1
|
Zhou D, Li X, Zhao H, Sun B, Liu A, Han X, Cui Z, Yuan L. Combining multi-dimensional data to identify a key signature (gene and miRNA) of cisplatin-resistant gastric cancer. J Cell Biochem 2018; 119:6997-7008. [PMID: 29693274 DOI: 10.1002/jcb.26908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is one of the most lethal malignant tumors; the resistance of this type of tumor is the main source of GC treatment failure. In this study, we used bioinformatics analysis to verify differences in resistant GCs and identify an effective method for reversing drug resistance in GC. Microarray data [gene and microRNA (miRNA)] were analyzed using GEO2R software, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were applied to further enrich the genetic data. miRNA-gene interactions were determined using Cytoscape (v.3.5.1). Online software was used to analyze protein interactions and predict network structure. The Cancer Genome Atlas (TCGA) database was used to verify the expression levels of genes in GC resistance. miR-604 expression levels were verified by real-time PCR in GC cell lines. We screened 3981 GC resistance-associated genes and 244 miRNAs using bioinformatics methods. Six hub genes were identified and verified in the TCGA database, including five up-regulated genes, POLR2L, POLR2C, POLR2F, APRT, and LMAN2, and a down-regulated gene, NFKB2. The up-regulated genes POLR2L, POLR2C, APRT, and LMAN2 interact with miR-604; therefore, we focused on miR-604, which has low expression in drug-resistant GC. The results of this study indicate that through bioinformatics technologies, we have determined the hub genes and hub miRNAs related to drug resistance in GC. Among them, miR-604 could become a new indicator in the diagnosis of drug-resistant GC and may be used to investigate the pathogenesis of resistance in GC.
Collapse
Affiliation(s)
- Danyang Zhou
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, P. R. China
| | - Xing Li
- Department of Nephrology, Daqing People Hospital, Daqing, P. R. China
| | - Hengyu Zhao
- Daqing Oilfield General Hospital, Daqing, P. R. China
| | - Banghao Sun
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, P. R. China
| | - Anqi Liu
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, P. R. China
| | - Xue Han
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, P. R. China
| | - Zhongqi Cui
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, P. R. China
| | - Lijie Yuan
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, P. R. China
| |
Collapse
|
2
|
Abstract
The vacuolar ATPases (V-ATPases) are a family of proton pumps that couple ATP hydrolysis to proton transport into intracellular compartments and across the plasma membrane. They function in a wide array of normal cellular processes, including membrane traffic, protein processing and degradation, and the coupled transport of small molecules, as well as such physiological processes as urinary acidification and bone resorption. The V-ATPases have also been implicated in a number of disease processes, including viral infection, renal disease, and bone resorption defects. This review is focused on the growing evidence for the important role of V-ATPases in cancer. This includes functions in cellular signaling (particularly Wnt, Notch, and mTOR signaling), cancer cell survival in the highly acidic environment of tumors, aiding the development of drug resistance, as well as crucial roles in tumor cell invasion, migration, and metastasis. Of greatest excitement is evidence that at least some tumors express isoforms of V-ATPase subunits whose disruption is not lethal, leading to the possibility of developing anti-cancer therapeutics that selectively target V-ATPases that function in cancer cells.
Collapse
Affiliation(s)
- Laura Stransky
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Program in Cellular and Molecular Physiology, Program in Biochemistry, and Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Kristina Cotter
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Program in Cellular and Molecular Physiology, Program in Biochemistry, and Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Michael Forgac
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Program in Cellular and Molecular Physiology, Program in Biochemistry, and Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
3
|
Ikeda H, Shikata Y, Watanapokasin R, Tashiro E, Imoto M. Metacycloprodigiosin induced cell death selectively in β-catenin-mutated tumor cells. J Antibiot (Tokyo) 2016; 70:109-112. [PMID: 27328865 DOI: 10.1038/ja.2016.75] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Hiroaki Ikeda
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Yuki Shikata
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Ramida Watanapokasin
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Etsu Tashiro
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
4
|
Yu X, Lin J, Yu Q, Kawai T, Taubman MA, Han X. Activation of Toll‐like receptor 9 inhibits lipopolysaccharide‐induced receptor activator of nuclear factor kappa‐ B ligand expression in rat B lymphocytes. Microbiol Immunol 2014; 58:51-60. [PMID: 24661200 DOI: 10.1111/1348-0421.12129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
B lymphocytes express multiple TLRs that regulate their cytokine production.We investigated the effect of TLR4 and TLR9 activation on receptor activator of NF‐kB ligand (RANKL) expression by rat spleen B cells. Splenocytes or purified spleen B cells from Rowett rats were cultured with TLR4 ligand Escherichia coli LPS and/or TLR9 ligand CpG‐oligodeoxynucleotide (CpG‐ODN) for 2 days. RANKL mRNA expression and the percentage of RANKL‐positive B cells were increased in rat splenocytes challenged by E. coli LPS alone. The increases were less pronounced when cells were treated with both CpG‐ODN and E. coli LPS. Microarray analysis showed that expressions of multiple cyclin‐dependent kinase (CDK) pathway‐related genes were up‐regulated only in cells treated with both E. coli LPS and CpG-ODN. This study suggests that CpG‐ODN inhibits LPS‐induced RANKL expression in rat B cells via regulation of the CDK pathway.
