1
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024:10.1007/s12013-024-01447-x. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
O’Leary BR, Kalen AL, Pope AN, Goswami PC, Cullen JJ. Hydrogen Peroxide Mediates Pharmacological Ascorbate Induced Radio-Sensitization of Pancreatic Cancer Cells by Enhancing G2-accumulation and Reducing Cyclin B1 Protein Levels. Radiat Res 2023; 200:444-455. [PMID: 37758045 PMCID: PMC10699322 DOI: 10.1667/rade-22-00182.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/24/2023] [Indexed: 10/03/2023]
Abstract
Pharmacological ascorbate (P-AscH-, high dose, intravenous vitamin C) preferentially sensitizes human pancreas ductal adenocarcinoma (PDAC) cells to radiation-induced toxicity compared to non-tumorigenic epithelial cells. Radiation-induced G2-checkpoint activation contributes to the resistance of cancer cells to DNA damage induced toxicity. We hypothesized that P-AscH- induced radio-sensitization of PDAC cells is mediated by perturbations in the radiation induced activation of the G2-checkpoint pathway. Both non-tumorigenic pancreatic ductal epithelial and PDAC cells display decreased clonogenic survival and increased doubling times after radiation treatment. In contrast, the addition of P-AscH- to radiation increases clonogenic survival and decreases the doubling time of non-tumorigenic epithelial cells but decreasing clonogenic survival and increasing the doubling time of PDAC cells. Results from the mitotic index and propidium iodide assays showed that while the P-AscH- treatments did not affect radiation-induced G2-checkpoint activation, it enhanced G2-accumulation. The addition of catalase reverses the increases in G2-accumulation, indicating a peroxide-mediated mechanism. In addition, P-AscH- treatment of PDAC cells suppresses radiation-induced accumulation of cyclin B1 protein levels. Both translational and post-translational pathways appear to regulate cyclin B1 protein levels after the combination treatment of PDAC cells with P-AscH- and radiation. The protein changes seen are reversed by the addition of catalase suggesting that hydrogen peroxide mediates P-AscH- induced radiation sensitization of PDAC cells by enhancing G2-accumulation and reducing cyclin B1 protein levels.
Collapse
Affiliation(s)
- Brianne R. O’Leary
- Departments of Surgery and Free Radical and Radiation Biology Division, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda L. Kalen
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Amanda N. Pope
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Prabhat C. Goswami
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Joseph J. Cullen
- Departments of Surgery and Free Radical and Radiation Biology Division, The University of Iowa Carver College of Medicine, Iowa City, Iowa
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
3
|
Chen JC, Hwang JH. Caffeine Inhibits Growth of Temozolomide-Treated Glioma via Increasing Autophagy and Apoptosis but Not via Modulating Hypoxia, Angiogenesis, or Endoplasmic Reticulum Stress in Rats. Nutr Cancer 2021; 74:1090-1096. [PMID: 34060393 DOI: 10.1080/01635581.2021.1931361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thirty rats with glioma were divided into control group, temozolomide (TMZ) group (TMZ 30 mg/kg once daily for 5 day), and TMZ plus Caffeine group (TMZ 30 mg/kg once daily for 5 day and caffeine 100 mg/kg once daily for 2 weeks). The relative tumor fold and expression of hypoxia-induced factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), neuropilin-1 (NRP-1), CCAAT/enhancer-binding protein homologous protein (CHOP), LC-3A/B, apoptosis-inducing factor-1 (AIF-1), and cleaved caspase three were compared. The relative tumor fold of TMZ plus Caffeine group was lower significantly than that of TMZ group at day 14. HIF-1α, VEGF, NRP-1, and CHOP expressions were not significantly different in the three groups. The LC-3A/B expression of TMZ plus Caffeine group was higher significantly than that of the control group and TMZ group. The AIF expressions of TMZ group and TMZ plus Caffeine group were higher significantly than that of the control group. The caspase-3 expression of TMZ plus Caffeine group was higher significantly than that of the control group and TMZ group. In conclusions, the inhibitory effect of caffeine on TMZ-treated glioma might be associated with increasing expressions of autophagy- and apoptosis-related genes.
