1
|
Adibhatla RM, Hatcher JF, Gusain A. Tricyclodecan-9-yl-xanthogenate (D609) mechanism of actions: a mini-review of literature. Neurochem Res 2011; 37:671-9. [PMID: 22101393 DOI: 10.1007/s11064-011-0659-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/14/2011] [Accepted: 11/10/2011] [Indexed: 12/21/2022]
Abstract
Tricyclodecan-9-yl-xanthogenate (D609) is known for its antiviral and antitumor properties. D609 actions are widely attributed to inhibiting phosphatidylcholine (PC)-specific phospholipase C (PC-PLC). D609 also inhibits sphingomyelin synthase (SMS). PC-PLC and/or SMS inhibition will affect lipid second messengers 1,2-diacylglycerol (DAG) and/or ceramide. Evidence indicates either PC-PLC and/or SMS inhibition affected the cell cycle and arrested proliferation, and stimulated differentiation in various in vitro and in vivo studies. Xanthogenate compounds are also potent antioxidants and D609 reduced Aß-induced toxicity, attributed to its antioxidant properties. Zn²⁺ is necessary for PC-PLC enzymatic activity; inhibition by D609 might be attributed to its Zn²⁺ chelation. D609 has also been proposed to inhibit acidic sphingomyelinase or down-regulate hypoxia inducible factor-1α; however these are down-stream events related to PC-PLC inhibition. Characterization of the mammalian PC-PLC is limited to inhibition of enzymatic activity (frequently measured using Amplex red assay with bacterial PC-PLC as a standard). The mammalian PC-PLC has not been cloned; sequenced and structural information is unavailable. D609 showed promise in cancer studies, reduced atherosclerotic plaques (inhibition of PC-PLC) and cerebral infarction after stroke (PC-PLC or SMS). D609 actions as an antagonist to pro-inflammatory cytokines have been attributed to PC-PLC. The purpose of this review is to comprehensively evaluate the literature and summarize the findings and relevance to cell cycle and CNS pathologies.
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, Clinical Science Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3232, USA.
| | | | | |
Collapse
|
2
|
Vilimek D, Duronio V. Cytokine-stimulated phosphorylation of GSK-3 is primarily dependent upon PKCs, not PKB. Biochem Cell Biol 2006; 84:20-9. [PMID: 16462886 DOI: 10.1139/o05-154] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulation of glycogen synthase kinase-3 (GSK-3) by phosphorylation at inhibitory sites has been well documented. In many, but not all, cases, the phosphatidylinositol 3-kinase pathway, and particularly the downstream kinase protein kinase B (PKB)/akt, have been shown to be responsible for GSK-3 phosphorylation. Given that no studies have ever reported cytokine-mediated phosphorylation of GSK-3, we investigated the phosphorylation of this kinase in several hemopoietic cell types in response to either interleukin (IL)-3, IL-4 or granulocyte-macrophage colony stimulating factor (GM-CSF). Each of the cytokines was able to stimulate phosphorylation of the isoforms GSK-3alpha and GSK-3beta. However, only in the case of IL-4 stimulation was there any dependence on PKB for this phosphorylation. We were clearly able to show that PKB was capable of phosphorylating GSK-3 in these cells, but studies using inhibitors of the protein kinase C (PKC) family of kinases have shown that these enzymes are more likely to play a key role in GSK-3 phosphorylation. Cytokine-mediated generation of diacylglycerol was demonstrated, supporting the possible activation of PKC family members. Thus, cytokine-dependent GSK-3 phosphorylation in hemopoietic cells proceeds primarily through PKB independent pathways.
Collapse
Affiliation(s)
- Dino Vilimek
- Department of Medicine, University of British Columbia, Jack Bell Research Centre, Vancouver, Canada
| | | |
Collapse
|
3
|
Sandra F, Esposti MD, Ndebele K, Gona P, Knight D, Rosenquist M, Khosravi-Far R. Tumor necrosis factor-related apoptosis-inducing ligand alters mitochondrial membrane lipids. Cancer Res 2005; 65:8286-97. [PMID: 16166305 PMCID: PMC2941886 DOI: 10.1158/0008-5472.can-04-1913] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to have selective antitumor activity. TRAIL induces ubiquitous pathways of cell death in which caspase activation is mediated either directly or via the release of apoptogenic factors from mitochondria; however, the precise components of the mitochondrial signaling pathway have not been well defined. Notably, mitochondria constitute an important target in overcoming resistance to TRAIL in many types of tumors. Bid is considered to be fundamental in engaging mitochondria during death receptor-mediated apoptosis, but this action is dependent on mitochondrial lipids. Here, we report that TRAIL signaling induces an alteration in mitochondrial membrane lipids, particularly cardiolipin. This occurs independently of caspase activation and primes mitochondrial membranes to the proapoptotic action of Bid. We unveil a link between TRAIL signaling and alteration of membrane lipid homeostasis that occurs in parallel to apical caspase activation but does not take over the mode of cell death because of the concurrent activation of caspase-8. In particular, TRAIL-induced alteration of mitochondrial lipids follows an imbalance in the cellular homeostasis of phosphatidylcholine, which results in an elevation in diacylglycerol (DAG). Elevated DAG in turn activates the delta isoform of phospholipid-dependent serine/threonine protein kinase C, which then accelerates the cleavage of caspase-8. We also show that preservation of phosphatidylcholine homeostasis by inhibition of lipid-degrading enzymes almost completely impedes the activation of pro-caspase-9 while scarcely changing the activation of caspase-8.