Collapse
|
5
|
Caboni P, Tronci L, Liori B, Tocco G, Sasanelli N, Diana A. Tulipaline A: structure-activity aspects as a nematicide and V-ATPase inhibitor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 112:33-39. [PMID: 24974115 DOI: 10.1016/j.pestbp.2014.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Carbonyl groups are known to form covalent adducts with endogenous proteins, but so far, their nematicidal mechanism of action of has been overlooked. The nematicidal activity of ten lactones was tested in vitro against the root knot nematodes Meloidogyne incognita and Meloidogynearenaria. In particular, the saturated lactones α-methylene-γ-butyrolactone or tulipaline A (1) and γ-butyrolactone (3) were active against M. incognita with an EC50/48h of 19.3±10.0 and 40.0±16.2mg/L respectively. Moreover the α, β-unsaturated lactone 5,6-dihydro-2H-pyran-2-one (2) exhibited the strongest nematicidal activity against the two species with EC50/48h 14.5±5.3 and 21.2±9.7mg/L respectively. Here we propose that the toxic effects of lactones and aldehydes on M.incognita and M. arenaria might be a consequence of their vacuolar-type H(+)-ATPase (V-ATPase) inhibition activity; in fact α-methylene-γ-butyrolactone (1) and salicylaldehyde (12) produced an increased pH in lysosomal-like organelles on HeLa human cell line and this alteration was most likely related to a V-ATPase impairment.
Collapse
Affiliation(s)
- Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy.
| | - Laura Tronci
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Barbara Liori
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Nicola Sasanelli
- Institute for Plant Protection, C.N.R., via G. Amendola 122/D, 70126 Bari, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
6
|
Kazami S, Muroi M, Kawatani M, Kubota T, Usui T, Kobayashi J, Osada H. Iejimalides Show Anti-Osteoclast ActivityviaV-ATPase Inhibition. Biosci Biotechnol Biochem 2014; 70:1364-70. [PMID: 16794315 DOI: 10.1271/bbb.50644] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Iejimalides (IEJLs), 24-membered macrolides, are potent antitumor compounds, but their molecular targets remain to be revealed. In the course of screening, we identified IEJLs as potent osteoclast inhibitors. Since it is known that osteoclasts are sensitive to vacuolar H(+)-ATPase (V-ATPase) inhibitor, we investigated the effect of IEJLs on V-ATPases. IEJLs inhibited the V-ATPases of both mammalian and yeast cells in situ, and of yeast V-ATPases in vitro. A bafilomycin-resistant yeast mutant conferred IEJL resistance, suggesting that IEJLs bind a site similar to the bafilomycins/concanamycins-binding site. These results indicate that IEJLs are novel V-ATPase inhibitors, and that antitumor and antiosteporotic activities are exerted via V-ATPase inhibition.
Collapse
Affiliation(s)
- Sayaka Kazami
- Antibiotics Laboratory, RIKEN Discovery Research Institute, Hirosawa, Saitama
| | | | | | | | | | | | | |
Collapse
|
7
|
Yu X, Lin J, Yu Q, Kawai T, Taubman MA, Han X. Activation of Toll-like receptor 9 inhibits lipopolysaccharide-induced receptor activator of nuclear factor kappa- B ligand expression in rat B lymphocytes. Microbiol Immunol 2014. [DOI: 10.1111/1348-0421.12115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoqian Yu
- Department of Immunology and Infectious Diseases; The Forsyth Institute; 245 First Street Cambridge Massachusetts 02142 USA
- Department of Periodontology; Peking University School and Hospital of Stomatology; 22 Zhong-Guan-Cun South Avenue Beijing 100081
| | - Jiang Lin
- Department of Immunology and Infectious Diseases; The Forsyth Institute; 245 First Street Cambridge Massachusetts 02142 USA
- Department of Stomatology; Fourth Hospital of Harbin Medical University; 37 Yinhang Street Harbin 150001 China
| | - Qing Yu
- Department of Immunology and Infectious Diseases; The Forsyth Institute; 245 First Street Cambridge Massachusetts 02142 USA
| | - Toshihisa Kawai
- Department of Immunology and Infectious Diseases; The Forsyth Institute; 245 First Street Cambridge Massachusetts 02142 USA
| | - Martin A. Taubman
- Department of Immunology and Infectious Diseases; The Forsyth Institute; 245 First Street Cambridge Massachusetts 02142 USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases; The Forsyth Institute; 245 First Street Cambridge Massachusetts 02142 USA
| |
Collapse
|
8
|
Dornetshuber-Fleiss R, Heffeter P, Mohr T, Hazemi P, Kryeziu K, Seger C, Berger W, Lemmens-Gruber R. Destruxins: fungal-derived cyclohexadepsipeptides with multifaceted anticancer and antiangiogenic activities. Biochem Pharmacol 2013; 86:361-77. [PMID: 23747344 DOI: 10.1016/j.bcp.2013.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 12/20/2022]
Abstract
Destruxins (Dtx) are secondary metabolites of the entomopathogenic fungus Metarhizium anisopliae. Recently, Dtx came into focus of interest as anticancer therapeutics. However, data on human and especially on cancer cells are fragmentary. In order to successfully establish novel anticancer therapeutics, a broad knowledge on the cellular and molecular mechanisms underlying their activity is essential. Consequently, this study aimed to investigate the impact of the most common Dtx derivatives A, B and E on human cancer cell growth and survival with a focus on colon cancer cell models. Summarizing, the experimental data showed that (i) Dtx A and B exert potent antiproliferative activity in the micromolar and Dtx E in the nanomolar range in KB-3-1, A549, CaCo-2, and especially in HCT116 colon cancer cells, (ii) all three Dtx derivatives cause imbalance of cell cycle distribution, (iii) their cytostatic/cytotoxic effects are widely p53-independent but reduced by p21- and bax-deletion, respectively, (iv) cytotoxicity is based on intrinsic apoptosis induction and associated with phosphoinositide-3-kinase (PI3K)/Akt pathway inhibition, (v) anticancer activity of Dtx E but not Dtx A and B involves disturbance of the intracellular redox balance, (vi) Dtx inhibit the migration and tube formation of human endothelial cells indicating antiangiogenic potential, and (vii) all three Dtx derivatives possess ionophoric properties not differing in conductivity, ion selectivity and single channel kinetics. Thus, Dtx represent feasible, multifunctional anticancer drug candidates for preclinical development especially against colorectal cancer.
