1
|
Smith JJ, Timoshevskaya N, Timoshevskiy VA, Keinath MC, Hardy D, Voss SR. A chromosome-scale assembly of the axolotl genome. Genome Res 2019; 29:317-324. [PMID: 30679309 PMCID: PMC6360810 DOI: 10.1101/gr.241901.118] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/26/2018] [Indexed: 01/14/2023]
Abstract
The axolotl (Ambystoma mexicanum) provides critical models for studying regeneration, evolution, and development. However, its large genome (∼32 Gb) presents a formidable barrier to genetic analyses. Recent efforts have yielded genome assemblies consisting of thousands of unordered scaffolds that resolve gene structures, but do not yet permit large-scale analyses of genome structure and function. We adapted an established mapping approach to leverage dense SNP typing information and for the first time assemble the axolotl genome into 14 chromosomes. Moreover, we used fluorescence in situ hybridization to verify the structure of these 14 scaffolds and assign each to its corresponding physical chromosome. This new assembly covers 27.3 Gb and encompasses 94% of annotated gene models on chromosomal scaffolds. We show the assembly's utility by resolving genome-wide orthologies between the axolotl and other vertebrates, identifying the footprints of historical introgression events that occurred during the development of axolotl genetic stocks, and precisely mapping several phenotypes including a large deletion underlying the cardiac mutant. This chromosome-scale assembly will greatly facilitate studies of the axolotl in biological research.
Collapse
Affiliation(s)
- Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | | | - Melissa C Keinath
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA.,Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Drew Hardy
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40506, USA.,Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky 40506, USA
| | - S Randal Voss
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40506, USA.,Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky 40506, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40506, USA
| |
Collapse
|
2
|
Dube DK, Dube S, Shrestha R, Abbott L, Randhawa S, Muthu V, Fan Y, Wang J, Sanger JM, Sanger JW, Poiesz BJ. Qualitative and quantitative evaluation of TPM transcripts and proteins in developing striated chicken muscles indicate TPM4α is the major sarcomeric cardiac tropomyosin from early embryonic life to adulthood. Cytoskeleton (Hoboken) 2018; 75:437-449. [PMID: 30255988 PMCID: PMC6279486 DOI: 10.1002/cm.21495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/13/2018] [Accepted: 07/30/2018] [Indexed: 11/09/2022]
Abstract
The chicken has been used since the 1980s as an animal model for developmental studies regarding tropomyosin isoform diversity in striated muscles, however, the pattern of expression of transcripts as well as the corresponding TPM proteins of various tropomyosin isoforms in avian hearts are not well documented. In this study, using conventional and qRT-PCR, we report the expression of transcripts for various sarcomeric TPM isoforms in striated muscles through development. Transcripts of both TPM1α and TPM1κ, the two sarcomeric isoforms of the TPM1 gene, are expressed in embryonic chicken hearts but disappear in post hatch stages. TPM1α transcripts are expressed in embryonic and adult skeletal muscle. The sarcomeric isoform of the TPM2 gene is expressed mostly in embryonic skeletal muscles. As reported earlier, TPM3α is expressed in embryonic heart and skeletal muscle but significantly lower in adult striated muscle. TPM4α transcripts are expressed from embryonic to adult chicken hearts but not in skeletal muscle. Our 2D Western blot analyses using CH1 monoclonal antibody followed by mass spectra evaluations found TPM4α protein is the major sarcomeric tropomysin expressed in embryonic chicken hearts. However, in 7-day-old embryonic hearts, a minute quantity of TPM1α or TPM1κ is also expressed. This finding suggests that sarcomeric TPM1 protein may play some important role in cardiac contractility and/or cardiac morphogenesis during embryogenesis. Since only the transcripts of TPM4α are expressed in adult chicken hearts, it is logical to presume that TPM4α is the only sarcomeric TPM protein produced in adult cardiac tissues.