Collapse
Affiliation(s)
- Ferry Sandra
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | | | - Kenneth Ndebele
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Philimon Gona
- Statistics and Consulting Unit, Department of Mathematics and Statistics, Boston University, Boston, Massachusetts
| | - David Knight
- Faculty Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Magnus Rosenquist
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center
| | - Roya Khosravi-Far
- Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center
| |
Collapse
|
4
|
Gubina E, Luo X, Kwon E, Sakamoto K, Shi YF, Mufson RA. betac cytokine receptor-induced stimulation of cAMP response element binding protein phosphorylation requires protein kinase C in myeloid cells: a novel cytokine signal transduction cascade. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4303-10. [PMID: 11591753 DOI: 10.4049/jimmunol.167.8.4303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that IL-3R occupancy activates a phosphatidylcholine-specific phospholipase C, and the sustained diacylglycerol accumulation subsequently activates protein kinase C (PKC). In human IL-3-dependent myeloid cells (TF-1), the novel PKCepsilon isoform regulates bcl-2 expression and cell survival. The report of a PKC activatable cAMP response element (CRE) in the bcl-2 promoter and a role for PKC in bcl-2 expression in B cells led us to the hypothesis that PKC phosphorylation activates transcription factor CREB after IL-3R engagement. We found that IL-3 and GM-CSF induced phosphorylation of CREB on Ser(133) in TF-1 cells, and this phosphorylation was blocked by two structurally unrelated classes of PKC inhibitors. An inhibitor of cyclic nucleotide-dependent kinases did not block this phosphorylation. IL-4, which is biologically active in these cells but does not use the beta common subunit, did not phosphorylate CREB on Ser(133). Inhibition of mitogen-activated protein kinase kinase activity also inhibited IL3-induced CREB phosphorylation. The PKC inhibitors, but not a cyclic nucleotide-dependent kinase inhibitor, blocked IL-3 activation of CRE-dependent transcription from an egr-1 promoter/chloramphenicol acetyltransferase (CAT) reporter construction transiently transfected into TF-1 cells. Finally, TF-1 cells stably overexpressing PKCepsilon, but not the delta isoform of PKC, enhanced CRE-dependent CAT expression from the promoter/reporter construction. Therefore, it is likely that a PKCepsilon kinase cascade resulting in CREB phosphorylation represents a novel signal transduction cascade for regulating cellular gene expression through the beta common cytokine receptor.
Collapse
Affiliation(s)
- E Gubina
- Department of Immunology, Holland Laboratory/American Red Cross, Rockville, MD 20855, USA
| | | | | | | | | | | |
Collapse
|
5
|
Riboni L, Viani P, Bassi R, Giussani P, Tettamanti G. Basic fibroblast growth factor-induced proliferation of primary astrocytes. evidence for the involvement of sphingomyelin biosynthesis. J Biol Chem 2001; 276:12797-804. [PMID: 11278937 DOI: 10.1074/jbc.m011570200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We recently reported that the marked decrease in cellular ceramide in primary astrocytes is an early event associated with the mitogenic activity of basic fibroblast growth factor (bFGF) (Riboni, L., Viani, P., Bassi, R., Stabieini, A., and Tettamanti, G. (2000) GLIA 32, 137-145). Here we show that a rapid activation of sphingomyelin biosynthesis appears to be the major mechanism responsible for the fall in ceramide levels induced by bFGF. When quiescent astrocytes were treated with bFGF, an increased amount of newly synthesized ceramide (from either l-[(3)H]serine or [(3)H]sphingosine) was directed toward the biosynthesis of sphingomyelin. Conversely, bFGF did not appear to affect ceramide levels by other metabolic pathways involved in ceramide turnover such as sphingomyelin degradation and ceramide biosynthesis, degradation, and glucosylation. Enzymatic studies demonstrating a relevant and rapid increase in sphingomyelin synthase activity after bFGF treatment have provided a convincing explanation for the activation of sphingomyelin biosynthesis. The bFGF-induced increase in sphingomyelin synthase appears to depend on a post-translational activation mechanism. Moreover, in the presence of brefeldin A, the activation of sphingomyelin biosynthesis was abolished, suggesting that the enzyme is located in a compartment other than the Golgi apparatus. Also the phosphatidylcholine-specific phospholipase C inhibitor D609 exerted a potent inhibitory effect on sphingomyelin biosynthesis. Finally, we demonstrate that inhibition of sphingomyelin biosynthesis by brefeldin A or D609 led to a significant inhibition of bFGF-stimulated mitogenesis. All this supports that, in primary astrocytes, the early activation of sphingomyelin synthase is involved in the bFGF signaling pathway leading to proliferation.