Collapse
Affiliation(s)
- R Dornetshuber-Fleiss
- Department of Pharmacology and Toxicology, University of Vienna, Althanstr. 14, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Chinen T, Kazami S, Nagumo Y, Hayakawa I, Ikedo A, Takagi M, Yokosuka A, Imamoto N, Mimaki Y, Kigoshi H, Osada H, Usui T. Glaziovianin A prevents endosome maturation via inhibiting microtubule dynamics. ACS Chem Biol 2013; 8:884-9. [PMID: 23406355 DOI: 10.1021/cb300641h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glaziovianin A, an isoflavone isolated from the leaves of Ateleia glazioviana, inhibits the cell cycle progression in M-phase with an abnormal spindle structure, but its inhibitory mechanism has not been revealed. Here, we report that glaziovianin A and its derivatives are microtubule dynamics inhibitors. Glaziovianin A extended the time lag of tubulin polymerization without changing the net amount of polymerized tubulin in vitro and suppressed microtubule dynamics in cells. Furthermore, glaziovianin A inhibited the transport of endosomes containing EGF-stimulated EGFR and prolonged the EGFR activation. Consistent with the prolonged activation of EGFR, glaziovianin A enhanced the EGF-dependent apoptosis in A431 cells. These results strongly suggested that microtubule dynamics is important for endosome transport and maturation, and that glaziovianin A shows cytotoxicity by two pathways, the mitotic arrest and inadequate activation of receptor kinases via the inhibition of endosome maturation.
Collapse
Affiliation(s)
- Takumi Chinen
- Faculty of Life and
Environmental
Sciences, University of Tsukuba, Tennodai,
Tsukuba 305-8572, Japan
| | - Sayaka Kazami
- Chemical Biology Department, RIKEN Advanced Science Institute, Wako, Saitama 351-0198,
Japan
| | - Yoko Nagumo
- Faculty of Life and
Environmental
Sciences, University of Tsukuba, Tennodai,
Tsukuba 305-8572, Japan
| | - Ichiro Hayakawa
- Department of Chemistry,
Faculty
of Pure and Applied Sciences, University of Tsukuba, Tennodai, Tsukuba 305-8571, Japan
| | - Akiyuki Ikedo
- Department of Chemistry,
Faculty
of Pure and Applied Sciences, University of Tsukuba, Tennodai, Tsukuba 305-8571, Japan
| | - Masatoshi Takagi
- Cellular Dynamics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198,
Japan
| | - Akihito Yokosuka
- Department of Medicinal
Pharmacognosy,
School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392,
Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198,
Japan
| | - Yoshihiro Mimaki
- Department of Medicinal
Pharmacognosy,
School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392,
Japan
| | - Hideo Kigoshi
- Department of Chemistry,
Faculty
of Pure and Applied Sciences, University of Tsukuba, Tennodai, Tsukuba 305-8571, Japan
| | - Hiroyuki Osada
- Chemical Biology Department, RIKEN Advanced Science Institute, Wako, Saitama 351-0198,
Japan
| | - Takeo Usui
- Faculty of Life and
Environmental
Sciences, University of Tsukuba, Tennodai,
Tsukuba 305-8572, Japan
- Chemical Biology Department, RIKEN Advanced Science Institute, Wako, Saitama 351-0198,
Japan
| |
Collapse
|
10
|
Kimura T, Kanagaki S, Matsui Y, Imoto M, Watanabe T, Shibasaki M. Synthesis and assignment of the absolute configuration of indenotryptoline bisindole alkaloid BE-54017. Org Lett 2012; 14:4418-21. [PMID: 22917065 DOI: 10.1021/ol3019314] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthesis of the indenotryptoline bisindole alkaloid, BE-54017, was accomplished using osmium-promoted cis-dihydroxylation of maleimide as a key step. After optical resolution, the absolute configuration of this molecule was determined by comparing its optical rotation and HPLC profile to those obtained for BE-54017 derived from enantiopure cladoniamide A, whose stereochemistry has been reported previously. BE-54017 with the correct absolute stereochemistry induced apoptosis of epidermal growth factor (EGF)-stimulated EGF receptor overexpressing A431 cells and inhibited vacuolar-type H(+)-ATPase (V-ATPase).
Collapse
Affiliation(s)
- Tomoyuki Kimura
- Institute of Microbial Chemistry, Tokyo, 3-14-23 Kamiosaki, Tokyo 141-0021, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Potential for modulation of the fas apoptotic pathway by epidermal growth factor in sarcomas. Sarcoma 2011; 2011:847409. [PMID: 22135505 PMCID: PMC3206362 DOI: 10.1155/2011/847409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 11/18/2022] Open
Abstract
One important mechanism by which cancer cells parasitize their host is by escaping apoptosis. Thus, selectively facilitating apoptosis is a therapeutic mechanism by which oncotherapy may prove highly advantageous. One major apoptotic pathway is mediated by Fas ligand (FasL). The death-inducing signaling Ccmplex (DISC) and subsequent death-domain aggregations are created when FasL is bound by its receptor thereby enabling programmed cell death. Conceptually, if a better understanding of the Fas pathway can be garnered, an oncoselective prodeath therapeutic approach can be tailored. Herein, we propose that EGF and CTGF play essential roles in the regulation of the Fas apoptotic pathway in sarcomas. Tumor and in vitro data suggest viable cells counter the prodeath signal induced by FasL by activating EGF, which in turn induces prosurvival CTGF. The prosurvival attributes of CTGF ultimately predominate over the death-inducing FasL. Cells destined for elimination inhibit this prosurvival response via a presently undefined pathway. This scenario represents a novel role for EGF and CTGF as regulators of the Fas pathway in sarcomas.
