1
|
Usman S, Aldehlawi H, Nguyen TKN, Teh MT, Waseem A. Impact of N-Terminal Tags on De Novo Vimentin Intermediate Filament Assembly. Int J Mol Sci 2022; 23:ijms23116349. [PMID: 35683030 PMCID: PMC9181571 DOI: 10.3390/ijms23116349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vimentin, a type III intermediate filament protein, is found in most cells along with microfilaments and microtubules. It has been shown that the head domain folds back to associate with the rod domain and this association is essential for filament assembly. The N-terminally tagged vimentin has been widely used to label the cytoskeleton in live cell imaging. Although there is previous evidence that EGFP tagged vimentin fails to form filaments but is able to integrate into a pre-existing network, no study has systematically investigated or established a molecular basis for this observation. To determine whether a tag would affect de novo filament assembly, we used vimentin fused at the N-terminus with two different sized tags, AcGFP (239 residues, 27 kDa) and 3 × FLAG (22 residues; 2.4 kDa) to assemble into filaments in two vimentin-deficient epithelial cells, MCF-7 and A431. We showed that regardless of tag size, N-terminally tagged vimentin aggregated into globules with a significant proportion co-aligning with β-catenin at cell–cell junctions. However, the tagged vimentin aggregates could form filaments upon adding untagged vimentin at a ratio of 1:1 or when introduced into cells containing pre-existing filaments. The resultant filament network containing a mixture of tagged and untagged vimentin was less stable compared to that formed by only untagged vimentin. The data suggest that placing a tag at the N-terminus may create steric hinderance in case of a large tag (AcGFP) or electrostatic repulsion in case of highly charged tag (3 × FLAG) perhaps inducing a conformational change, which deleteriously affects the association between head and rod domains. Taken together our results shows that a free N-terminus is essential for filament assembly as N-terminally tagged vimentin is not only incapable of forming filaments, but it also destabilises when integrated into a pre-existing network.
Collapse
Affiliation(s)
- Saima Usman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
| | - Hebah Aldehlawi
- Department of Oral Diagnostic Sciences, Division of Oral Pathology and Medicine, Faculty of Dentistry, King Abdul Aziz University, Jeddah 21589, Saudi Arabia;
| | - Thuan Khanh Ngoc Nguyen
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
- Centre for Immunobiology and Regenerative Medicine, Blizard Institute, 4 Newark Street, London E1 2AT, UK
- Correspondence: ; Tel.: +44-207-882-2387; Fax: +44-207-882-7137
| |
Collapse
|
2
|
Shakhov AS, Alieva IB. The "Third Violin" in the Cytoskeleton Orchestra-The Role of Intermediate Filaments in the Endothelial Cell's Life. Biomedicines 2022; 10:828. [PMID: 35453578 PMCID: PMC9027429 DOI: 10.3390/biomedicines10040828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
The endothelium plays an important role in the transcytosis of lipoproteins. According to one of the theories, endothelial injury is a triggering factor for the development of atherosclerosis, and intracellular structures, including components of the endotheliocyte cytoskeleton (microtubules, actin, and intermediate filaments), are involved in its development. In contrast to the proteins of tubulin-based microtubules and actin microfilaments, intermediate filaments are comprised of various tissue-specific protein members. Vimentin, the main protein of endothelial intermediate filaments, is one of the most well-studied of these and belongs to type-III intermediate filaments, commonly found in cells of mesenchymal origin. Vimentin filaments are linked mechanically or by signaling molecules to microfilaments and microtubules by which coordinated cell polarisation and migration are carried out, as well as control over several endotheliocyte functions. Moreover, the soluble vimentin acts as an indicator of the state of the cardiovascular system, and the involvement of vimentin in the development and course of atherosclerosis has been demonstrated. Here we discuss current concepts of the participation of vimentin filaments in the vital activity and functioning of endothelial cells, as well as the role of vimentin in the development of inflammatory processes and atherosclerosis.