Collapse
Affiliation(s)
- Jin-Cherng Chen
- Department of Neurosurgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Juen-Haur Hwang
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Travers S, Litofsky NS. Daily Lifestyle Modifications to Improve Quality of Life and Survival in Glioblastoma: A Review. Brain Sci 2021; 11:brainsci11050533. [PMID: 33922443 PMCID: PMC8146925 DOI: 10.3390/brainsci11050533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/21/2022] Open
Abstract
Survival in glioblastoma remains poor despite advancements in standard-of-care treatment. Some patients wish to take a more active role in their cancer treatment by adopting daily lifestyle changes to improve their quality of life or overall survival. We review the available literature through PubMed and Google Scholar to identify laboratory animal studies, human studies, and ongoing clinical trials. We discuss which health habits patients adopt and which have the most promise in glioblastoma. While results of clinical trials available on these topics are limited, dietary restrictions, exercise, use of supplements and cannabis, and smoking cessation all show some benefit in the comprehensive treatment of glioblastoma. Marital status also has an impact on survival. Further clinical trials combining standard treatments with lifestyle modifications are necessary to quantify their survival advantages.
Collapse
|
5
|
Pérez-Pérez D, Reyes-Vidal I, Chávez-Cortez EG, Sotelo J, Magaña-Maldonado R. Methylxanthines: Potential Therapeutic Agents for Glioblastoma. Pharmaceuticals (Basel) 2019; 12:ph12030130. [PMID: 31500285 PMCID: PMC6789489 DOI: 10.3390/ph12030130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/24/2019] [Accepted: 09/01/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Currently, treatment is ineffective and the median overall survival is 20.9 months. The poor prognosis of GBM is a consequence of several altered signaling pathways that favor the proliferation and survival of neoplastic cells. One of these pathways is the deregulation of phosphodiesterases (PDEs). These enzymes participate in the development of GBM and may have value as therapeutic targets to treat GBM. Methylxanthines (MXTs) such as caffeine, theophylline, and theobromine are PDE inhibitors and constitute a promising therapeutic anti-cancer agent against GBM. MTXs also regulate various cell processes such as proliferation, migration, cell death, and differentiation; these processes are related to cancer progression, making MXTs potential therapeutic agents in GBM.
Collapse
Affiliation(s)
- Daniel Pérez-Pérez
- PECEM, Faculty of Medicine, National Autonomous University of México, México City 04510, Mexico
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Iannel Reyes-Vidal
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Elda Georgina Chávez-Cortez
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Julio Sotelo
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Roxana Magaña-Maldonado
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico.
| |
Collapse
|
6
|
Li N, Zhang P, Kiang KMY, Cheng YS, Leung GKK. Caffeine Sensitizes U87-MG Human Glioblastoma Cells to Temozolomide through Mitotic Catastrophe by Impeding G2 Arrest. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5364973. [PMID: 30050935 PMCID: PMC6046144 DOI: 10.1155/2018/5364973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/03/2018] [Indexed: 12/31/2022]
Abstract
Temozolomide (TMZ) is the first-line chemotherapeutic agent in the treatment of glioblastoma multiforme (GBM). Despite its cytotoxic effect, TMZ also induces cell cycle arrest that may lead to the development of chemoresistance and eventual tumor recurrence. Caffeine, a widely consumed neurostimulant, shows anticancer activities and is reported to work synergistically with cisplatin and camptothecin. The present study aimed to investigate the effects and the mechanisms of action of caffeine used in combination with TMZ in U87-MG GBM cells. As anticipated, TMZ caused DNA damage mediated by the ATM/p53/p21 signaling pathway and induced significant G2 delay. Concurrent treatment with caffeine repressed proliferation and lowered clonogenic capacity on MTT and colony formation assays, respectively. Mechanistic study showed that coadministration of caffeine and TMZ suppressed the phosphorylation of ATM and p53 and downregulated p21 expression, thus releasing DNA-damaged cells from G2 arrest into premature mitosis. Cell cycle analysis demonstrated that the proportion of cells arrested in G2 phase decreased when caffeine was administered together with TMZ; at the same time, the amount of cells with micronucleation and multipolar spindle poles increased, indicative of enhanced mitotic cell death. Pretreatment of cells with caffeine further enhanced mitotic catastrophe development in combined treatment and sensitized cells to apoptosis when followed by TMZ alone. In conclusion, our study demonstrated that caffeine enhanced the efficacy of TMZ through mitotic cell death by impeding ATM/p53/p21-mediated G2 arrest.
