement membrane to engineer skeletal muscle tissue. Highly aligned and multi-layered muscle bundle tissues were engineered by controlling the size of microgrooves and cell seeding concentration. Myoblasts in the engineered muscle tissue were well-aligned and had high expression of myosin heavy chain and synthesis of muscle extracellular matrix. The microgrooved collagen scaffolds could be used to engineer organized multi-layered muscle tissue for implantation to repair/restore the function of diseased tissues or be used to investigate the cell-cell interaction in 3D microscale topography.
Collapse
Affiliation(s)
- Shangwu Chen
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tomoko Nakamoto
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Kawazoe
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Guoping Chen
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
19
|
Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, Bae H, Kaji H, Khademhosseini A. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. TISSUE ENGINEERING. PART B, REVIEWS 2014; 20:403-36. [PMID: 24320971 PMCID: PMC4193686 DOI: 10.1089/ten.teb.2013.0534] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022]
Abstract
Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Samad Ahadian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Toshinori Fujie
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg Cedex, France
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Bendali A, Hess LH, Seifert M, Forster V, Stephan AF, Garrido JA, Picaud S. Purified neurons can survive on peptide-free graphene layers. Adv Healthc Mater 2013; 2:929-33. [PMID: 23300024 DOI: 10.1002/adhm.201200347] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/25/2012] [Indexed: 01/07/2023]
Affiliation(s)
- Amel Bendali
- Institut de la Vision, INSERM, U968, UPMC Univ Paris, Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Kim HN, Jiao A, Hwang NS, Kim MS, Kang DH, Kim DH, Suh KY. Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2013; 65:536-58. [PMID: 22921841 PMCID: PMC5444877 DOI: 10.1016/j.addr.2012.07.014] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/14/2022]
Abstract
Human tissues are intricate ensembles of multiple cell types embedded in complex and well-defined structures of the extracellular matrix (ECM). The organization of ECM is frequently hierarchical from nano to macro, with many proteins forming large scale structures with feature sizes up to several hundred microns. Inspired from these natural designs of ECM, nanotopography-guided approaches have been increasingly investigated for the last several decades. Results demonstrate that the nanotopography itself can activate tissue-specific function in vitro as well as promote tissue regeneration in vivo upon transplantation. In this review, we provide an extensive analysis of recent efforts to mimic functional nanostructures in vitro for improved tissue engineering and regeneration of injured and damaged tissues. We first characterize the role of various nanostructures in human tissues with respect to each tissue-specific function. Then, we describe various fabrication methods in terms of patterning principles and material characteristics. Finally, we summarize the applications of nanotopography to various tissues, which are classified into four types depending on their functions: protective, mechano-sensitive, electro-active, and shear stress-sensitive tissues. Some limitations and future challenges are briefly discussed at the end.
Collapse
Affiliation(s)
- Hong Nam Kim
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Alex Jiao
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Nathaniel S. Hwang
- School of Chemical and Biological Engineering, Institute for Chemical Processing, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min Sung Kim
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Do Hyun Kang
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kahp-Yang Suh
- Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Republic of Korea
- Institute of Biological Engineering, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
22
|
Lund DK, Cornelison DDW. Enter the matrix: shape, signal and superhighway. FEBS J 2013; 280:4089-99. [PMID: 23374506 DOI: 10.1111/febs.12171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/20/2022]
Abstract
Mammalian skeletal muscle is notable for both its highly ordered biophysical structure and its regenerative capacity following trauma. Critical to both of these features is the specialized muscle extracellular matrix, comprising both the multiple concentric sheaths of connective tissue surrounding structural units from single myofibers to whole muscles and the dense interstitial matrix that occupies the space between them. Extracellular matrix-dependent interactions affect all activities of the resident muscle stem cell population (the satellite cells), from maintenance of quiescence and stem cell potential to the regulation of proliferation and differentiation. This review focuses on the role of the extracellular matrix in muscle regeneration, with a particular emphasis on regulation of satellite-cell activity.
Collapse
Affiliation(s)
- Dane K Lund
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
23
|
Shah R, Ready D, Knowles JC, Hunt NP, Lewis MP. Sequential identification of a degradable phosphate glass scaffold for skeletal muscle regeneration. J Tissue Eng Regen Med 2012; 8:801-10. [PMID: 23086759 DOI: 10.1002/term.1581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/28/2012] [Accepted: 06/26/2012] [Indexed: 11/08/2022]
Abstract
Tissue engineering has the potential to overcome limitations associated with current management of skeletal muscle defects. This study aimed to sequentially identify a degradable phosphate glass scaffold for the restoration of muscle defects. A series of glass compositions were investigated for the potential to promote bacterial growth. Thereafter, the response of human craniofacial muscle-derived cells was determined. Glass compositions containing Fe4- and 5 mol% did not promote greater Staphylococcus aureus and Staphylococcus epidermidis growth compared to the control (p > 0.05). Following confirmation of myogenicity, further studies assessed the biocompatibility of glasses containing Fe5 mol%. Cells seeded on collagen-coated disks demonstrated comparable cellular metabolic activity to control. Upregulation of genes encoding for myogenic regulatory factors (MRFs) confirmed myofibre formation and there was expression of developmental MYH genes. The use of 3-D aligned fibre scaffolds supported unidirectional cell alignment and upregulation of MRF and developmental MYH genes. Compared to the 2-D disks, there was also expression of MYH2 and MYH7 genes, indicating further myofibre maturation on the 3-D scaffolds and confirming the importance of key biophysical cues.