Collapse
|
12
|
Liu BL, Tzeng YM. Development and applications of destruxins: a review. Biotechnol Adv 2011; 30:1242-54. [PMID: 22079799 DOI: 10.1016/j.biotechadv.2011.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/24/2011] [Accepted: 10/24/2011] [Indexed: 01/13/2023]
Abstract
The insecticidal and phytotoxic activities of destruxins (dtxs) have been well studied. The cyclodepsipeptides, which are dtxs mainly isolated from the fungus Metarhizium anisopliae and other fungi, have been well characterized in vitro and in vivo. A succession of important function, such as antitumoral, antiviral, insecticidal, cytotoxic, immunosuppressant, phytotoxic, and antiproliferative effects have been observed. To date, 39 dtxs derivatives have been identified. Dtxs possess a variety of biological activities, including acting as virulence factors for specific insects, a V-ATPase inhibitor that provides a basis for the development of new drug to against osteoporosis, cancer, or biological control agents, etc. Here, we focus on some of the research progress made on understanding dtxs during the last decade, introduce some of the newly identified dtx members, especially from M. anisopliae, and give an overview of the applications of dtxs. Using the dtxs to learn about and moderate biological events has advanced significantly during the past year. We believe that several ongoing dtx application fields may benefit from the reviewed information herein.
Collapse
Affiliation(s)
- Bing-Lan Liu
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung 41349, Taiwan
| | | |
Collapse
|
13
|
Wieloch W, Boguś MI, Ligęza M, Koszela-Piotrowska I, Szewczyk A. Coronatin-1 isolated from entomopathogenic fungus Conidiobolus coronatus kills Galleria mellonella hemocytes in vitro and forms potassium channels in planar lipid membrane. Toxicon 2011; 58:369-79. [PMID: 21798278 DOI: 10.1016/j.toxicon.2011.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/05/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
Entomopathogenic fungi are important natural regulatory factors of insect populations and have potential as biological control agents of insect pests. The cosmopolitan soil fungus Conidiobolus coronatus (Entomopthorales) easily attacks Galleria mellonella (Lepidoptera) larvae. Prompt death of invaded insects is attributed to the action of toxic metabolites released by the invader. Effect of fungal metabolites on hemocytes, insect blood cells involved in innate defense response, remains underexplored to date. C. coronatus isolate 3491 inducing 100% mortality of G. mellonella last instar larvae exposed to sporulating colonies, was cultivated at 20 °C in minimal medium. Post-incubation filtrates were used as a source of fungal metabolites. A two-step HPLC (1 step: Shodex KW-803 column eluted with 50 mM KH(2)PO(4) supplemented with 0.1 M KCl, pH 6.5; 2 step: ProteinPak™ CM 8HR column equilibrated with 5 mM KH(2)PO(4), pH 6.5, proteins eluted with a linear gradient of 0.5 M KCl) allowed the isolation of coronatin-1, an insecticidal 36 kDa protein showing both elastolytic and chitinolytic activities. Addition of coronatin-1 into primary in vitro cultures of G. mellonella hemocytes resulted in rapid disintegration of spherulocytes freely floating in culture medium and shrinkage of plasmatocytes adhering to the bottom of culture well. Coronatin-1 stimulated pseudopodia atrophy and, in consequence, disintegration of nets formed by cultured hemocytes. After incorporation of coronatin-1 into planar lipid membrane (PLM) ion channels selective for K(+) ions in 50/450 mM KCl solutions were observed. Potassium current flows were recorded in nearly 70% of experiments with conductance from 300 pS up to 1 nS. All observed channels were active at both positive and negative membrane potentials. Under experimental conditions incorporated coronatin-1 exhibited a zero current potential (E(rev)) of 47.7 mV, which indicates K(+)-selectivity of this protein. The success of the purification of coronatin-1 will allow further characterization of the mode of action of this molecule, including ability of coronatin-1 to form potassium channels in immunocompetent hemocytes.
Collapse
Affiliation(s)
- Wioletta Wieloch
- Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
| | | | | | | | | |
Collapse
|
14
|
Trang SH, Joyner DE, Damron TA, Aboulafia AJ, Randall RL. Potential for functional redundancy in EGF and TGFalpha signaling in desmoid cells: a cDNA microarray analysis. Growth Factors 2010; 28:10-23. [PMID: 20092031 DOI: 10.3109/08977190903299387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genes that replace or duplicate the function of other genes are considered functionally redundant. In this cDNA microarray study, using an Agilent microarray platform and GeneSifter analysis software, we evaluated (1) the degree of downstream transcriptional redundancy and (2) the level of genetic uniqueness apparent in desmoid tumor cells stimulated in vitro for 3 h or for 24 h with 100 ng/ml of exogenous recombinant human EGF (rhEGF) or with recombinant human transforming growth factor alpha (rhTGFalpha). Our intent was to identify genes costimulated, or genes unique to, desmoid cells stimulated in vitro with rhEGF and rhTGFalpha. This experimental approach demonstrated a 55% transcriptional redundancy in the number of desmoid genes significantly upregulated or downregulated following 3 h of stimulation with rhEGF or with rhTGFalpha, and a 65% transcriptional redundancy following 24 h of growth factor stimulation. Approximately 150 genes costimulated by rhEGF and rhTGFalpha were identified. This study suggests that EGF and TGFalpha retain some level of functional redundancy, possibly resulting from their divergence from a common ancestral gene.