Collapse
Affiliation(s)
- Ning Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Pingde Zhang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Karrie Mei Yee Kiang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Yin Stephen Cheng
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Gilberto Ka Kit Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| |
Collapse
|
7
|
Chen JC, Hwang JH. Effects of caffeine on cell viability and activity of histone deacetylase 1 and histone acetyltransferase in glioma cells. Tzu Chi Med J 2016; 28:103-108. [PMID: 28757735 PMCID: PMC5442913 DOI: 10.1016/j.tcmj.2016.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The prognosis of patients with glioblastoma remains poor even after various treatments such as surgery, radiotherapy, and chemotherapy. Thus, development of new drugs is urgently needed. The mechanisms underlying the cytotoxicity of caffeine in glioma cells are not clearly understood. This study aimed to assess the activities of histone deacetylase 1 (HDAC1) and histone acetyltransferase (p300) in RT2 glioma cells treated with caffeine. MATERIALS AND METHODS Cell viability and activity of HDAC1 and p300 in RT2 glioma cells were assayed after treatment with caffeine for 48 hours. RESULTS Cell viability decreased significantly after treatment with 0.5mM, 1mM, and 2mM caffeine. HDAC1 protein activity decreased significantly with various concentrations of caffeine, whereas the activity of p300 increased significantly. In addition, the viability of RT2 cells remained high, but HDAC1 activity decreased, and p300 activity increased markedly with 0.5mM caffeine treatment. We used microRNA and small interfering RNA (siRNA) to regulate HDAC1 and p300 to further understand the impact on glioblastomas. siRNA downregulated p300 and thus increased the viability of RT2 cells, therefore, caffeine combined with siRNA abolished the efficacy of caffeine, which confirmed that caffeine upregulated p300 and reduced cell viability. We also found increased HDAC1 activity when RT2 cells were treated with a combination of caffeine and miR-449a and thus increased the viability of RT2 cells. CONCLUSION Our data suggest that a new strategy, caffeine, could increase glioma cell death by decreasing HDAC1 activity and/or by increasing p300 activity. The changes in HDAC1 and p300 activities appeared to occur earlier than loss of RT2 cells.
Collapse
Affiliation(s)
- Jin-Cherng Chen
- Department of Neurosurgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Juen-Haur Hwang
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Otolaryngology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| |
Collapse
|
8
|
Sun F, Han DF, Cao BQ, Wang B, Dong N, Jiang DH. Caffeine-induced nuclear translocation of FoxO1 triggers Bim-mediated apoptosis in human glioblastoma cells. Tumour Biol 2015; 37:3417-23. [PMID: 26449824 DOI: 10.1007/s13277-015-4180-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022] Open
Abstract
Caffeine is one of the most commonly ingested neuroactive compounds and exhibits anticancer effects through induction of apoptosis and suppression of cell proliferation. However, the mechanisms underlying these effects are currently unknown. In this study, we investigated the mechanisms of caffeine-induced apoptosis in U251 cells (human glioma cell line). We analyzed the inhibitory effects of caffeine on cell proliferation by performing WST-8 and colony formation assays; in addition, cell survival was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and flow cytometric analysis. Western blotting was used to investigate the role played by FoxO1 in the proapoptotic effects of caffeine on glioma cells. Results showed that caffeine inhibited proliferation and survival of human glioma cells, induced apoptosis, and increased the expression of FoxO1 and its proapoptotic target Bim. In addition, we found that FoxO1 enhanced the transcription of its proapoptotic target Bim. In summary, our data indicates that FoxO1-Bim mediates caffeine-induced regression of glioma growth by activating cell apoptosis, thereby providing new mechanistic insight into the possible use of caffeine in treating human cancer.