Collapse
Affiliation(s)
- Rishma Shah
- Orthodontic Unit, UCL Eastman Dental Institute, UK; Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, UK
| | | | | | | | | |
Collapse
|
24
|
Bian W, Juhas M, Pfeiler TW, Bursac N. Local tissue geometry determines contractile force generation of engineered muscle networks. Tissue Eng Part A 2012; 18:957-67. [PMID: 22115339 DOI: 10.1089/ten.tea.2011.0313] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The field of skeletal muscle tissue engineering is currently hampered by the lack of methods to form large muscle constructs composed of dense, aligned, and mature myofibers and limited understanding of structure-function relationships in developing muscle tissues. In our previous studies, engineered muscle sheets with elliptical pores ("muscle networks") were fabricated by casting cells and fibrin gel inside elastomeric tissue molds with staggered hexagonal posts. In these networks, alignment of cells around the elliptical pores followed the local distribution of tissue strains that were generated by cell-mediated compaction of fibrin gel against the hexagonal posts. The goal of this study was to assess how systematic variations in pore elongation affect the morphology and contractile function of muscle networks. We found that in muscle networks with more elongated pores the force production of individual myofibers was not altered, but the myofiber alignment and efficiency of myofiber formation were significantly increased yielding an increase in the total contractile force despite a decrease in the total tissue volume. Beyond a certain pore length, increase in generated contractile force was mainly contributed by more efficient myofiber formation rather than enhanced myofiber alignment. Collectively, these studies show that changes in local tissue geometry can exert both direct structural and indirect myogenic effects on the functional output of engineered muscle. Different hydrogel formulations and pore geometries will be explored in the future to further augment contractile function of engineered muscle networks and promote their use for basic structure-function studies in vitro and, eventually, for efficient muscle repair in vivo.
Collapse
Affiliation(s)
- Weining Bian
- Department of Anesthesia and Medicine and Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
25
|
Stark DA, Karvas RM, Siegel AL, Cornelison DDW. Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development 2011; 138:5279-89. [PMID: 22071104 DOI: 10.1242/dev.068411] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During development and regeneration, directed migration of cells, including neural crest cells, endothelial cells, axonal growth cones and many types of adult stem cells, to specific areas distant from their origin is necessary for their function. We have recently shown that adult skeletal muscle stem cells (satellite cells), once activated by isolation or injury, are a highly motile population with the potential to respond to multiple guidance cues, based on their expression of classical guidance receptors. We show here that, in vivo, differentiated and regenerating myofibers dynamically express a subset of ephrin guidance ligands, as well as Eph receptors. This expression has previously only been examined in the context of muscle-nerve interactions; however, we propose that it might also play a role in satellite cell-mediated muscle repair. Therefore, we investigated whether Eph-ephrin signaling would produce changes in satellite cell directional motility. Using a classical ephrin 'stripe' assay, we found that satellite cells respond to a subset of ephrins with repulsive behavior in vitro; patterning of differentiating myotubes is also parallel to ephrin stripes. This behavior can be replicated in a heterologous in vivo system, the hindbrain of the developing quail, in which neural crest cells are directed in streams to the branchial arches and to the forelimb of the developing quail, where presumptive limb myoblasts emigrate from the somite. We hypothesize that guidance signaling might impact multiple steps in muscle regeneration, including escape from the niche, directed migration to sites of injury, cell-cell interactions among satellite cell progeny, and differentiation and patterning of regenerated muscle.
Collapse
Affiliation(s)
- Danny A Stark
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
26
|
A new extensively characterised conditionally immortal muscle cell-line for investigating therapeutic strategies in muscular dystrophies. PLoS One 2011; 6:e24826. [PMID: 21935475 PMCID: PMC3173493 DOI: 10.1371/journal.pone.0024826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/18/2011] [Indexed: 01/13/2023] Open
Abstract
A new conditionally immortal satellite cell-derived cell-line, H2K 2B4, was generated from the H2Kb-tsA58 immortomouse. Under permissive conditions H2K 2B4 cells terminally differentiate in vitro to form uniform myotubes with a myogenic protein profile comparable with freshly isolated satellite cells. Following engraftment into immunodeficient dystrophin-deficient mice, H2K 2B4 cells regenerated host muscle with donor derived myofibres that persisted for at least 24 weeks, without forming tumours. These cells were readily transfectable using both retrovirus and the non-viral transfection methods and importantly upon transplantation, were able to reconstitute the satellite cell niche with functional donor derived satellite cells. Finally using the Class II DNA transposon, Sleeping Beauty, we successfully integrated a reporter plasmid into the genome of H2K 2B4 cells without hindering the myogenic differentiation. Overall, these data suggest that H2K 2B4 cells represent a readily transfectable stable cell-line in which to investigate future stem cell based therapies for muscle disease.