Collapse
Affiliation(s)
- Sylvia H Trang
- SARC Laboratory, Sarcoma Services, Department of Orthopaedics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
15
|
Sasazawa Y, Futamura Y, Tashiro E, Imoto M. Vacuolar H+-ATPase inhibitors overcome Bcl-xL-mediated chemoresistance through restoration of a caspase-independent apoptotic pathway. Cancer Sci 2009; 100:1460-7. [PMID: 19459857 PMCID: PMC11159986 DOI: 10.1111/j.1349-7006.2009.01194.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The anti-apoptotic oncoproteins Bcl-2 and Bcl-xL play crucial roles in tumorigenesis and chemoresistance, and are thus therapeutic cancer targets. We searched for small molecules that disturbed the anti-apoptotic function of Bcl-2 or Bcl-xL, and found vacuolar H(+)-ATPase (V-ATPase) inhibitors, such as bafilomycin A1 (BMA), that showed such activity. Bcl-xL-overexpressing Ms-1 cells displayed resistance to anticancer drugs, but underwent apoptosis following treatment with a combination of V-ATPase inhibitors at doses similar to those that caused inhibitory activities of V-ATPase. We investigated the apoptosis mechanism induced by cotreatment of Bcl-xL-overexpressing Ms-1 cells with BMA as a V-ATPase inhibitor and taxol (TXL) as an anticancer drug. With BMA, TXL triggered mitochondrial membrane potential loss and cytochrome c release, whereas downstream caspase activation was not observed. In contrast, pronounced nuclear translocation of mitochondrial apoptosis-inducing factor and endonuclease G, known as effectors of caspase-independent apoptosis, was observed with BMA and TXL cotreatment. Moreover, depletion of apoptosis-inducing factor and endonuclease G using each siRNA significantly rescued cells from BMA- and TXL-induced apoptosis. Hence, the apoptosis-inducing factor- and endonuclease G-dependent pathway was critical for apoptosis induction by BMA and TXL cotreatment. Our data suggest that V-ATPase inhibitors could not only suppress anti-apoptotic Bcl-2 nor Bcl-xL but could also facilitate the caspase-independent apoptotic pathway. V-ATPase inhibition will be a promising therapeutic approach for Bcl-2- or Bcl-xL-overexpressing malignancies.
Collapse
Affiliation(s)
- Yukiko Sasazawa
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | | | | | | |
Collapse
|
16
|
Butt TM, Ben El Hadj N, Skrobek A, Ravensberg WJ, Wang C, Lange CM, Vey A, Shah UK, Dudley E. Mass spectrometry as a tool for the selective profiling of destruxins; their first identification in Lecanicillium longisporum. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:1426-1434. [PMID: 19350525 DOI: 10.1002/rcm.4018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mass spectrometry was applied to the identification of the destruxins (dtxs), cyclic peptides that are commonly produced by the fungal insect-pathogen, Metarhizium anisopliae. The aim of the study was to optimise a methodology in order to firstly determine whether these compounds were present in other species and to determine the effect of differing growth conditions upon the dtx content detected. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF-MS) was initially used to analyse the dtxs, but limitations were indicated. Nano-scale high-performance liquid chromatography/electrospray ionisation mass spectrometry (HPLC/ESI-MS) and automated 'data-dependent' tandem mass spectrometric (MS/MS) analysis were also applied, utilising characteristic neutral losses during fragmentation to confirm the presence of the dtxs. This latter approach distinguished the dtx E and B isoforms by retention time and diagnostic neutral losses during fragmentation allowing extraction of the destruxin data from a complex dataset. This process revealed the presence of a number of dtxs in the fungal species Lecanicillium longisporum, a species previously not known to produce dtxs, and dtx production in this species was shown to be significantly higher in aerated cultures compared with still cultures.
Collapse
Affiliation(s)
- Tariq M Butt
- Department of Environmental and Molecular Biosciences, SOTEAS, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE In normal physiology, a vacuolar-type proton pump (V-ATPase) maintains an intracellular acid microenvironment in lysosome, endosome, and other endomembrane systems. Cancer cells overexpress V-ATPase compared with normal cells, and disturbances of the acid environment are thought to significantly impact the cancer cell infiltration and growth. Bafilomycin A1 (Baf-A1) is a specific inhibitor of the proton-pump inhibitor (PPI) V-ATPase. Neoplastic cells are reportedly more sensitive to Baf-A1 than normal cells, and the difference between the susceptibility to Baf-A1 in normal cells and that in cancer cells may become a target in the cancer therapy. With this in mind, we used cells of hepatoblastoma, the cancer type accounting for 80% of all childhood liver cancers, to investigate the effects of Baf-A1 as an inducer of cancer cell apoptosis and inhibitor of cancer cell reproduction METHODS AND RESULTS Electron microscopy showed significant morphological change of the hepatoblastoma cells of the Baf-A1-treated group compared with hepatoblastoma cells of the Baf-A1-free group. The rate of the apoptotic cell increased, and cell reproduction was inhibited. Moreover, the analysis of hepatoblastoma cells using the gene Chip gene expression analysis arrays showed that three of the 27 V-ATPase-related transcripts (ATP6V0D2, ATP6V1B1, and ATP6V0A1) were more weakly expressed in the Baf-A1-treated cells than in the Baf-A1-free cells. In normal human hepatic cells, on the other hand, the inhibition of cell growth of the Baf-A1-treated cells was negligible compared to that of the cells without Baf-A1 treatment. The result of apoptotic cell detection by morphological observations and flow cytometry revealed that Baf-A1 inhibits hepatoblastoma cellular reproduction by inducing apoptosis. On the other hand, the Baf-A1-conferred inhibition of cell growth was negligible in normal human hepatocytes CONCLUSION The V-ATPase inhibitor Baf-A1 has been proven to selectively inhibit the reproduction and induce the apoptosis of hepatoblastoma cells without adversely influencing normal hepatic cells. With these effects, V-ATPase inhibitors may hold promise as therapeutic agents for hepatoblastoma. Given that three V-ATPase-related genes (ATP6V0D2, ATP6V1B1, and ATP6V0A1) were more weakly expressed in the hepatoblastoma cells of the Baf-A1-treated group than in the Baf-A1-free cells, drug development targeting V-ATPase gene of hepatoblastomas is expected.