Collapse
Affiliation(s)
- Fei Sun
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Dong-Feng Han
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Bo-Qiang Cao
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Bo Wang
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - Nan Dong
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, 221009, China
| | - De-Hua Jiang
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, 221009, China.
| |
Collapse
|
9
|
Chen JC, Chan YC, Hwang JH. Effects of tetrandrine and caffeine on cell viability and expression of mammalian target of rapamycin, phosphatase and tensin homolog, histone deacetylase 1, and histone acetyltransferase in glioma cells. Tzu Chi Med J 2015. [DOI: 10.1016/j.tcmj.2015.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Chen JC, Hwang JH, Chiu WH, Chan YC. Tetrandrine and Caffeine Modulated Cell Cycle and Increased Glioma Cell Death via Caspase-Dependent and Caspase-Independent Apoptosis Pathways. Nutr Cancer 2014; 66:700-6. [DOI: 10.1080/01635581.2014.902974] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Yamamoto N, Tsuchiya H. Chemotherapy for osteosarcoma – Where does it come from? What is it? Where is it going? Expert Opin Pharmacother 2013; 14:2183-93. [DOI: 10.1517/14656566.2013.827171] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Yamamoto N, Tsuchiya H. Clinical Observations of Caffeine-Potentiated Chemotherapy. JOURNAL OF CAFFEINE RESEARCH 2011. [DOI: 10.1089/jcr.2011.0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Norio Yamamoto
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
13
|
Min SH, Goldman ID, Zhao R. Caffeine markedly sensitizes human mesothelioma cell lines to pemetrexed. Cancer Chemother Pharmacol 2007; 61:819-27. [PMID: 17594092 PMCID: PMC3885239 DOI: 10.1007/s00280-007-0539-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 05/29/2007] [Indexed: 12/14/2022]
Abstract
Pemetrexed is a new generation antifolate approved for the treatment of mesothelioma and non-small cell lung cancer. Caffeine is known to augment radiation or chemotherapeutic drug-induced cell killing. The current study addresses the impact of caffeine on the activity of pemetrexed in mesothelioma cell lines. Caffeine enhanced pemetrexed activity in all four mesothelioma cell lines tested (H2052, H2373, H28 and MSTO-211H). Caffeine sensitized H2052 cells in a dose- and schedule-dependent manner, and was associated with a markedly decreased clonogenic survival. Caffeine sensitization occurred only in cells subjected to pulse, but not continuous, exposure to pemetrexed. Similar pemetrexed sensitization was also observed with the clinically better tolerated caffeine analog, theobromine. Pemetrexed sensitization by caffeine was associated with an increase in pemetrexed-induced phosphorylation of ataxia-telangiectasia-mutated (ATM) and Chk1. These data indicate that caffeine and its analog, theobromine, may be a useful approach to enhance pemetrexed-based chemotherapy.
Collapse
Affiliation(s)
- Sang Hee Min
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
14
|
Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D, Rubin JB. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res 2007; 67:651-8. [PMID: 17234775 DOI: 10.1158/0008-5472.can-06-2762] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chemokine CXCL12 and its cognate receptor CXCR4 regulate malignant brain tumor growth and are potential chemotherapeutic targets. However, the molecular basis for CXCL12-induced tumor growth remains unclear, and the optimal approach to inhibiting CXCR4 function in cancer is unknown. To develop such a therapeutic approach, we investigated the signaling pathways critical for CXCL12 function in normal and malignant cells. We discovered that CXCL12-dependent tumor growth is dependent upon sustained inhibition of cyclic AMP (cAMP) production, and that the antitumor activity of the specific CXCR4 antagonist AMD 3465 is associated with blocking cAMP suppression. Consistent with these findings, we show that pharmacologic elevation of cAMP with the phosphodiesterase inhibitor Rolipram suppresses tumor cell growth in vitro and, upon oral administration, inhibits intracranial growth in xenograft models of malignant brain tumors with comparable efficacy to AMD 3465. These data indicate that the clinical evaluation of phosphodiesterase inhibitors in the treatment of patients with brain tumors is warranted.