Collapse
|
27
|
Altomare L, Riehle M, Gadegaard N, Tanzi MC, Farè S. Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int J Artif Organs 2011; 33:535-43. [PMID: 20872348 DOI: 10.1177/039139881003300804] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Micropatterning and microfabrication techniques have been widely used to control cell adhesion and proliferation along a preferential direction according to contact guidance theory. One of these techniques is microcontact printing, a soft lithographic technique based on the transfer of a "molecular ink" from an elastomeric stamp to a surface. This method allows the useful attachment of biomolecules in a few seconds on a variety of surfaces with sub-micrometer resolution and control, without modifying the biomolecule properties. The aim of this study is to develop an easy and versatile technique for in vitro production of arrays of skeletal muscle myofibers using microcontact printing technique on biodegradable substrata. METHODS Microcontact printing of fibronectin stripes (10, 25, 50 μm in width) was performed onto biodegradable L-lactide/trimethylene carbonate copolymer (PLLA-TMC) films. C2C12, a murine myoblast cell line, was used for the production of parallel myofibers. RESULTS This approach proved to be simple, reliable and effective in obtaining a stable pattern of fibronectin on the PLLA-TMC surface as observed by fluorescence microscopy. C2C12 cells were well aligned along the pattern 24 hours after seeding, especially on fibronectin stripes 10 and 25 μm in width. Seven days after confluence cells fused and formed aligned multinucleated cells expressing a-actinin. CONCLUSIONS Fibronectin patterning seems to be a useful method to induce cell alignment and to improve myotube formation. Further studies will be focused on the possibility of applying external stimuli to these structures to obtain healthy myotubes and to induce myofiber development.
Collapse
Affiliation(s)
- Lina Altomare
- BioMatLab, Bioengineering Department, Politecnico di Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
28
|
Abstract
This protocol describes a cell/hydrogel molding method for precise and reproducible biomimetic fabrication of three-dimensional (3D) muscle tissue architectures in vitro. Using a high aspect ratio soft lithography technique, we fabricate polydimethylsiloxane (PDMS) molds containing arrays of mesoscopic posts with defined size, elongation and spacing. On cell/hydrogel molding, these posts serve to enhance the diffusion of nutrients to cells by introducing elliptical pores in the cell-laden hydrogels and to guide local 3D cell alignment by governing the spatial pattern of mechanical tension. Instead of ultraviolet or chemical cross-linking, this method utilizes natural hydrogel polymerization and topographically constrained cell-mediated gel compaction to create the desired 3D tissue structures. We apply this method to fabricate several square centimeter large, few hundred micron-thick bioartificial muscle tissues composed of viable, dense, uniformly aligned and highly differentiated cardiac or skeletal muscle fibers. The protocol takes 4-5 d to fabricate PDMS molds followed by 2 weeks of cell culture.
Collapse
|
29
|
Nowak SJ, Nahirney PC, Hadjantonakis AK, Baylies MK. Nap1-mediated actin remodeling is essential for mammalian myoblast fusion. J Cell Sci 2009; 122:3282-93. [PMID: 19706686 DOI: 10.1242/jcs.047597] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Myoblast fusion is crucial for the formation, growth, maintenance and regeneration of healthy skeletal muscle. Unfortunately, the molecular machinery, cell behaviors, and membrane and cytoskeletal remodeling events that govern fusion and myofiber formation remain poorly understood. Using time-lapse imaging approaches on mouse C2C12 myoblasts, we identify discrete and specific molecular events at myoblast membranes during fusion and myotube formation. These events include rearrangement of cell shape from fibroblast to spindle-like morphologies, changes in lamellipodial and filopodial extensions during different periods of differentiation, and changes in membrane alignment and organization during fusion. We find that actin-cytoskeleton remodeling is crucial for these events: pharmacological inhibition of F-actin polymerization leads to decreased lamellipodial and filopodial extensions and to reduced myoblast fusion. Additionally, shRNA-mediated inhibition of Nap1, a member of the WAVE actin-remodeling complex, results in accumulations of F-actin structures at the plasma membrane that are concomitant with a decrease in myoblast fusion. Our data highlight distinct and essential roles for actin cytoskeleton remodeling during mammalian myoblast fusion, provide a platform for cellular and molecular dissection of the fusion process, and suggest a functional conservation of Nap1-regulated actin-cytoskeleton remodeling during myoblast fusion between mammals and Drosophila.
Collapse
Affiliation(s)
- Scott J Nowak
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Myoblasts in vitro form characteristic arrays of bipolar-shaped cells prior to fusion. We have shown that the actin cytoskeleton re-organizes in these fusing cells and that the interaction of non-muscle myosin 2A with actin at the plasma membrane helps to generate the bipolar shape of myoblasts, which is key for fusion. Here we discuss how fusion occurs, and in particular how the actin cytoskeleton is involved. Myoblast fusion is essential to form the multi-nucleated muscle fibres that make up the skeletal muscle. Skeletal muscle fibres contain many nuclei, roughly one nucleus to every 15 sarcomeres (35 microm) in adult muscle, although this varies with muscle type (Bruusgaard et al., 2006). Thus a muscle fibre 30 cm long contains about 8000 nuclei and is formed by the fusion of about 8000 cells during development. The formation of multi-nucleated myotubes has been intensively studied for many years using a number of different systems. Many different proteins have been identified using Drosophila as a model system (e.g. see reviews by Taylor, 2000, 2002) that have given an insight into what happens in mammals. However, the process of fusion of mammalian cells is less well understood, and this paper will cover some of the aspects of mammalian myoblast fusion, with a particular focus on the role of the actin cytoskeleton.