Collapse
Affiliation(s)
| | - Irina B. Alieva
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
3
|
Tarbet HJ, Dolat L, Smith TJ, Condon BM, O'Brien ET, Valdivia RH, Boyce M. Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton. eLife 2018. [PMID: 29513221 PMCID: PMC5841932 DOI: 10.7554/elife.31807] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intermediate filaments (IF) are a major component of the metazoan cytoskeleton and are essential for normal cell morphology, motility, and signal transduction. Dysregulation of IFs causes a wide range of human diseases, including skin disorders, cardiomyopathies, lipodystrophy, and neuropathy. Despite this pathophysiological significance, how cells regulate IF structure, dynamics, and function remains poorly understood. Here, we show that site-specific modification of the prototypical IF protein vimentin with O-linked β-N-acetylglucosamine (O-GlcNAc) mediates its homotypic protein-protein interactions and is required in human cells for IF morphology and cell migration. In addition, we show that the intracellular pathogen Chlamydia trachomatis, which remodels the host IF cytoskeleton during infection, requires specific vimentin glycosylation sites and O-GlcNAc transferase activity to maintain its replicative niche. Our results provide new insight into the biochemical and cell biological functions of vimentin O-GlcNAcylation, and may have broad implications for our understanding of the regulation of IF proteins in general. Like the body's skeleton, the cytoskeleton gives shape and structure to the inside of a cell. Yet, unlike a skeleton, the cytoskeleton is ever changing. The cytoskeleton consists of many fibers each made from chains of protein molecules. One of these proteins is called vimentin and it forms intermediate filaments in the cytoskeleton. Many different types of cells contain vimentin and a lot of it is found in cancer cells that have spread beyond their original location to other sites in the body. Cells use chemical modifications to regulate cytoskeleton proteins. For example, through a process called glycosylation, cells can reversibly attach a sugar modification called O-GlcNAc to vimentin. O-GlcNAc can be attached to several different parts of vimentin and each location may have a different effect. It is not currently clear how cells control their vimentin filaments or what role O-GlcNAc plays in this process. Using genetic engineering, Tarbet et al. produced human cells in the laboratory with modified vimentin proteins. These altered proteins lacked some of the sites for O-GlcNAc attachment. The goal was to see whether the loss of O-GlcNAc at a specific location would affect fiber formation and cell behavior. The results showed one site where vimentin needs O-GlcNAc to form fibers. Without O-GlcNAc at this site, cells could not migrate towards chemical signals. In addition, in normal human cells, Chlamydia bacteria hijack vimentin and rearrange the filaments to form a cage around themselves for protection. However, the cells lacking O-GlcNAc on vimentin were resistant to infection by Chlamydia bacteria. These findings highlight the importance of O-GlcNAc on vimentin in healthy cells and during infection. Vimentin’s contribution to cell migration may also help to explain its role in the spread of cancer. The importance of O-GlcNAc suggests it could be a new target for therapies. Yet, it also highlights the need for caution due to the delicate balance between the activity of vimentin in healthy and diseased cells. In addition, human cells produce about 70 other vimentin-like proteins and further work will examine if they are also affected by O-GlcNAc.
Collapse
Affiliation(s)
- Heather J Tarbet
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - E Timothy O'Brien
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Department of Physics and Astronomy, University of North Carolina, Chapel Hill, United States
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| |
Collapse
|
4
|
Yang Y, Yang J, Rao X. What role does superficial vimentin have during DENV-2 infection? Future Virol 2018. [DOI: 10.2217/fvl-2017-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Jie Yang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, People's Republic of China
| |
Collapse
|
5
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
6
|
Order and disorder in intermediate filament proteins. FEBS Lett 2015; 589:2464-76. [PMID: 26231765 DOI: 10.1016/j.febslet.2015.07.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022]
Abstract
Intermediate filaments (IFs), important components of the cytoskeleton, provide a versatile, tunable network of self-assembled proteins. IF proteins contain three distinct domains: an α-helical structured rod domain, flanked by intrinsically disordered head and tail domains. Recent studies demonstrated the functional importance of the disordered domains, which differ in length and amino-acid sequence among the 70 different human IF genes. Here, we investigate the biophysical properties of the disordered domains, and review recent findings on the interactions between them. Our analysis highlights key components governing IF functional roles in the cytoskeleton, where the intrinsically disordered domains dictate protein-protein interactions, supramolecular assembly, and macro-scale order.