Collapse
|
18
|
Reinehr R, Häussinger D. CD95 activation in the liver: ion fluxes and oxidative signaling. Arch Biochem Biophys 2007; 462:124-31. [PMID: 17258167 DOI: 10.1016/j.abb.2006.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/14/2006] [Accepted: 12/16/2006] [Indexed: 12/18/2022]
Abstract
Apoptosis is characterized by typical features as cell shrinkage, nuclear condensation, DNA fragmentation, and apoptotic body formation. Whereas some signs of apoptosis are cell type-and death signal-dependent, apoptotic cell volume decrease is an early and ubiquitous event and little is known about the signalling events, which are localized upstream of the plasma membrane transport steps leading to apoptotic cell volume decrease and the proapoptotic events, which are induced by osmolyte loss and cell shrinkage. Ion fluxes and oxidative signaling were recently shown to play an important role in signal transduction with respect to apoptotic cell death within the liver, as a ceramide-dependent activation of the NADPH oxidase was identified as the source of reactive oxygen species generation in rat hepatocytes upon treatment with CD95 ligand, hydrophobic bile salts or hyperosmolarity. The NADPH oxidase-derived ROS signal then allows via Yes, JNK, and EGFR activation for CD95 tyrosine phosphorylation as a prerequisite for CD95 targeting to the plasma membrane and formation of the death inducing signalling complex. Other covalent modifications such as CD95-tyrosine-nitration or CD95-serine/threonine-phosphorylation can interfere with the CD95 activation process. The findings not only provide a mechanistic explanation for the high susceptibility of dehydrated cells for apoptosis, but also give insight into the role of ion fluxes and oxidative signaling with respect to apoptotic cell death within the liver.
Collapse
Affiliation(s)
- Roland Reinehr
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
19
|
Rao YK, Tsou CH, Tzeng YM. Antioxidants enhanced production of destruxin E from cultivation of Metarhizium anisopliae. Appl Microbiol Biotechnol 2006; 73:519-24. [PMID: 16820952 DOI: 10.1007/s00253-006-0493-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 04/28/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
The effect of antioxidants on the production of an important cyclohexadepsipeptide congener destruxin E (dtx E) was investigated using the entomopathogenic fungus Metarhizium anisopliae F061. In shaker flask cultivations, 0.015% of menadione-enhanced dtx E production of 220.4 mg/l compared to the control cultivation 90.2 mg/l, which was illustrated by stimulation of dtx E biosynthesis through two electron reduction DT-diaphorase processes in cultivation of M. anisopliae. In 5-l stirred-tank bioreactor cultivation with menadione addition and of control pH 4.0, a yield of 454.6 mg/l of dtx E was obtained after 7 days, and was nearly 30 and 15-fold higher than that from no pH control, and controlled pH 2.0 cultivations, respectively. Further cultivation in a 20-l airlift bioreactor, at pH 4.0, dtx E obtained on the 9th day was 406.0 mg/l, which was much higher than the standard cultivation of no pH control yield 203.3 mg/l on the 11th day. Thus, the present study provides useful information for enhancing dtx E production in cultivation.
Collapse
Affiliation(s)
- Yerra Koteswara Rao
- Institute of Biotechnology, Chaoyang University of Technology, Wufeng 41349, Taiwan, Republic of China
| | | | | |
Collapse
|
20
|
Lin CW, Tsai FJ, Wan L, Lai CC, Lin KH, Hsieh TH, Shiu SY, Li JY. Binding interaction of SARS coronavirus 3CL(pro) protease with vacuolar-H+ ATPase G1 subunit. FEBS Lett 2005; 579:6089-94. [PMID: 16226257 PMCID: PMC7094641 DOI: 10.1016/j.febslet.2005.09.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/18/2005] [Accepted: 09/19/2005] [Indexed: 11/19/2022]
Abstract
The pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV) is an important issue for treatment and prevention of SARS. Recently, SARS-CoV 3CL(pro) protease has been implied to be possible relevance to SARS-CoV pathogenesis. In this study, we intended to identify potential 3CL(pro)-interacting cellular protein(s) using the phage-displayed human lung cDNA library. The vacuolar-H+ ATPase (V-ATPase) G1 subunit that contained a 3CL(pro) cleavage site-like motif was identified as a 3CL(pro)-interacting protein, as confirmed using the co-immunoprecipitation assay and the relative affinity assay. In addition, our result also demonstrated the cleavage of the V-ATPase G1 fusion protein and the immunoprecipitation of cellular V-ATPase G1 by the 3CL(pro). Moreover, loading cells with SNARF-1 pH-sensitive dye showed that the intracellular pH in 3CL(pro)-expressing cells was significantly lower as compared to mock cells.