Collapse
Affiliation(s)
- M Peckham
- Institute of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
31
|
Yamamoto DL, Csikasz RI, Li Y, Sharma G, Hjort K, Karlsson R, Bengtsson T. Myotube formation on micro-patterned glass: intracellular organization and protein distribution in C2C12 skeletal muscle cells. J Histochem Cytochem 2008; 56:881-92. [PMID: 18574252 DOI: 10.1369/jhc.2008.951228] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proliferation and fusion of myoblasts are needed for the generation and repair of multinucleated skeletal muscle fibers in vivo. Studies of myocyte differentiation, cell fusion, and muscle repair are limited by an appropriate in vitro muscle cell culture system. We developed a novel cell culture technique [two-dimensional muscle syncytia (2DMS) technique] that results in formation of myotubes, organized in parallel much like the arrangement in muscle tissue. This technique is based on UV lithography-produced micro-patterned glass on which conventionally cultured C2C12 myoblasts proliferate, align, and fuse to neatly arranged contractile myotubes in parallel arrays. Combining this technique with fluorescent microscopy, we observed alignment of actin filament bundles and a perinuclear distribution of glucose transporter 4 after myotube formation. Newly formed myotubes contained adjacently located MyoD-positive and MyoD-negative nuclei, suggesting fusion of MyoD-positive and MyoD-negative cells. In comparison, the closely related myogenic factor Myf5 did not exhibit this pattern of distribution. Furthermore, cytoplasmic patches of MyoD colocalized with bundles of filamentous actin near myotube nuclei. At later stages of differentiation, all nuclei in the myotubes were MyoD negative. The 2DMS system is thus a useful tool for studies on muscle alignment, differentiation, fusion, and subcellular protein localization.
Collapse
Affiliation(s)
- Daniel L Yamamoto
- Department of Physiology, Arrhenius Laboratories E5, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
Huang NF, Thakar RG, Wong M, Kim D, Lee RJ, Li S. Tissue engineering of muscle on micropatterned polymer films. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:4966-9. [PMID: 17271429 DOI: 10.1109/iembs.2004.1404373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tissue engineered skeletal muscle has potential physiologically relevant environments to study myogenesis and investigate the organization, differentiation and proliferation to be used for the therapy of muscular dysfunction. In order to engineer skeletal muscle that better resemble the structured architecture in vivo, we cultured myoblasts on topographically micropatterned elastic polymer films with 10-mum wide microgrooves. The organization and differentiation of myoblasts on nonpatterned and micropatterned PDMS films were characterized. In comparison to the myoblasts on nonpatterned PDMS films, myoblasts on micropatterned PDMS films aligned themselves along the direction of the microgrooves. The myoblasts on micropatterned films formed long and unbranched myotubes that had uniform diameter and aligned in the microgroove direction, suggesting that microgrooves promote end-to end fusion of myoblasts; in contrast, myotubes formed on nonpatterned surface were short and less uniform in diameter, and oriented in various directions. This study demonstrates a new approach to engineer muscular tissues on flexible substrate, and highlights the importance of topographical cues for creating more engineer skeletal muscle.
Collapse
|
33
|
Shin H. Fabrication methods of an engineered microenvironment for analysis of cell–biomaterial interactions. Biomaterials 2007; 28:126-33. [PMID: 16945407 DOI: 10.1016/j.biomaterials.2006.08.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
Success in tissue engineering requires an understanding of how cells integrate the signals presented from the microenvironment created by biomaterial scaffolds to alter their responses. Besides the presence of chemical stimuli, there is growing evidence that the spatial organization of cells and tissue within a 3-dimensional (3-D) extracellular matrix (ECM) context is a critical element in controlling cellular function. Therefore, in order to direct cells toward a desirable tissue structure, it is necessary to engineer biomaterials to have spatiotemporal control of the presentation of regulatory signals. Given that, micro-patterning techniques have profited by combining micro-fabrication technology with the chemical conjugation of biologically active molecules to provide new culture systems where cells can be cultured within a specific geometry. The micro-engineered environments have been developed as 2- and 3-D structures, which have proven greatly useful as versatile platforms to study cell, biomaterial, and ECM interactions on both macroscopic and microscopic levels. The main focus of this review is a brief summary of the use of micro-engineered substrates in the analysis of cell-biomaterial interactions with the aim to provide an introductory overview of practical applications available in the literature. In particular, topics regarding (1) the soft-lithography technique to prepare micro-patterned substrates for the spatial control of cell adhesion, (2) biomaterials stiffness-dependent cellular responses, and (3) the microarray techniques for analysis of cell/biomaterials interactions are discussed.