Collapse
Affiliation(s)
- Lihua Yang
- Department of Pediatrics, and Neurology and Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
15
|
Deplanque G, Céraline J, Lapouge G, Dufour P, Bergerat JP, Klein-Soyer C. Conflicting effects of caffeine on apoptosis and clonogenic survival of human K1 thyroid carcinoma cell lines with different p53 status after exposure to cisplatin or UVc irradiation. Biochem Biophys Res Commun 2004; 314:1100-6. [PMID: 14751246 DOI: 10.1016/j.bbrc.2004.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Caffeine has been widely described as a chemo/radiosensitizing agent, presumably by inhibiting DNA repair, and affecting preferentially cells with an altered p53 status. We evaluated the effects of caffeine using isogenic and isophenotypic K1 cells derived from a papillary thyroid carcinoma and displaying either a wild type or a mutated p53 status. Apoptosis and clonogenic survival were examined after exposure of the cells to cisplatin or UVc irradiation. We find that at the most currently used concentration, 2mM, caffeine hinders cisplatin or UVc induced apoptosis in K1 cells. In addition, at this already barely achievable concentration in vivo, caffeine does not decrease their clonogenic survival. Hence in our cellular model, caffeine does not behave as a chemo- or a radiosensitizer. Although surprising, these results (1) are in agreement with the delayed G2/M block caused by caffeine that we previously observed in normal human fibroblasts and K1 cells and (2) allow us to elucidate some discrepancies concerning this molecule throughout the literature such as increase or decrease of apoptosis and clonogenic survival, activation or deactivation of molecules involved in DNA damage repair and proliferation inhibition but accelerated G2/M traverse.
Collapse
Affiliation(s)
- G Deplanque
- Altérations Génétiques des Cancers et Réponse Thérapeutique, UPRES-EA 3430, Laboratoire de Cancérologie Expérimentale et de Radiobiologie, Institut de Recherche contre les Cancers de l'Appareil Digestif, Hôpitaux Universitaires de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
16
|
Kim JH, You KR, Kim IH, Cho BH, Kim CY, Kim DG. Over-expression of the ribosomal protein L36a gene is associated with cellular proliferation in hepatocellular carcinoma. Hepatology 2004; 39:129-38. [PMID: 14752831 DOI: 10.1002/hep.20017] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Using messenger RNA (mRNA) differential display, we identified a single complementary DNA (cDNA) fragment (HG23T1) that was over-expressed in a hepatocellular carcinoma (HCC) specimen. We cloned the full-length HG23T1 gene by the rapid amplification of cDNA end (RACE) polymerase chain reaction (PCR) method. It perfectly matched the gene encoding human ribosomal protein L36a (RPL36A also referred to as RPL44). RPL36A mRNA was preferentially over-expressed in 34 of 40 HCC cases (85%, P <.001) and in all of 8 HCC cell lines. Ectopically over-expressed L36a ribosomal protein localized in the nucleoli of cells, and this localization seemed to be controlled by the N-terminal or the internal tetrapeptide consensus with its adjacent N-terminal domain. Over-expression of L36a led to enhanced colony formation and cell proliferation, which may have resulted from rapid cell cycling, and an antisense cDNA effectively reversed these alterations. In conclusion, RPL36A plays a role in tumor cell proliferation and may be a potential target for anticancer therapy of HCC.