Collapse
Affiliation(s)
- Dipak K Dube
- Department of Medicine, Upatate Medical University, Syracuse, New York
| | - Syamalima Dube
- Department of Medicine, Upatate Medical University, Syracuse, New York
| | - Runa Shrestha
- Department of Medicine, Upatate Medical University, Syracuse, New York
| | - Lynn Abbott
- Department of Medicine, Upatate Medical University, Syracuse, New York
| | - Samender Randhawa
- Department of Medicine, Upatate Medical University, Syracuse, New York
| | - Vasundhara Muthu
- Department of Medicine, Upatate Medical University, Syracuse, New York
| | - Yingli Fan
- Department of Cell and Developmental Biology, Upatate Medical University, Syracuse, New York
| | - Jushuo Wang
- Department of Cell and Developmental Biology, Upatate Medical University, Syracuse, New York
| | - Jean M Sanger
- Department of Cell and Developmental Biology, Upatate Medical University, Syracuse, New York
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, Upatate Medical University, Syracuse, New York
| | - Bernard J Poiesz
- Department of Medicine, Upatate Medical University, Syracuse, New York
| |
Collapse
|
3
|
Dube DK, Dube S, Abbott L, Wang J, Fan Y, Alshiekh-Nasany R, Shah KK, Rudloff AP, Poiesz BJ, Sanger JM, Sanger JW. Identification, characterization, and expression of sarcomeric tropomyosin isoforms in zebrafish. Cytoskeleton (Hoboken) 2017; 74:125-142. [PMID: 27998020 PMCID: PMC5352492 DOI: 10.1002/cm.21352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/22/2016] [Accepted: 12/13/2016] [Indexed: 01/14/2023]
Abstract
Tropomyosin is a component of thin filaments that constitute myofibrils, the contractile apparatus of striated muscles. In vertebrates, except for fish, four TPM genes TPM1, TPM2, TPM3, and TPM4 are known. In zebrafish, there are six TPM genes that include the paralogs of the TPM1 (TPM1-1 and TPM1-2), the paralogs of the TPM4 gene (TPM4-1 and TPM4-2), and the two single copy genes TPM2 and TPM3. In this study, we have identified, cloned, and sequenced the TPM1-1κ isoform of the TPM1-1 gene and also discovered a new isoform TPM1-2ν of the TPM1-2. Further, we have cloned and sequenced the sarcomeric isoform of the TPM4-2 gene designated as TPM4-2α. Using conventional RT-PCR, we have shown the expression of the sarcomeric isoforms of TPM1-1, TPM1-2, TPM2, TPM3, TPM4-1, and TPM4-2 in heart and skeletal muscles. By qRT-PCR using both relative expression as well as the absolute copy number, we have shown that TPM1-1α, TPM1-2α, and TPM1-2ν are expressed mostly in skeletal muscle; the level of expression of TPM1-1κ is significantly lower compared to TPM1-1α in skeletal muscle. In addition, both TPM4-1α and TPM4-2α are predominantly expressed in heart. 2D Western blot analyses using anti-TPM antibody followed by Mass Spectrometry of the proteins from the antibody-stained spots show that TPM1-1α and TPM3α are expressed in skeletal muscle whereas TPM4-1α and TPM3α are expressed in zebrafish heart. To the best of our knowledge, this is by far the most comprehensive analysis of tropomyosin expression in zebrafish, one of the most popular animal models for gene expression study.
Collapse
Affiliation(s)
- Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Lynn Abbott
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Ruham Alshiekh-Nasany
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Kalpesh K Shah
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Alexander P Rudloff
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Bernard J Poiesz
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, New York, 13210
| |
Collapse
|
4
|
Dube DK, McLean MD, Dube S, Poiesz BJ. Translational control of tropomyosin expression in vertebrate hearts. Anat Rec (Hoboken) 2015; 297:1585-95. [PMID: 25125172 DOI: 10.1002/ar.22978] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/22/2013] [Indexed: 01/23/2023]
Abstract
The tropomyosin (TM) gene family produces a set of related TM proteins with important functions in striated and smooth muscle, and nonmuscle cells. In vertebrate striated muscle, the thin filament consists largely of actin, TM, the troponin (Tn) complex (Tn-I, Tn-C and Tn-T), and tropomodulin (Tmod) and is responsible for mediating Ca(2+) control of muscle contraction and relaxation. There are four known genes (designated as TPM1, TPM2, TPM3, and TPM4) for TM in vertebrates. The four TM genes generate a multitude of tissue- and developmental-specific isoforms through the use of different promoters, alternative mRNA splicing, different 3'-end mRNA processing and tissue-specific translational control. In this review, we have focused mainly on the regulation of TM expression in striated muscles, primarily in vertebrate hearts with special emphasis on translational control using mouse and Mexican axolotl animal models.