Collapse
|
7
|
Wang CI, Wang CL, Wu YC, Feng HP, Liu PJ, Chang YS, Yu JS, Yu CJ. Quantitative Proteomics Reveals a Novel Role of Karyopherin Alpha 2 in Cell Migration through the Regulation of Vimentin–pErk Protein Complex Levels in Lung Cancer. J Proteome Res 2015; 14:1739-51. [DOI: 10.1021/pr501097a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chun-I Wang
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Chih-Liang Wang
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Yi-Cheng Wu
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Hsiang-Pu Feng
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Pei-Jun Liu
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Yu-Sun Chang
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Jau-Song Yu
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Chia-Jung Yu
- Molecular
Medicine Research Center, ‡Department of Cell and Molecular
Biology, and §Graduate Institute of Biomedical Sciences College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, ⊥Division of Thoracic & Cardiovascular Surgery, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| |
Collapse
|
8
|
The tail domain is essential but the head domain dispensable for C. elegans intermediate filament IFA-2 function. PLoS One 2015; 10:e0119282. [PMID: 25742641 PMCID: PMC4351089 DOI: 10.1371/journal.pone.0119282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/19/2015] [Indexed: 01/12/2023] Open
Abstract
The intermediate filament protein IFA-2 is essential for the structural integrity of the Caenorhabditis elegans epidermis. It is one of the major components of the fibrous organelle, an epidermal structure comprised of apical and basal hemidesmosomes linked by cytoplasmic intermediate filaments that serve to transmit force from the muscle to the cuticle. Mutations of IFA-2 result in epidermal fragility and separation of the apical and basal epidermal surfaces during postembryonic growth. An IFA-2 lacking the head domain fully rescues the IFA-2 null mutant, whereas an IFA-2 lacking the tail domain cannot. Conversely, an isolated IFA-2 head was able to localize to fibrous organelles whereas the tail was not. Taken together these results suggest that the head domain contains redundant signals for IF localization, whereas non-redundant essential functions map to the IFA-2, tail, although the tail is unlikely to be directly involved in fibrous organelle localization.
Collapse
|
9
|
Dave JM, Bayless KJ. Vimentin as an integral regulator of cell adhesion and endothelial sprouting. Microcirculation 2015; 21:333-44. [PMID: 24387004 DOI: 10.1111/micc.12111] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a multistep process that requires intricate changes in cell shape to generate new blood vessels. IF are a large family of proteins that play an important structural and functional role in forming and regulating the cytoskeleton. Vimentin, a major type III intermediate filament protein is expressed in endothelial and other mesenchymal cells. The structure of vimentin is conserved in mammals and shows dynamic expression profiles in various cell types and different developmental stages. Although initial studies with vimentin-deficient mice demonstrated a virtually normal phenotype, subsequent studies have revealed several defects in cell attachment, migration, signaling, neurite extension, and vascularization. Regulation of vimentin is highly complex and is driven by posttranslational modifications such as phosphorylation and cleavage by intracellular proteases. This review discusses various novel functions which are now known to be mediated by vimentin, summarizing structure, regulation and roles of vimentin in cell adhesion, migration, angiogenesis, neurite extension, and cancer. We specifically highlight a pathway involving growth factor-mediated calpain activation, vimentin cleavage, and MT1-MMP membrane translocation that is required for endothelial cell invasion in 3D environments. This pathway may also regulate the analogous processes of neurite extension and tumor cell invasion.