Collapse
Affiliation(s)
- Heungsoo Shin
- Department of Bioengineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133 791, Republic of Korea.
| |
Collapse
|
34
|
Mwenifumbo S, Li M, Chen J, Beye A, Soboyejo W. Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:9-23. [PMID: 17200810 DOI: 10.1007/s10856-006-0658-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 02/28/2006] [Indexed: 05/13/2023]
Abstract
This paper examines the effects of nano-scale titanium coatings, and micro-groove/micro-grid patterns on cell/surface interactions on silicon surfaces. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells and relevant cytoskeletal & focal adhesion proteins through scanning electron microscopy and immunofluorescence staining. Increased cell spreading and proliferation rates are observed on surfaces with 50 nm thick Ti coatings. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. Immunofluorescence cell staining experiments also reveal that the actin stress fibers are aligned along the groove dimensions, with discrete focal adhesions occurring along the ridges, within the grooves and at the ends of the cell extensions. The implications of the observed cell/surface interactions are discussed for possible applications of silicon in implantable biomedical systems.
Collapse
Affiliation(s)
- Steven Mwenifumbo
- The Princeton Materials Institute and The Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
35
|
Swailes NT, Colegrave M, Knight PJ, Peckham M. Non-muscle myosins 2A and 2B drive changes in cell morphology that occur as myoblasts align and fuse. J Cell Sci 2006; 119:3561-70. [PMID: 16895968 DOI: 10.1242/jcs.03096] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of non-muscle myosins 2A and 2B with actin may drive changes in cell movement, shape and adhesion. To investigate this, we used cultured myoblasts as a model system. These cells characteristically change shape from triangular to bipolar when they form groups of aligned cells. Antisense oligonucleotide knockdown of non-muscle myosin 2A, but not non-muscle myosin 2B, inhibited this shape change, interfered with cell-cell adhesion, had a minor effect on tail retraction and prevented myoblast fusion. By contrast, non-muscle myosin 2B knockdown markedly inhibited tail retraction, increasing cell length by over 200% by 72 hours compared with controls. In addition it interfered with nuclei redistribution in myotubes. Non-muscle myosin 2C is not involved as western analysis showed that it is not expressed in myoblasts, but only in myotubes. To understand why non-muscle myosins 2A and 2B have such different roles, we analysed their distributions by immuno-electron microscopy, and found that non-muscle myosin 2A was more tightly associated with the plasma membrane than non-muscle myosin 2B. This suggests that non-muscle myosin 2A is more important for bipolar shape formation and adhesion owing to its preferential interaction with membrane-associated actin, whereas the role of non-muscle myosin 2B in retraction prevents over-elongation of myoblasts.
Collapse
Affiliation(s)
- Nathan T Swailes
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
36
|
Lam MT, Sim S, Zhu X, Takayama S. The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes. Biomaterials 2006; 27:4340-7. [PMID: 16650470 DOI: 10.1016/j.biomaterials.2006.04.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 04/03/2006] [Indexed: 11/18/2022]
Abstract
Tissue-engineered muscle is a viable option for tissue repair, though presently technologies are not developed enough to produce tissue in vitro identical to that in vivo. One important step in generating accurate engineered muscle is to mimic natural muscle architecture. Skeletal muscle is composed of fibrils whose organization defines functionality. In musculoskeletal myogenesis, aligning myoblasts in preparation for myotube formation is a crucial step. The ability to efficiently organize myoblasts to form aligned myotubes in vitro would greatly benefit efforts in muscle tissue engineering. This paper reports alignment of prefused and differentiated skeletal muscle cells in vitro by use of continuous micropatterned wavy silicone surfaces, with features sized 3, 6 and 12 microm in periodicity. Wave features with 6 microm periodicity produced the most healthy, aligned myoblasts. Alignment was found to be a function of plating density. Further growth on these substrates with aligned myoblasts promoted fusion, yielding healthy aligned myotubes. This method will be useful for applications in which differentiated myogenic cells need to be aligned unidirectionally as in the development of engineered muscle.
Collapse
Affiliation(s)
- Mai T Lam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
37
|
|
38
|
Abstract
The organization of the actin cytoskeleton in prefusion aligning myoblasts is likely to be important for their shape and interaction. We investigated actin filament organization and polarity by transmission electron microscopy (TEM) in these cells. About 84% of the filaments counted were either found in a subplasmalemma sheet up to 0.5 microm thick that was aligned with the long axis of the cell, or in protrusions. The remaining filaments were found in the cytoplasm, where they were randomly orientated and not organized into bundles. The polarity of the subplasmalemma filaments changed progressively from one end of the cell to the other. At the ends of the cells and in protrusions, the majority of filaments were organized such that their barbed ends faced the tip of the protrusion. We did not find any actin filament bundles or stress fibres in these cells. Time-lapse phase microscopy demonstrated that aligned cells were still actively migrating at the time of our TEM observations, and their direction of movement was restricted to the long axis of the cell group. The ability of these cells to locomote actively in the absence of actin filament bundles suggests that in these cells the subplasmalemma actin sheet contributes not only to cell shape but also to cell locomotion.