Collapse
Affiliation(s)
- Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | | | | | | |
Collapse
|
5
|
Expression of sarcomeric tropomyosin in striated muscles in axolotl treated with shz-1, a small cardiogenic molecule. Cardiovasc Toxicol 2014; 15:29-40. [PMID: 24958154 DOI: 10.1007/s12012-014-9265-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We evaluated the effect of shz-1, a cardiogenic molecule, on the expression of various tropomyosin (TM) isoforms in the Mexican axolotl (Ambystoma mexicanum) hearts. qRT-PCR data show a ~1.5-fold increase in cardiac transcripts of the Nkx2.5 gene, which plays a crucial role in cardiogenesis in vertebrates. Shz-1 augments the expression of transcripts of the total sarcomeric TPM1 (both TPM1α & TPM1κ) and sarcomeric TPM4α. In order to understand the mechanism by which shz-1 augments the expression of sarcomeric TPM transcription in axolotl hearts, we transfected C2C12 cells with pGL3.axolotl. We transfected C2C12 cells with pGL3-axolotl TPM4 promoter constructs containing the firefly luciferase reporter gene. The transfected C2C12 cells were grown in the absence or presence of shz-1 (5 μM). Subsequently, we determined the firefly luciferase activity in the extracts of transfected cells. The results suggest that shz-1 activates the axolotl TPM4 promoter-driven ectopic expression in C2C12 cells. Also, we transfected C2C12 cells with a pGL3.1 vector containing the promoter of the mouse skeletal muscle troponin-I and observed a similar increase in the luciferase activity in shz-1-treated cells. We conclude that shz-1 activates the promoters of a variety of genes including axolotl TPM4. We have quantified the expression of the total sarcomeric TPM1 and observed a 1.5-fold increase in treated cells. Western blot analyses with CH1 monoclonal antibody specific for sarcomeric isoforms show that shz-1 does not increase the expression of TM protein in axolotl hearts, whereas it does in C2C12 cells. These findings support our hypothesis that cardiac TM expression in axolotl undergoes translational control.
Collapse
|
6
|
McKeown CR, Nowak RB, Gokhin DS, Fowler VM. Tropomyosin is required for cardiac morphogenesis, myofibril assembly, and formation of adherens junctions in the developing mouse embryo. Dev Dyn 2014; 243:800-17. [PMID: 24500875 DOI: 10.1002/dvdy.24115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We explored a function for tropomyosin (TM) in mammalian myofibril assembly and cardiac development by analyzing a deletion in the mouse TPM1 gene targeting αTM1, the major striated muscle TM isoform. RESULTS Mice lacking αTM1 are embryonic lethal at E9.5 with enlarged, misshapen, and non-beating hearts characterized by an abnormally thin myocardium and reduced trabeculae. αTM1-deficient cardiomyocytes do not assemble striated myofibrils, instead displaying aberrant non-striated F-actin fibrils with α-actinin puncta dispersed irregularly along their lengths. αTM1's binding partner, tropomodulin1 (Tmod1), is also disorganized, and both myomesin-containing thick filaments as well as titin Z1Z2 fail to assemble in a striated pattern. Adherens junctions are reduced in size in αTM1-deficient cardiomyocytes, α-actinin/F-actin adherens belts fail to assemble at apical cell-cell contacts, and cell contours are highly irregular, resulting in abnormal cell shapes and a highly folded cardiac surface. In addition, Tmod1-deficient cardiomyocytes exhibit failure of α-actinin/F-actin adherens belt assembly. CONCLUSIONS Absence of αTM1 resulting in unstable F-actin may preclude sarcomere formation and/or lead to degeneration of partially assembled sarcomeres due to unregulated actomyosin interactions. Our data also identify a novel αTM1/Tmod1-based pathway stabilizing F-actin at cell-cell junctions, which may be required for maintenance of cell shapes during embryonic cardiac morphogenesis.