Collapse
Affiliation(s)
- L Riboni
- Department of Medical Chemistry and Biochemistry, Study Center for the Functional Biochemistry of Brain Lipids, University of Milan, via Fratelli Cervi 93, LITA-Segrate, Segrate, 20090 Milan, Italy
| | | | | | | | | |
Collapse
|
6
|
Jost M, Huggett TM, Kari C, Boise LH, Rodeck U. Epidermal growth factor receptor-dependent control of keratinocyte survival and Bcl-xL expression through a MEK-dependent pathway. J Biol Chem 2001; 276:6320-6. [PMID: 11098053 DOI: 10.1074/jbc.m008210200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work has shown that the epidermal growth factor receptor (EGFR) tyrosine kinase moiety provides protection to normal human keratinocytes against apoptosis. This protection is, at least in part, due to EGFR-dependent expression of the antiapoptotic Bcl-2 family member, Bcl-x(L). Here we focused on intracellular signaling pathways relevant to keratinocyte survival and/or Bcl-x(L) expression. By using pharmacological inhibitors and dominant negative expression constructs, we observed that phosphatidylinositol 3-kinase/AKT and phospholipase C gamma/protein kinase C alpha activation were required for keratinocyte survival independently of EGFR activation or Bcl-x(L) expression. By contrast, MEK activity required EGFR activation and, as shown by use of the MEK inhibitor PD98059 and a dominant negative MEK construct, was necessary for Bcl-x(L) expression and survival. Consistent with an earlier study, blocking SRC kinase activities similarly led to down-regulation of Bcl-x(L) protein expression and impaired keratinocyte survival. In conclusion, our results demonstrate that EGFR-dependent MEK activity contributes to both Bcl-x(L) expression and survival of normal keratinocytes. Other signaling pathways (i.e. phosphatidylinositol 3-kinase/AKT and phospholipase C gamma/protein kinase C alpha) are obligatory to keratinocyte survival but not to Bcl-x(L) expression, and control of these pathways by EGFR activation is not rate-limiting to normal keratinocyte survival.
Collapse
Affiliation(s)
- M Jost
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
7
|
McCubrey JA, May WS, Duronio V, Mufson A. Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 2000; 14:9-21. [PMID: 10637471 DOI: 10.1038/sj.leu.2401657] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, the involvement of tyrosine kinases in signal transduction pathways evoked by cytokines has been intensively investigated. Only relatively recently have the roles of serine/threonine kinases in cytokine-induced signal transduction and anti-apoptotic pathways been examined. Cytokine receptors without intrinsic kinase activity such as interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF) and the interferons were thought to transmit their regulatory signals primarily by the receptor-associated Jak family of tyrosine kinases. This family of tyrosine kinases activates STAT transcription factors, which subsequently transduced their signals into the nucleus to modulate gene expression. Cytokine receptors with intrinsic tyrosine kinase activity such as c-Kit were initially thought to transduce their signals independently of serine/threonine kinase cascades. Recently, both of these types of receptor signaling pathways have been shown to interact with serine/threonine kinase pathways as maximal activation of these tyrosine kinase regulated cascades involve serine/threonine phosphorylation modulated by, for example MAP kinases. A common intermediate pathway initiating from cytokine receptors is the Ras/Raf/MEK/ERK (MAPK) cascade, which can result in the phosphorylation and activation of additional downstream kinases and transcription factors such as p90Rsk, CREB, Elk and Egr-1. Serine/threonine phosphorylation is also involved in the regulation of the apoptosis-controlling Bcl-2 protein, as certain phosphorylation events induced by cytokines such as IL-3 are anti-apoptotic, whereas other phosphorylation events triggered by chemotherapeutic drugs such as Paclitaxel are associated with cell death. Serine/threonine phosphorylation is implicated in the etiology of certain human cancers as constitutive serine phosphorylation of STATs 1 and 3 is observed in chronic lymphocytic leukemia and can be inhibited by the chemotherapeutic drug fludarabine. Serine/threonine phosphorylation also plays a role in the etiology of immunodeficiencies. Activated STAT5 proteins are detected in reduced levels in lymphocytes recovered from HIV-infected individuals and immunocompromised mice. Serine/threonine phosphorylation may be an important target of certain chemotherapeutic drugs which recognize the activated proteins. This meeting report and mini-review will discuss the interactions of serine/threonine kinases with signal transduction and apoptotic molecules and how some of these pathways can be controlled by chemotherapeutic drugs. Leukemia (2000) 14, 9-21.