Collapse
|
39
|
Li X, Liu T, Chen Y. The effects of the nanotopography of biomaterial surfaces on pseudomonas fluorescens cell adhesion. Biochem Eng J 2004. [DOI: 10.1016/j.bej.2004.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Griffin MA, Sen S, Sweeney HL, Discher DE. Adhesion-contractile balance in myocyte differentiation. J Cell Sci 2004; 117:5855-63. [PMID: 15522893 DOI: 10.1242/jcs.01496] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue cells generally pull on their matrix attachments and balance a quasi-static contractility against adequate adhesion, but any correlation with and/or influence on phenotype are not yet understood. Here, we begin to demonstrate how differentiation state couples to actomyosin-based contractility through adhesion and substrate compliance. Myotubes are differentiated from myoblasts on collagen-patterned coverslips that allow linear fusion but prevent classic myotube branching. Post-fusion, myotubes adhere to the micro-strips but lock into a stress fiber-rich state and do not differentiate significantly further. In contrast, myotubes grown on top of such cells do progress through differentiation, exhibiting actomyosin striations within one week. A compliant adhesion to these lower cells is suggested to couple to contractility and accommodate the reorganization needed for upper cell striation. Contractility is assessed in these adherent cells by mechanically detaching one end of the myotubes. All myotubes, whether striated or not, shorten with an exponential decay. The cell-on-cell myotubes relax more, which implies a greater contractile stress. The non-muscle myosin II inhibitor blebbistatin inhibits relaxation for either case. Myotubes in culture are thus clearly prestressed by myosin II, and this contractility couples to substrate compliance and ultimately influences actomyosin striation.
Collapse
Affiliation(s)
- Maureen A Griffin
- Biophysical Engineering Laboratory, 112 Towne Building, and Pennsylvania Muscle Institute, University of Pennsylvania, D-700 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
41
|
Cell behaviour of rat calvaria bone cells on surfaces with random nanometric features. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2003. [DOI: 10.1016/s0928-4931(02)00282-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Abstract
The ability to culture cells in vitro has revolutionized hypothesis testing in basic cell and molecular biology research and has become a standard methodology in drug screening and toxicology assays. However, the traditional cell culture methodology--consisting essentially of the immersion of a large population of cells in a homogeneous fluid medium--has become increasingly limiting, both from a fundamental point of view (cells in vivo are surrounded by complex spatiotemporal microenvironments) and from a practical perspective (scaling up the number of fluid handling steps and cell manipulations for high-throughput studies in vitro is prohibitively expensive). Microfabrication technologies have enabled researchers to design, with micrometer control, the biochemical composition and topology of the substrate, the medium composition, as well as the type of neighboring cells surrounding the microenvironment of the cell. In addition, microtechnology is conceptually well suited for the development of fast, low-cost in vitro systems that allow for high-throughput culturing and analysis of cells under large numbers of conditions. Here we review a variety of applications of microfabrication in cell culture studies, with an emphasis on the biology of various cell types.
Collapse
Affiliation(s)
- Nianzhen Li
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
43
|
Clark P, Dunn GA, Knibbs A, Peckham M. Alignment of myoblasts on ultrafine gratings inhibits fusion in vitro. Int J Biochem Cell Biol 2002; 34:816-25. [PMID: 11950597 DOI: 10.1016/s1357-2725(01)00180-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During development, skeletal muscle precursor cells fuse to form multi-nucleated myotubes. However, it is unclear how this fusion is regulated such that linear myotubes are produced. In a previous study, we found that linear arrays of myoblasts cultured on micropatterns of laminin fused to form linear myotubes of a constant diameter, independent of the width of the laminin track. This suggested that a mechanism exists to prevent myoblasts from fusing laterally [Exp. Cell Res. 230 (1997) 275]. In this study, we have investigated this further by culturing myoblasts on ultrafine grooved surfaces previously shown to align fibroblasts and epithelial cells. We found that all the individual myoblasts were highly aligned along the groove axis, and time-lapse recordings showed that motility was mostly restricted to a direction parallel to the grooves. In contrast to the previous study, however, there was a strong tendency for early differentiating cells to form aggregates either at an angle of approximately 45 degrees or perpendicular to the groove axis. Nevertheless, we rarely saw myotubes formed at those angles, supporting our earlier idea that the ability of cells to fuse laterally is prohibited. Our data strongly suggest that myoblasts are most likely to fuse in an end-to-end configuration, and it is this that enables them to form linear, rather than irregular myotubes.
Collapse
Affiliation(s)
- P Clark
- Division of Biomedical Sciences, Sir Alexander Fleming Building, Imperial College, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
44
|
Jung DR, Kapur R, Adams T, Giuliano KA, Mrksich M, Craighead HG, Taylor DL. Topographical and physicochemical modification of material surface to enable patterning of living cells. Crit Rev Biotechnol 2002; 21:111-54. [PMID: 11451046 DOI: 10.1080/20013891081700] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Precise control of the architecture of multiple cells in culture and in vivo via precise engineering of the material surface properties is described as cell patterning. Substrate patterning by control of the surface physicochemical and topographic features enables selective localization and phenotypic and genotypic control of living cells. In culture, control over spatial and temporal dynamics of cells and heterotypic interactions draws inspiration from in vivo embryogenesis and haptotaxis. Patterned arrays of single or multiple cell types in culture serve as model systems for exploration of cell-cell and cell-matrix interactions. More recently, the patterned arrays and assemblies of tissues have found practical applications in the fields of Biosensors and cell-based assays for Drug Discovery. Although the field of cell patterning has its origins early in this century, an improved understanding of cell-substrate interactions and the use of microfabrication techniques borrowed from the microelectronics industry have enabled significant recent progress. This review presents the important early discoveries and emphasizes results of recent state-of-the-art cell patterning methods. The review concludes by illustrating the growing impact of cell patterning in the areas of bioelectronic devices and cell-based assays for drug discovery.