Collapse
Affiliation(s)
- Caroline R McKeown
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | |
Collapse
|
7
|
Zajdel RW, McLean MD, Dube S, Dube DK. Expression of tropomyosin in relation to myofibrillogenesis in axolotl hearts. Regen Med Res 2013; 1:8. [PMID: 25984327 PMCID: PMC4431041 DOI: 10.1186/2050-490x-1-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/08/2013] [Indexed: 11/25/2022] Open
Abstract
The anatomy, function and embryonic development of the heart have been of interest to clinicians and researchers alike for centuries. A beating heart is one of the key criteria in defining life or death in humans. An understanding of the multitude of genetic and functional elements that interplay to form such a complex organ is slowly evolving with new genetic, molecular and experimental techniques. Despite the need for ever more complex molecular techniques some of our biggest leaps in knowledge come from nature itself through observations of mutations that create natural defects in function. Such a natural mutation is found in the Mexican axolotl, Ambystoma mexicanum. It is a facultative neotenous salamander well studied for its ability to regenerate severed limbs and tail. Interestingly it also well suited to studying segmental heart development and differential sarcomere protein expression due to a naturally occurring mendelian recessive mutation in cardiac mutant gene “c”. The resultant mutants are identified by their failure to beat and can be studied for extended periods before they finally die due to lack of circulation. Studies have shown a differential expression of tropomyosin between the conus and the ventricle indicating two different cardiac segments. Tropomyosin protein, but not its transcript have been found to be deficient in mutant ventricles and sarcomere formation can be rescued by the addition of TM protein or cDNA. Although once thought to be due to endoderm induction our findings indicate a translational regulatory mechanism that may ultimately control the level of tropomyosin protein in axolotl hearts.
Collapse
Affiliation(s)
- Robert W Zajdel
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
| | - Matthew D McLean
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
| | - Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA ; Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
| |
Collapse
|
8
|
Thurston HL, Prayaga S, Thomas A, Guharoy V, Dube S, Poiesz BJ, Dube DK. Expression of Nkx2.5 in Wild Type, Cardiac Mutant, and Thyroxine-Induced Metamorphosed Hearts of the Mexican Axolotl. Cardiovasc Toxicol 2009; 9:13-20. [DOI: 10.1007/s12012-009-9030-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
|
9
|
Zajdel RW, Thurston H, Prayaga S, Dube S, Poiesz BJ, Dube DK. A reduction of tropomyosin limits development of sarcomeric structures in cardiac mutant hearts of the Mexican axolotl. Cardiovasc Toxicol 2007; 7:235-46. [PMID: 17990128 DOI: 10.1007/s12012-007-9000-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 08/15/2007] [Indexed: 12/01/2022]
Abstract
The cardiac lethal mutation in Mexican axolotl (Ambystoma mexicanum) results in a lack of contractions in the ventricle of mutant embryos. Previous studies have demonstrated that tropomyosin, a component of thin filaments, is greatly reduced in mutant hearts lacking myofibril organization. Confocal microscopy was used to examine the structure and comparative amount of tropomyosin at heartbeat initiation and at a later stage. The formation of functional sarcomeres coincided with contractions in normal hearts at stage 35. A-bands and I-bands were formed at stage 35 and did not change at stage 39. The widening of Z-bodies into z-lines was the main developmental difference between stage 35 and 39 normal hearts. Relative to normal hearts, a reduction of sarcomeric protein levels in mutant hearts at stage 35 was found, and a greater reduction occurred at later stages. The lower level of tropomyosin limited the areas where organized myofibrils formed in the mutant. The areas that had tropomyosin staining also had staining for alpha-actinin and myosin. Early myofibrils formed in these areas but the A-bands and I-bands were shorter than normal. At a later stage in the mutant, A-bands and I-bands remained shorter and importantly the Z-bodies also did not form wider z-lines.