Collapse
Affiliation(s)
- Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | | |
Collapse
|
10
|
Nekrasova OE, Mendez MG, Chernoivanenko IS, Tyurin-Kuzmin PA, Kuczmarski ER, Gelfand VI, Goldman RD, Minin AA. Vimentin intermediate filaments modulate the motility of mitochondria. Mol Biol Cell 2011; 22:2282-9. [PMID: 21562225 PMCID: PMC3128530 DOI: 10.1091/mbc.e10-09-0766] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 04/19/2011] [Accepted: 05/05/2011] [Indexed: 12/17/2022] Open
Abstract
Interactions with vimentin intermediate filaments (VimIFs) affect the motility, distribution, and anchorage of mitochondria. In cells lacking VimIFs or in which VimIF organization is disrupted, the motility of mitochondria is increased relative to control cells that express normal VimIF networks. Expression of wild-type VimIF in vimentin-null cells causes mitochondrial motility to return to normal (slower) rates. In contrast, expressing vimentin with mutations in the mid-region of the N-terminal non-α-helical domain (deletions of residues 41-96 or 45-70, or substitution of Pro-57 with Arg) did not inhibit mitochondrial motility even though these mutants retain their ability to assemble into VimIFs in vivo. It was also found that a vimentin peptide consisting of residues 41-94 localizes to mitochondria. Taken together, these data suggest that VimIFs bind directly or indirectly to mitochondria and anchor them within the cytoplasm.
Collapse
Affiliation(s)
- Oxana E. Nekrasova
- Group of Cell Biology, Institute of Protein Research, Russian Academy of Sciences, Moscow 119988, Russia
| | - Melissa G. Mendez
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611
| | - Ivan S. Chernoivanenko
- Group of Cell Biology, Institute of Protein Research, Russian Academy of Sciences, Moscow 119988, Russia
- Koltsov's Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Pyotr A. Tyurin-Kuzmin
- Group of Cell Biology, Institute of Protein Research, Russian Academy of Sciences, Moscow 119988, Russia
| | - Edward R. Kuczmarski
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611
| | - Vladimir I. Gelfand
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, Chicago, IL 60611
| | - Alexander A. Minin
- Group of Cell Biology, Institute of Protein Research, Russian Academy of Sciences, Moscow 119988, Russia
| |
Collapse
|
11
|
Aziz A, Hess JF, Budamagunta MS, Voss JC, FitzGerald PG. Site-directed spin labeling and electron paramagnetic resonance determination of vimentin head domain structure. J Biol Chem 2010; 285:15278-15285. [PMID: 20231271 DOI: 10.1074/jbc.m109.075598] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intermediate filament (IF) proteins have been predicted to have a conserved tripartite domain structure consisting of a largely alpha-helical central rod domain, flanked by head and tail domains. However, crystal structures have not been reported for any IF or IF protein. Although progress has been made in determining central rod domain structure, no structural data have been reported for either the head or tail domains. We used site-directed spin labeling and electron paramagnetic resonance to analyze 45 different spin labeled mutants spanning the head domain of vimentin. The data, combined with results from a previous study, provide strong evidence that the polypeptide backbones of the head domains form a symmetric dimer of closely apposed backbones that fold back onto the rod domain, imparting an asymmetry to the dimer. By following the behavior of spin labels during the process of in vitro assembly, we show that head domain structure is dynamic, changing as a result of filament assembly. Finally, because the vimentin head domain is the major site of the phosphorylation that induces disassembly at mitosis, we studied the effects of phosphorylation on head domain structure and demonstrate that phosphorylation drives specific head domain regions apart. These data provide the first evidence-based model of IF head domain structure.