Collapse
Affiliation(s)
- J A McCubrey
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27858, USA
| | | | | | | |
Collapse
|
8
|
Young MR, Wright MA, Lathers DM, Messingham KA. Increased resistance to apoptosis by bone marrow CD34(+)progenitor cells from tumor-bearing mice. Int J Cancer 1999; 82:609-15. [PMID: 10404079 DOI: 10.1002/(sici)1097-0215(19990812)82:4<609::aid-ijc23>3.0.co;2-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tumors, such as the murine Lewis lung carcinoma (LLC), produce granulocyte-macrophage colony-stimulating factor (GM-CSF), which increases the proportion of CD34(+) hematopoietic progenitor cells in the bone marrow and in the periphery. This increase in peripheral CD34(+) cells had been attributed to the growth-promoting and mobilizing effects of the tumor-derived GM-CSF. However, the possibility that the CD34(+) cells of tumor bearers might have enhanced survival abilities had not been considered. The present studies showed a significant baseline level of apoptotic cells in short-term (5-day) cultures of normal CD34(+) cells containing GM-CSF plus stem cell factor (SCF), and a markedly greater level of apoptosis in cytokine-deficient cultures. In contrast, CD34(+) cells from tumor bearers did not undergo such levels of apoptosis, even in the absence of cytokines. This resistance to apoptosis could be conferred to normal CD34(+) cells by culture with LLC-conditioned medium. Studies to elucidate possible mechanisms for the resistance to apoptosis by tumor-exposed CD34(+) cells showed increased levels of the pro-life gene product bcl-2. Finally, the resistance of tumor-exposed CD34(+) cells to ligation of the Fas receptor, a known apoptotic trigger in hematopoietic cells, was compared with that of control CD34(+) cultures. Whereas approximately half of the normal CD34(+) cells underwent apoptosis in response to Fas ligation, the tumor-exposed CD34(+) cells resisted apoptosis, even though their surface Fas expression was greater than that of normal CD34(+) cells. Thus, our results show that the increased level of CD34(+) cells in tumor bearers is due not only to an increased growth and mobilization of CD34(+) cells as previously thought, but also may be due to an increased resistance to apoptosis that is conferred by tumor-derived products and is associated with increased expression of bcl-2.
Collapse
Affiliation(s)
- M R Young
- Research Service, Hines Veterans Affairs Hospital, Hines, IL, USA
| | | | | | | |
Collapse
|
9
|
Neri LM, Borgatti P, Capitani S, Martelli AM. Nuclear diacylglycerol produced by phosphoinositide-specific phospholipase C is responsible for nuclear translocation of protein kinase C-alpha. J Biol Chem 1998; 273:29738-44. [PMID: 9792687 DOI: 10.1074/jbc.273.45.29738] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well established that an independent inositide cycle is present within the nucleus, where it is involved in the control of cell proliferation and differentiation. Previous results have shown that when Swiss 3T3 cells are treated with insulin-like growth factor-I (IGF-I) a rapid and sustained increase in mass of diacylglycerol (DAG) occurs within the nuclei, accompanied by a decrease in the levels of both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. However, it is unclear whether or not other lipids could contribute to this prolonged rise in DAG levels. We now report that the IGF-I-dependent increase in nuclear DAG production can be inhibited by the specific phosphatidylinositol phospholipase C inhibitor 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine or by neomycin sulfate but not by the purported phosphatidylcholine-phospholipase C specific inhibitor D609 or by inhibitors of phospholipase D-mediated DAG generation. Treatment of cells with 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine or neomycin sulfate inhibited translocation of protein kinase C-alpha to the nucleus. Moreover, exposure of cells to 1-O-octadeyl-2-O-methyl-sn-glycero-3-phosphocholine, but not to D609, dramatically reduced the number of cells entering S-phase upon stimulation with IGF-I. These results suggest that the only phospholipase responsible for generation of nuclear DAG after IGF-I stimulation of 3T3 cells is PI-PLC. When this activity is inhibited, neither DAG rise is seen nor PKC-alpha translocation to the nucleus occurs. Furthermore, this PI-PLC activity appears to be essential for the G0/G1 to S-phase transition.
Collapse
Affiliation(s)
- L M Neri
- Dipartimento di Morfologia ed Embriologia, Sezione di Anatomia Umana Normale, Università di Ferrara, via Fossato di Mortara 66, 44100 Ferrara, Italy
| | | | | | | |
Collapse
|