Collapse
Affiliation(s)
- Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Huss M, Sasse F, Kunze B, Jansen R, Steinmetz H, Ingenhorst G, Zeeck A, Wieczorek H. Archazolid and apicularen: novel specific V-ATPase inhibitors. BMC BIOCHEMISTRY 2005; 6:13. [PMID: 16080788 PMCID: PMC1190152 DOI: 10.1186/1471-2091-6-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 08/04/2005] [Indexed: 11/10/2022]
Abstract
Background V-ATPases constitute a ubiquitous family of heteromultimeric, proton translocating proteins. According to their localization in a multitude of eukaryotic membranes, they energize many different transport processes. Since their malfunction is correlated with various diseases in humans, the elucidation of the properties of this enzyme for the development of selective inhibitors and drugs is one of the challenges in V-ATPase research. Results Archazolid A and B, two recently discovered cytotoxic macrolactones produced by the myxobacterium Archangium gephyra, and apicularen A and B, two novel benzolactone enamides produced by different species of the myxobacterium Chondromyces, exerted a similar inhibitory efficacy on a wide range of mammalian cell lines as the well established plecomacrolidic type V-ATPase inhibitors concanamycin and bafilomycin. Like the plecomacrolides both new macrolides also prevented the lysosomal acidification in cells and inhibited the V-ATPase purified from the midgut of the tobacco hornworm, Manduca sexta, with IC50 values of 20–60 nM. However, they did not influence the activity of mitochondrial F-ATPase or that of the Na+/K+-ATPase. To define the binding sites of these new inhibitors we used a semi-synthetic radioactively labelled derivative of concanamycin which exclusively binds to the membrane Vo subunit c. Whereas archazolid A prevented, like the plecomacrolides concanamycin A, bafilomycin A1 and B1, labelling of subunit c by the radioactive I-concanolide A, the benzolactone enamide apicularen A did not compete with the plecomacrolide derivative. Conclusion The myxobacterial antibiotics archazolid and apicularen are highly efficient and specific novel inhibitors of V-ATPases. While archazolid at least partly shares a common binding site with the plecomacrolides bafilomycin and concanamycin, apicularen adheres to an independent binding site.
Collapse
Affiliation(s)
- Markus Huss
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Tierphysiologie, 49069 Osnabrück, Germany
| | - Florenz Sasse
- Gesellschaft für Biotechnologische Forschung, Bereich Naturstoffe, 38124 Braunschweig, Germany
| | - Brigitte Kunze
- Gesellschaft für Biotechnologische Forschung, Bereich Naturstoffe, 38124 Braunschweig, Germany
| | - Rolf Jansen
- Gesellschaft für Biotechnologische Forschung, Bereich Naturstoffe, 38124 Braunschweig, Germany
| | - Heinrich Steinmetz
- Gesellschaft für Biotechnologische Forschung, Bereich Naturstoffe, 38124 Braunschweig, Germany
| | - Gudrun Ingenhorst
- Universität Göttingen, Fakultät für Chemie, Institut für Organische und Biomolekulare Chemie, 37077 Göttingen, Germany
| | - Axel Zeeck
- Universität Göttingen, Fakultät für Chemie, Institut für Organische und Biomolekulare Chemie, 37077 Göttingen, Germany
| | - Helmut Wieczorek
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Tierphysiologie, 49069 Osnabrück, Germany
| |
Collapse
|
22
|
Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 2005; 24:8354-65. [PMID: 15385618 PMCID: PMC6729689 DOI: 10.1523/jneurosci.2751-04.2004] [Citation(s) in RCA: 414] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous studies demonstrating olfactory interneuron involvement in olfactory discrimination and decreased proliferation in the forebrain subventricular zone with age led us to ask whether olfactory neurogenesis and, consequently, olfactory discrimination were impaired in aged mice. Pulse labeling showed that aged mice (24 months of age) had fewer new interneurons in the olfactory bulb than did young adult (2 months of age) mice. However, the aged mice had more olfactory interneurons in total than their younger counterparts. Aged mice exhibited no differences from young adult mice in their ability to discriminate between two discrete odors but were significantly poorer at performing discriminations between similar odors (fine olfactory discrimination). Leukemia inhibitory factor receptor heterozygote mice, which have less neurogenesis and fewer olfactory interneurons than their wild-type counterparts, performed more poorly at fine olfactory discrimination than the wild types, suggesting that olfactory neurogenesis, rather than the total number of interneurons, was responsible for fine olfactory discrimination. Immunohistochemistry and Western blot analyses revealed a selective reduction in expression levels of epidermal growth factor (EGF) receptor (EGFR) signaling elements in the aged forebrain subventricular zone. Waved-1 mutant mice, which express reduced quantities of transforming growth factor-alpha, the predominant EGFR ligand in adulthood, phenocopy aged mice in olfactory neurogenesis and performance on fine olfactory discrimination tasks. These results suggest that the impairment in fine olfactory discrimination with age may result from a reduction in EGF-dependent olfactory neurogenesis.
Collapse
Affiliation(s)
- Emeka Enwere
- Genes and Development Research Group, Department of Cell Biology and Anatomy, University of Calgary Faculty of Medicine, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Roberts DW, St Leger RJ. Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. ADVANCES IN APPLIED MICROBIOLOGY 2004; 54:1-70. [PMID: 15251275 DOI: 10.1016/s0065-2164(04)54001-7] [Citation(s) in RCA: 247] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Donald W Roberts
- Department of Biology, Utah State University, Logan, Utah 84322-5305, USA
| | | |
Collapse
|
24
|
Singh AB, Tsukada T, Zent R, Harris RC. Membrane-associated HB-EGF modulates HGF-induced cellular responses in MDCK cells. J Cell Sci 2004; 117:1365-79. [PMID: 14996914 DOI: 10.1242/jcs.01037] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In MDCK cells, hepatocyte growth factor/scatter factor (HGF/SF) induces epithelial cell dissociation, scattering, migration, growth and formation of branched tubular structures. By contrast, these cells neither scatter nor form tubular structures in response to the epidermal growth factor (EGF) family of growth factors. Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors and is synthesized as a membrane-associated precursor molecule (proHB-EGF). ProHB-EGF is proteolytically cleaved to release a soluble ligand (sHB-EGF) that activates the EGF receptor. Although recent studies suggest possible physiological functions, the role of proHB-EGF remains largely undefined. Using MDCK cells stably expressing proHB-EGF, a noncleavable deletion mutant of proHB-EGF or soluble HB-EGF, we show that epithelial cell functions differ depending on the form of HB-EGF being expressed. Expression of noncleavable membrane-anchored HB-EGF promoted cell-matrix and cell-cell interactions and decreased cell migration, HGF/SF-induced cell scattering and formation of tubular structures. By contrast, expression of soluble HB-EGF induced increased cell migration, decreased cell-matrix and cell-cell interactions and promoted the development of long unbranched tubular structures in response to HGF/SF. These findings suggest that HB-EGF can not only modulate HGF/SF-induced cellular responses in MDCK cells but also that membrane-bound HB-EGF and soluble HB-EGF give rise to distinctly different effects on cell-cell and cell-extracellular matrix interactions.