Collapse
Affiliation(s)
- Jong-Hyun Kim
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Institute for Medical Science, Chonbuk National University Medical School and Hospital, Chonju, Chonbuk, South Korea
| | | | | | | | | | | |
Collapse
|
17
|
Sidhu JS, Liu F, Boyle SM, Omiecinski CJ. PI3K inhibitors reverse the suppressive actions of insulin on CYP2E1 expression by activating stress-response pathways in primary rat hepatocytes. Mol Pharmacol 2001; 59:1138-46. [PMID: 11306697 DOI: 10.1124/mol.59.5.1138] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin-associated signaling pathways are critical in the regulation of hepatic physiology. Recent inhibitor-based studies have implicated a mechanistic role for phosphatidylinositol 3' kinase (PI3K) in the insulin-mediated suppression of CYP2E1 mRNA levels in hepatocytes. We investigated the dose dependence for this response and for the effects of insulin and extracellular matrix on PI3K signaling and CYP2E1 mRNA expression levels using a highly defined rat primary hepatocyte culture system. The PI3K inhibitors wortmannin and LY294002 stimulated stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK) and p38 mitogen-activated protein kinase (MAPK) phosphorylation in a rapid and concentration-dependent manner that paralleled the inhibition of protein kinase B (PKB) phosphorylation. Although PI3K inhibitors reversed the suppressive effects of insulin on CYP2E1 expression, these effects only occurred at concentrations well in excess of those required to achieve complete inhibition of PKB phosphorylation. These same concentrations produced cytotoxic responses as evidenced by perturbed cellular morphology and elevated release of lactate dehydrogenase. Wortmannin-mediated activation of the SAPK/JNK and p38 MAPK pathways also resulted in the mobilization of activator protein-1 complex to the nuclear compartment. We conclude that the suppression of CYP2E1 mRNA expression by insulin is not directly associated with PI3K-dependent pathway activation, but rather is linked to a cytotoxic response stemming from acute challenge with PI3K inhibitors.
Collapse
Affiliation(s)
- J S Sidhu
- Department of Environmental Health, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
18
|
Scolnick DM, Halazonetis TD. Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 2000; 406:430-5. [PMID: 10935642 DOI: 10.1038/35019108] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemicals that target microtubules induce mitotic stress by affecting several processes that occur during mitosis. These processes include separation of the centrosomes in prophase, alignment of the chromosomes on the spindle in metaphase and sister-chromatid separation in anaphase. Many human cancers are sensitive to mitotic stress. This sensitivity is being exploited for therapy and implies checkpoint defects. The known mitotic checkpoint genes, which prevent entry into anaphase when the chromosomes are not properly aligned on the mitotic spindle, are, however, rarely inactivated in human cancer. Here we describe the chfr gene, which is inactivated owing to lack of expression or by mutation in four out of eight human cancer cell lines examined. Normal primary cells and tumour cell lines that express wild-type chfr exhibited delayed entry into metaphase when centrosome separation was inhibited by mitotic stress. In contrast, the tumour cell lines that had lost chfr function entered metaphase without delay. Ectopic expression of wild-type chfr restored the cell cycle delay and increased the ability of the cells to survive mitotic stress. Thus, chfr defines a checkpoint that delays entry into metaphase in response to mitotic stress.
Collapse
Affiliation(s)
- D M Scolnick
- The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA
| | | |
Collapse
|
19
|
Damiens E. Molecular events that regulate cell proliferation: an approach for the development of new anticancer drugs. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:219-33. [PMID: 10740828 DOI: 10.1007/978-1-4615-4253-7_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer chemotherapy is the object of many fundamental and clinical researches. The development in molecular techniques and structural studies at the molecular level have led to the discovery of key proteins involved in the regulation of cell proliferation. This opened perspectives to characterize new anticancer drugs in order to reduce the limitations found with conventional drugs such as the lack of selectivity for cancer cells and resistance phenomena. This review presents the anticancer drugs in clinical investigations that target molecules involved in the signal transduction impairment, the cell cycle deregulation and the differentiation with comments on their mechanisms of action.