Collapse
Affiliation(s)
- Atya Aziz
- Departments of Cell Biology and Human Anatomy, University of California, Davis, California 95616
| | - John F Hess
- Departments of Cell Biology and Human Anatomy, University of California, Davis, California 95616
| | - Madhu S Budamagunta
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95616
| | - John C Voss
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95616
| | - Paul G FitzGerald
- Departments of Cell Biology and Human Anatomy, University of California, Davis, California 95616.
| |
Collapse
|
12
|
Gerashchenko MV, Chernoivanenko IS, Moldaver MV, Minin AA. Dynein is a motor for nuclear rotation while vimentin IFs is a "brake". Cell Biol Int 2009; 33:1057-64. [PMID: 19560548 DOI: 10.1016/j.cellbi.2009.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/22/2009] [Accepted: 06/03/2009] [Indexed: 11/24/2022]
Abstract
The positioning of the nucleus is achieved by two interconnected processes, anchoring and migration, both of which are controlled by cytoskeleton structures. Rotation is a special type of nuclear motility in many cell types, but its significance remains unclear. We used a vimentin-null cell line, MFT-16, which shows extensive nuclear rotation to study the phenomenon in detail. By selective disruption of cytoskeletal structures and video-microscopic analysis, nuclear rotation was a microtubule-dependent process that F-actin partially impedes. The dynein-dynactin complex is responsible and inhibiting this motor by expression of a dominant negative mutant of its component P-150 completely stops it. Nuclear rotation is powered by dynein associated with the nuclear envelope along stationary microtubules, centrosomes remaining immobile. We confirmed that vimentin IFs inhibit nuclear rotation, and variant proteins of the mutated wild type gene for vimentin that lacked considerable fragments of the N- and C-terminal domains restored nuclear anchoring. Immunochemical analysis showed that these mutated IFs also bound plectin, arguing for a key role of this cytolinker protein in nuclear anchoring. It is proposed that this versatile machinery guarantees not only rotation and the correct location of a nucleus, but also its orientation in a cell.
Collapse
Affiliation(s)
- Maxim V Gerashchenko
- Group of Cell Biology, Institute of Protein Research, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | | | | | | |
Collapse
|
13
|
Minin AA, Moldaver MV. Intermediate vimentin filaments and their role in intracellular organelle distribution. BIOCHEMISTRY (MOSCOW) 2009; 73:1453-66. [PMID: 19216711 DOI: 10.1134/s0006297908130063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intermediate filaments (IF) represent one of three main cytoskeletal structures in most animal cells. The human IF protein family includes about 70 members divided into five main groups. The characteristic feature of IF is that in various cells and tissues they are formed by proteins of different groups. Structures of all IF proteins follow a unique scheme: a central alpha-helical part is flanked at the N and C ends by positively charged polypeptide chains devoid of a clear secondary structure. The central part is highly conserved for all proteins in all animals, whereas the N and C termini strongly differ both in size and amino acid composition. This review covers the broad spectrum of recent investigations of IF structure and diverse functions. Special attention is paid to the regulatory mechanisms of IF functions, mainly to phosphorylation by different protein kinases whose role is well studied. The review gives examples of hereditary diseases associated with mutations of some IF proteins, which point to an important physiological role of these cytoskeletal structures.