Collapse
Affiliation(s)
- Amar B Singh
- Department of Medicine, Vanderbilt University, Nashville, TN 37232-4794, USA
| | | | | | | |
Collapse
|
25
|
Reinehr R, Graf D, Häussinger D. Bile salt-induced hepatocyte apoptosis involves epidermal growth factor receptor-dependent CD95 tyrosine phosphorylation. Gastroenterology 2003; 125:839-53. [PMID: 12949729 DOI: 10.1016/s0016-5085(03)01055-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Hydrophobic bile acids induce CD95-dependent hepatocyte apoptosis. METHODS The mechanisms of bile acid-induced CD95 activation were studied in 24-hour cultured rat hepatocytes, in situ-perfused rat livers, and livers from bile duct-ligated rats. RESULTS Within 1 minute, the proapoptotic bile salts taurolithocholate-3-sulfate and glycochenodeoxycholate induced oxidative stress and EGF receptor (EGF-R) tyrosine phosphorylation followed by rapid c-Jun-N-terminal kinase (JNK) activation. Thereafter, EGF-R associated with CD95 with subsequent CD95 tyrosine phosphorylation, CD95 membrane targeting, and death-inducing signal complex (DISC) formation. All of these responses were also triggered by taurochenodeoxycholate except that DISC formation only occurred in the presence of phosphatidylinositol 3-kinase inhibitors. No activation of EGF-R or CD95 was observed with tauroursodeoxycholate or taurocholate. Taurolithocholate-3-sulfate-induced EGF-R phosphorylation was sensitive to N-acetylcysteine (NAC) and genistein, whereas CD95/EGF-R association was inhibited by NAC, JNK, or protein kinase C inhibition but not by AG1478. However, the latter compound as well as NAC, genistein, inhibition of JNK, or protein kinase C inhibited CD95 tyrosine phosphorylation, membrane trafficking, and DISC formation. CONCLUSIONS Induction of apoptosis by hydrophobic bile salts involves EGF-R activation and EGF-R-dependent CD95 tyrosine phosphorylation, which triggers CD95 membrane targeting and Fas-associated death domain/caspase-8 recruitment. The latter step is apparently also controlled by phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- Roland Reinehr
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düesseldorf, Germany
| | | | | |
Collapse
|
26
|
Miles D, Athmanathan S, Thakur A, Willcox M. A novel apoptotic interaction between HSV-1 and human corneal epithelial cells. Curr Eye Res 2003; 26:165-74. [PMID: 12815544 DOI: 10.1076/ceyr.26.3.165.14899] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Herpes simplex virus type 1 (HSV-1) infects the cornea possibly causing blindness. The specific mechanisms of herpetic keratitis are unclear. We aimed to investigate whether HSV-1 would up- or down-regulate the apoptotic pathway of human corneal epithelial (HCE) cells. METHODS HSV-1 infection of HCE and Vero cells was demonstrated (immunofluorescence) and apoptotic gene expression was quantified (ribonuclease protection assay). Caspase 8 protein activity (colorimetric assay) was quantified and compared to caspase 8 mRNA amounts from RPA experiments. The apoptotic index of HSV-1 infected HCE and Vero cells (apoptotic index = % of apoptotic cells in infected samples/mock treated samples) was obtained and compared to gene expression. RESULTS A down-regulation in apoptotic gene expression was observed in HSV-1 infected HCE cells in contrast to Vero cells (infected and mock treated). Caspase 8 protein levels mirrored caspase 8 mRNA levels in HSV-1 infected HCE cells. The apoptotic index also supports this down-regulation. HSV-1 infected human corneal epithelial cells and Vero cells at similar rates. CONCLUSION HSV-1 down-regulates the apoptotic pathway of human corneal epithelial cells. This down-regulation of apoptotic gene expression seems to be cell specific. Also infectivity is excluded in playing a role in regulation of the apoptotic pathway because HSV-1 replicated at similar rates in HCE and Vero cells.
Collapse
Affiliation(s)
- D Miles
- The Cooperative Research Centre for Eye Research and Technology, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
27
|
Yoshimoto Y, Jyojima T, Arita T, Ueda M, Imoto M, Matsumura S, Toshima K. Vacuolar-type H(+)-ATPase inhibitory activity of synthetic analogues of the concanamycins: is the hydrogen bond network involving the lactone carbonyl, the hemiacetal hydroxy group, and the C-19 hydroxy group essential for the biological activity of the concanamycins? Bioorg Med Chem Lett 2002; 12:3525-8. [PMID: 12443768 DOI: 10.1016/s0960-894x(02)00806-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic analogue of the concanamycins, which lacks the hydrogen bond network existing in the concanamycin structure, retains vacuolar-type H(+)-ATPase (V-ATPase) inhibitory activity and induces apoptosis to cancer cells that overexpressing epidermal growth factor receptors (EGFR).
Collapse
Affiliation(s)
- Yuya Yoshimoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | | | | | | | | | | | | |
Collapse
|