Collapse
|
45
|
Peckham M, Miller G, Wells C, Zicha D, Dunn GA. Specific changes to the mechanism of cell locomotion induced by overexpression of (β)-actin. J Cell Sci 2001; 114:1367-77. [PMID: 11257002 DOI: 10.1242/jcs.114.7.1367] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of (β)-actin is known to alter cell morphology, though its effect on cell motility has not been documented previously. Here we show that overexpressing (β)-actin in myoblasts has striking effects on motility, increasing cell speed to almost double that of control cells. This occurs by increasing the areas of protrusion and retraction and is accompanied by raised levels of (β)-actin in the newly protruded regions. These regions of the cell margin, however, show decreased levels of polymerised actin, indicating that protrusion can outpace the rate of actin polymerisation in these cells. Moreover, the expression of (β)*-actin (a G244D mutant, which shows defective polymerisation in vitro) is equally effective at increasing speed and protrusion. Concomitant changes in actin binding proteins show no evidence of a consistent mechanism for increasing the rate of actin polymerisation in these actin overexpressing cells. The increase in motility is confined to poorly spread cells in both cases and the excess motility can be abolished by blocking myosin function with butanedione monoxime (BDM). Our observations on normal myoblasts are consistent with the view that they protrude by the assembly and cross linking of actin filaments. In contrast, the additional motility shown by cells overexpressing (β)-actin appears not to result from an increase in the rate of actin polymerisation but to depend on myosin function. This suggests that the additional protrusion arises from a different mechanism. We discuss the possibility that it is related to retraction-induced protrusion in fibroblasts. In this phenomenon, a wave of increased protrusion follows a sudden collapse in cell spreading. This view could explain why it is only the additional motility that depends on spreading, and has implications for understanding the differences in locomotion that distinguish tissue cells from highly invasive cell types such as leucocytes and malignant cells.
Collapse
Affiliation(s)
- M Peckham
- School of Biomedical Sciences, Worsley Building, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
46
|
Cho WJ, Kim EJ, Lee SJ, Kim HD, Shin HJ, Lim WK. Involvement of SPARC in in vitro differentiation of skeletal myoblasts. Biochem Biophys Res Commun 2000; 271:630-4. [PMID: 10814513 DOI: 10.1006/bbrc.2000.2682] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SPARC (secreted protein acidic and rich in cysteine) is an extracellular Ca(2+)-binding glycoprotein associated with the morphogenesis and remodeling of various tissues. Here, involvement of SPARC in the myogenesis of skeletal myoblasts was investigated in vitro. First, the differential expression of SPARC mRNA during the myogenesis was initially identified by a differential display reverse transcription (DDRT)-PCR method. The expression of the SPARC gene was significantly up-regulated during the differentiation of C2C12 mouse myoblasts. Second, the treatment with anti-SPARC antibody almost completely prevented the differentiation of myoblasts. Third, the treatment with EGTA, a Ca(2+) chelator that is known to inhibit the fusion of C2C12 myoblasts, reversibly inhibited the up-regulation of SPARC gene expression. On the other hand, the treatment with A23187, a Ca(2+) ionophore, rapidly and dramatically increased the level of SPARC transcript. Taken together, these results suggest that SPARC may play a critical role(s) in the morphological change of myoblasts, and that the expression of SPARC gene may be controlled by Ca(2+)-dependent pathway in myogenesis.
Collapse
Affiliation(s)
- W J Cho
- Department of Molecular Biology, Pusan National University, Pusan, 609-735, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
To perform their myriad functions, tissues use specific cell-cell interactions that depend on the spatial ordering of multiple cell types. Recapitulating this spatial order in vitro will facilitate our understanding of function and failure in native and engineered tissue. One approach to achieving such high placement precision is to use optical forces to deposit cells directly. Toward this end, recent work with optical forces has shown that a wide range of particulate materials can be guided and deposited on surfaces to form arbitrary spatial patterns. Here we report that, when we use the light from a near-infrared diode laser focused through a low numerical aperture lens, individual embryonic chick spinal cord cells can be guided through culture medium and deposited on a glass surface to form small clusters of cells. In addition, we found that the laser light could be coupled into hollow optical fibers and that the cells could be guided inside the fibers over millimeter distances. The demonstration of fiber-based guidance extends by 2 orders of magnitude the distance over which optical manipulation can be performed with living cells. Cells guided into the fiber remained viable, as evidenced by normal cell adhesion and neurite outgrowth after exposure to the laser light. The results indicate that this particle deposition process, which we call "laser-guided direct writing," can be used to construct patterned arrays of tens to hundreds of cells using arbitrary numbers of cell types placed at arbitrary positions with micrometer-scale precision.