Collapse
Affiliation(s)
- A A Minin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
14
|
Paton LN, Gerrard JA, Bryson WG. Investigations into charge heterogeneity of wool intermediate filament proteins. J Proteomics 2008; 71:513-29. [DOI: 10.1016/j.jprot.2008.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/10/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
|
15
|
Khanamiryan L, Li Z, Paulin D, Xue Z. Self-Assembly Incompetence of Synemin Is Related to the Property of Its Head and Rod Domains. Biochemistry 2008; 47:9531-9. [DOI: 10.1021/bi800912w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luiza Khanamiryan
- UPMC Univ Paris 6, UMR 7079, Paris, France, and CNRS UMR 7079, Paris, France
| | - Zhenlin Li
- UPMC Univ Paris 6, UMR 7079, Paris, France, and CNRS UMR 7079, Paris, France
| | - Denise Paulin
- UPMC Univ Paris 6, UMR 7079, Paris, France, and CNRS UMR 7079, Paris, France
| | - Zhigang Xue
- UPMC Univ Paris 6, UMR 7079, Paris, France, and CNRS UMR 7079, Paris, France
| |
Collapse
|
16
|
Pittenger JT, Hess JF, Fitzgerald PG. Identifying the role of specific motifs in the lens fiber cell specific intermediate filament phakosin. Invest Ophthalmol Vis Sci 2007; 48:5132-41. [PMID: 17962466 PMCID: PMC2909742 DOI: 10.1167/iovs.07-0647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Phakosin and filensin are lens fiber cell-specific intermediate filament (IF) proteins. Unlike every other cytoplasmic IF protein, they assemble into a beaded filament (BF) rather than an IF. Why the lens fiber cell requires two unique IF proteins and why and how they assemble into a structure other than an IF are unknown. In this report we test specific motifs/domains in phakosin to identify changes that that have adapted phakosin to lens-specific structure and function. METHODS Phakosin shows the highest level of sequence identity to K18, whose natural assembly partner is K8. We therefore exchanged conserved keratin motifs between phakosin and K18 to determine whether phakosin's divergent motifs could redirect the assembly of chimeric K18 and K8. Modified proteins were bacterially expressed and purified. Assembly competence was assessed by electron microscopy. RESULTS Substitution of the phakosin helix initiation motif (HIM) into K18 does not alter assembly with K8, establishing that the radical divergence in phakosin HIM is not by itself the mechanism by which IF assembly is redirected to BF assembly. Unexpectedly, K18 bearing phakosin HIM resulted in normal IF assembly, despite the presence of an otherwise disease-causing R-C substitution, and two helix-disrupting glycines. This disproves the widely held belief that mutation of the R is catastrophic to IF assembly. Additional data are presented that suggest normal IF assembly is dependent on sequence-specific interactions between the IF head domain and the HIM. CONCLUSIONS In the lens fiber cell, two members of the IF family have evolved to produce BFs instead of IFs, a change that presumably adapts the IF to a fiber cell-specific function. The authors establish here that the most striking divergence seen in phakosin is not, as hypothesized, the cause of this altered assembly outcome. The authors further establish that the HIM of IFs is far more tolerant of mutations, such as those that cause some corneal dystrophies and Alexander disease, than previously hypothesized and that normal assembly involves sequence-specific interactions between the head domain and the HIM.
Collapse
Affiliation(s)
- Joshua T Pittenger
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
17
|
Hofner M, Höllrigl A, Puz S, Stary M, Weitzer G. Desmin stimulates differentiation of cardiomyocytes and up-regulation of brachyury and nkx2.5. Differentiation 2007; 75:605-15. [PMID: 17381547 PMCID: PMC7615841 DOI: 10.1111/j.1432-0436.2007.00162.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Desmin contributes to structural integrity and function of the myocardium but its function seems to be redundant in early cardiomyogenesis in the desmin null mouse model. To test the hypothesis that desmin also plays a supportive role in cardiomyogenic commitment and early differentiation of cardiomyocytes we investigated cardiomyogenesis in embryoid bodies expressing different desmin alleles. Constitutive expression of desmin and increased synthesis during mesoderm formation led to the up-regulation of brachyury and nkx2.5 genes, accelerated early cardiomyogenesis and resulted in the development of large, proliferating, highly interconnected, and synchronously beating cardiomyocyte clusters, whereas desmin null cardiomyocytes featured an opposite phenotype. In contrast, constitutive expression of amino-terminally truncated desmin(Delta1-48) interfered with the beginning of cardiomyogenesis, caused down-regulation of mesodermal and myocardial transcription factors, and hampered myofibrillogenesis and survival of cardiomyocytes. These results provide first evidence that a type III intermediate filament protein takes part in regulating the differentiation of mesoderm to cardiomyocytes at the very beginning of cardiomyogenesis.