Collapse
Affiliation(s)
- E Damiens
- Laboratoire de Chimie Biologique, UMR n(o)111 du CNRS, Villeneuve d'Ascq, France
| |
Collapse
|
20
|
Mariot P, Prevarskaya N, Roudbaraki MM, Le Bourhis X, Van Coppenolle F, Vanoverberghe K, Skryma R. Evidence of functional ryanodine receptor involved in apoptosis of prostate cancer (LNCaP) cells. Prostate 2000; 43:205-14. [PMID: 10797495 DOI: 10.1002/(sici)1097-0045(20000515)43:3<205::aid-pros6>3.0.co;2-m] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Very little is known about the functional expression and the physiological role of ryanodine receptors in nonexcitable cells, and in prostate cancer cells in particular. Nonetheless, different studies have demonstrated that calcium is a major factor involved in apoptosis. Therefore, the calcium-regulatory mechanisms, such as ryanodine-mediated calcium release, may play a substantial role in the regulation of apoptosis. METHODS We assessed the presence of such functional receptors in LNCaP prostate cancer cells, using fluorimetric measurements of intracellular calcium and expression assays of mRNA encoding ryanodine receptors. RESULTS We show here that LNCaP cells responded to caffeine, a ryanodine receptor agonist, by mobilizing calcium. Another ryanodine receptor agonist, 4-chloro-m-cresol, had a similar effect and promoted calcium release. These effects were inhibited by pretreatment with ryanodine or thapsigargin. In addition to a calcium release, caffeine was able to produce a calcium entry blocked by nickel. We used a reverse transcription-polymerase chain reaction assay to investigate the expression of ryanodine receptors in LNCaP cells. Two types of ryanodine receptor mRNAs were expressed in LNCaP cells: RyR1 and RyR2 mRNAs. Finally, we show that ryanodine receptor activation by caffeine slightly stimulates apoptosis of prostate cancer cells, and that the inhibition of these receptors by ryanodine protects the cells against apoptosis. CONCLUSIONS The combination of results showed that LNCaP cells, derived from a human prostate cancer, express functional RyRs able to mobilize Ca(2+) from intracellular stores and which might control apoptosis.
Collapse
Affiliation(s)
- P Mariot
- Laboratoire de Physiologie Cellulaire, INSERM EPI 9938, Bâtiment SN3, USTL, Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Neoplastic cell survival is governed by a balance between pro-apoptotic and anti-apoptotic signals. Noteworthy among several anti-apoptotic signaling elements is the protein kinase C (PKC) isoenzyme family, which mediates a central cytoprotective effect in the regulation of cell survival. Activation of PKC, and subsequent recruitment of numerous downstream elements such as the mitogen-activated protein kinase (MAPK) cascade, opposes initiation of the apoptotic cell death program by diverse cytotoxic stimuli. The understanding that the lethal actions of numerous antineoplastic agents are, in many instances, antagonized by cytoprotective signaling systems has been an important stimulus for the development of novel antineoplastic strategies. In this regard, inhibition of PKC, which has been shown to initiate apoptosis in a variety of malignant cell types, has recently been the focus of intense interest. Furthermore, there is accumulating evidence that selective targeting of PKC may prove useful in improving the therapeutic efficacy of established antineoplastic agents. Such chemosensitizing strategies can involve either (a) direct inhibition of PKC (e.g., following acute treatment with relatively specific inhibitors such as the synthetic sphingoid base analog safingol, or the novel staurosporine derivatives UCN-01 and CGP-41251) or (b) down-regulation (e.g., following chronic treatment with the non-tumor-promoting PKC activator bryostatin 1). In preclinical model systems, suppression of the cytoprotective function(s) of PKC potentiates the activity of cytotoxic agents (e.g., cytarabine) as well as ionizing radiation, and efforts to translate these findings into the clinical arena in humans are currently underway. Although the PKC-driven cytoprotective signaling systems affected by these treatments have not been definitively characterized, interference with PKC activity has been associated with loss of the mitogen-activated protein kinase (MAPK) response. Accordingly, recent pre-clinical studies have demonstrated that pharmacological disruption of the primary MEK-ERK module can mimic the chemopotentiating and radiopotentiating actions of PKC inhibition and/or down-regulation.
Collapse
Affiliation(s)
- W D Jarvis
- Department of Medicine, Medical College of Virginia, Richmond 23298, USA.
| | | |
Collapse
|