Collapse
Affiliation(s)
- Robert W Zajdel
- Department of Cell and Developmental Biology, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
10
|
Zhang C, Meng F, Huang XP, Zajdel R, Lemanski SL, Foster D, Erginel-Unaltuna N, Dube DK, Lemanski LF. Downregulation of N1 gene expression inhibits the initial heartbeating and heart development in axolotls. Tissue Cell 2004; 36:71-81. [PMID: 14729455 DOI: 10.1016/j.tice.2003.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recessive mutant gene c in the axolotl results in a failure of affected embryos to develop contracting hearts. This abnormality can be corrected by treating the mutant heart with RNA isolated from normal anterior endoderm or from endoderm conditioned medium. A cDNA library was constructed from the total conditioned medium RNA using a random priming technique in a pcDNAII vector. We have previously identified a clone (designated as N1) from the constructed axolotl cDNA library, which has a unique nucleotide sequence. We have also discovered that the N1 gene product is related to heart development in the Mexican axolotl [Cell Mol. Biol. Res. 41 (1995) 117]. In the present studies, we further investigate the role of N1 on heartbeating and heart development in axolotls. N1 mRNA expression has been determined by using semi-quantitative RT-PCR with specifically designed primers. Normal embryonic hearts (at stages 30-31) have been transfected with anti-sense oligonucleotides against N1 to determine if downregulation of N1 gene expression has any effect on normal heart development. Our results show that cardiac N1 mRNA expression is partially blocked in the hearts transfected with anti-sense nucleotides and the downregulation of N1 gene expression results in a decrease of heartbeating in normal embryos, although the hearts remain alive as indicated by calcium spike movement throughout the hearts. Confocal microscopy data indicate some myofibril disorganization in the hearts transfected with the anti-sense N1 oligonucleotides. Interestingly, we also find that N1 gene expression is significantly decreased in the mutant axolotl hearts. Our results suggest that N1 is a novel gene in Mexican axolotls and it probably plays an important role in myofibrillogenesis and in the initiation of heartbeating during heart development.
Collapse
Affiliation(s)
- C Zhang
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wakimoto K, Fujimura H, Iwamoto T, Oka T, Kobayashi K, Kita S, Kudoh S, Kuro-o M, Nabeshima YI, Shigekawa M, Imai Y, Komuro I. Na+/Ca2+ exchanger-deficient mice have disorganized myofibrils and swollen mitochondria in cardiomyocytes. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:9-15. [PMID: 12781968 DOI: 10.1016/s1096-4959(03)00057-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Na(+)/Ca(2+) exchanger (NCX1) plays a key role in maintaining Ca(2+) homeostasis in cardiomyocytes. Disruption of Ncx1 gene in mice results in embryonic lethality between embryonic day 9 and 10, with the mice lacking spontaneous heartbeats. We examined the mechanism of lack of heartbeats in Ncx1-deficient mice. Ultrastructual analysis demonstrated that Ncx1-deficient mice showed severe disorganization of myofibrils, a lack of Z-lines and swelling of mitochondria in cardiomyocytes. However, the expressions of cardiac-specific genes including transcription factor genes and contractile protein genes were not changed in Ncx1-deficient mice. Abnormal Ca(2+) handling itself or the lack of heartbeats due to the inactivation of Ncx1 gene may cause the disorganization of myofibrillogenesis. Although NCX1 protein levels were decreased in heterozygous mice, there were no changes in NCX2 and NCX3 protein levels between wild type and heterozygous mice.
Collapse
Affiliation(s)
- Koji Wakimoto
- Discovery Research Laboratory, Tanabe Seiyaku Co., Ltd, 3-16-89 Kashima, Yodogawa-ku, Osaka 532-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Koushik SV, Wang J, Rogers R, Moskophidis D, Lambert NA, Creazzo TL, Conway SJ. Targeted inactivation of the sodium-calcium exchanger (Ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization. FASEB J 2001; 15:1209-11. [PMID: 11344090 DOI: 10.1096/fj.00-0696fje] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S V Koushik
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912-2640, USA
| | | | | | | | | | | | | |
Collapse
|