Collapse
Affiliation(s)
- D J Odde
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan 49931, USA.
| | | |
Collapse
|
48
|
McFarland CD, Thomas CH, DeFilippis C, Steele JG, Healy KE. Protein adsorption and cell attachment to patterned surfaces. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2000; 49:200-10. [PMID: 10571906 DOI: 10.1002/(sici)1097-4636(200002)49:2<200::aid-jbm7>3.0.co;2-l] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To better understand the events involved in the generation of defined tissue architectures on biomaterials, we have examined the mechanism of attachment of human bone-derived cells (HBDC) to surfaces with patterned surface chemistry in vitro. Photolithography was used to generate alternating domains of N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane (EDS) and dimethyldichlorosilane (DMS). At 90 min after seeding, HBDC were localized preferentially to the EDS regions of the pattern. Using sera specifically depleted of adhesive glycoproteins, this spatial organization was found to be mediated by adsorption of vitronectin (Vn) from serum onto the EDS domains. In contrast, fibronectin (Fn) was unable to adsorb in the face of competition from other serum components. These results were confirmed by immunostaining, which also revealed that both Vn and Fn were able to adsorb to EDS and DMS regions when coated from pure solution, i.e., in the absence of competition. In this situation, each protein was able to mediate cell adhesion across a range of surface densities. Cell spreading was constrained on the EDS domains, as indicated by cell morphology and the lack of integrin receptor clustering and focal adhesion formation. This spatial constraint may have implications for the subsequent expression of differentiated function.
Collapse
Affiliation(s)
- C D McFarland
- CSIRO Molecular Science, Sydney Laboratory, P.O. Box 184, North Ryde, NSW 1670, Australia
| | | | | | | | | |
Collapse
|
49
|
Goto S, Miyazaki K, Funabiki T, Yasumitsu H. Serum-free culture conditions for analysis of secretory proteinases during myogenic differentiation of mouse C2C12 myoblasts. Anal Biochem 1999; 272:135-42. [PMID: 10415081 DOI: 10.1006/abio.1999.4163] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have been studying extracellular proteins such as proteinases and attachment factors under serum-free culture conditions. A number of studies on myogenesis using an in vitro culture system have reported that proteinases and ECM components play significant roles in muscle differentiation. However, most of the studies were performed in the presence of serum. Serum is abundant in the aforementioned proteins and its use in serum-free culture affects many cellular functions significantly. In this study, we tried to establish serum-free culture conditions for analyzing extracellular proteins involved in mouse myogenic differentiation. By evaluating media, supplements, and procedure of cell inoculation under serum-free conditions and by comparing the resultant conditions with conventional conditions on differentiated characteristics of the cells, it was revealed that serum-free Dulbecco's modified Eagle's medium/Ham's F-12 plus insulin more efficiently supported myogenesis morphologically and biochemically than conventional 2% horse serum-containing culture and that secretory proteinases obtained from our serum-free culture were different from those obtained utilizing conventional serum-free cultures in their activities and patterns. Since our serum-free medium consists of simple components, the medium is low cost and easy to prepare. Furthermore, the results suggest that our culture conditions are superior to conventional conditions biochemically and morphologically and will provide more precise and accurate information on extracellular proteins involved in myogenesis.
Collapse
Affiliation(s)
- S Goto
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Yokohama, Totsuka-ku, 244-0813, Japan
| | | | | | | |
Collapse
|
50
|
Ra HJ, Picart C, Feng H, Sweeney HL, Discher DE. Muscle cell peeling from micropatterned collagen: direct probing of focal and molecular properties of matrix adhesion. J Cell Sci 1999; 112 ( Pt 10):1425-36. [PMID: 10212137 DOI: 10.1242/jcs.112.10.1425] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To quantitatively elucidate attributes of myocyte-matrix adhesion, muscle cells were controllably peeled from narrow strips of collagen-coated glass. Initial growth of primary quail myoblasts on collagen strips was followed by cell alignment, elongation and end-on fusion between neighbors. This geometric influence on differentiation minimized lateral cell contact and cell branching, enabling detailed study of myocyte-matrix adhesion. A micropipette was used to pull back one end of a quasi-cylindrical cell while observing in detail the non-equilibrium detachment process. Peeling velocities fluctuated as focal roughness, microm in scale, was encountered along the detachment front. Nonetheless, mean peeling velocity (microm/second) generally increased with detachment force (nN), consistent with forced disruption of adhesion bonds. Immunofluorescence of beta1-integrins correlated with the focal roughness and appeared to be clustered in axially extended focal contacts. In addition, the peeling forces and rates were found to be moderately well described by a dynamical peeling model for receptor-based adhesion (Dembo, M., Torney, D. C., Saxman, K. and Hammer, D. (1988). Proc. R. Soc. Lond. B 234, 55–83). Estimates were thereby obtained for the spontaneous, molecular off-rate (kooff, (less than or equal to)10/seconds) and the receptor complex stiffness (kappa, approx. 10(−5)-10(−6) N/m) of adherent myocytes. Interestingly, the local stiffness is within the range of flexible proteins of the spectrin superfamily. The overall approach lends itself to elucidating the developing function of other structural and adhesive components of cells, particularly skeletal muscle cells with specialized components, such as the spectrin-homolog dystrophin and its membrane-linked receptor dystroglycan.
Collapse
Affiliation(s)
- H J Ra
- Biotechnology Program, School of Engineering and Applied Science, Dept of Physiology, Pennsylvania Muscle Institute and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|