Collapse
Affiliation(s)
- Manuela Hofner
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohrgasse 9, A1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
18
|
Perlson E, Michaelevski I, Kowalsman N, Ben-Yaakov K, Shaked M, Seger R, Eisenstein M, Fainzilber M. Vimentin binding to phosphorylated Erk sterically hinders enzymatic dephosphorylation of the kinase. J Mol Biol 2006; 364:938-44. [PMID: 17046786 DOI: 10.1016/j.jmb.2006.09.056] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 09/13/2006] [Accepted: 09/14/2006] [Indexed: 11/19/2022]
Abstract
Cleavage fragments of de novo synthesized vimentin were recently reported to interact with phosphorylated Erk1 and Erk2 MAP kinases (pErk) in injured sciatic nerve, thus linking pErk to a signaling complex retrogradely transported on importins and dynein. Here we clarify the structural basis for this interaction, which explains how pErk is protected from dephosphorylation while bound to vimentin. Pull-down and ELISA experiments revealed robust calcium-dependent binding of pErk to the second coiled-coil domain of vimentin, with observed affinities of binding increasing from 180 nM at 0.1 microM calcium to 15 nM at 10 microM calcium. In contrast there was little or no binding of non-phosphorylated Erk to vimentin under these conditions. Geometric and electrostatic complementarity docking generated a number of solutions wherein vimentin binding to pErk occludes the lip containing the phosphorylated residues in the kinase. Binding competition experiments with Erk peptides confirmed a solution in which vimentin covers the phosphorylation lip in pErk, interacting with residues above and below the lip. The same peptides inhibited pErk binding to the dynein complex in sciatic nerve axoplasm, and interfered with protection from phosphatases by vimentin. Thus, a soluble intermediate filament fragment interacts with a signaling kinase and protects it from dephosphorylation by calcium-dependent steric hindrance.
Collapse
Affiliation(s)
- Eran Perlson
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tolstonog GV, Li G, Shoeman RL, Traub P. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA. DNA Cell Biol 2005; 24:85-110. [PMID: 15699629 DOI: 10.1089/dna.2005.24.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoplasmic intermediate filament (cIF) proteins interact strongly with single-stranded (ss) DNAs and RNAs, particularly with G-rich sequences. To test the hypothesis that this interaction depends on special nucleotide sequences and, possibly, higher order structures of ssDNA, a random mixture of mouse genomic ssDNA fragments generated by a novel "whole ssDNA genome PCR" technique via RNA intermediates was subjected to three rounds of affinity binding to in vitro reconstituted vimentin IFs at physiological ionic strength with intermediate PCR amplification of the bound ssDNA segments. Nucleotide sequence and computer folding analysis of the vimentin-selected fragments revealed an enrichment in microsatellites, predominantly of the (GT)n type, telomere DNA, and C/T-rich sequences, most of which, however, were incapable of folding into stable stem-loop structures. Because G-rich sequences were underrepresented in the vimentin-bound fraction, it had to be assumed that such sequences require intramolecular folding or lateral assembly into multistrand structures to be able to stably interact with vimentin, but that this requirement was inadequately fulfilled under the conditions of the selection experiment. For that reason, the few vimentin-selected G-rich ssDNA fragments and a number of telomere models were analyzed for their capacity to form inter- and intramolecular Gquadruplexes (G4 DNAs) under optimized conditions and to interact as such with vimentin and its type III relatives, glial fibrillary acidic protein, and desmin. Band shift assays indeed demonstrated differential binding of the cIF proteins to parallel four-stranded G4 DNAs and, with lower affinity, to bimolecular G'2 and unimolecular G'4 DNA configurations, whereby the transition regions from four- to single-strandedness played an additional role in the binding reaction. In this respect, the binding activity of cIF proteins was comparable with that toward other noncanonical DNA structures, like ds/ss DNA forks, triplex DNA, four-way junction DNA and Z-DNA, which also involve configurational transitions in their interaction with the filament proteins. Association of the cIF proteins with the corresponding nonfolded G-rich ssDNAs was negligible. Considering the almost universal involvement of ssDNA regions and G-quadruplexes in nuclear processes, including DNA transcription and recombination as well as telomere maintenance and dynamics, it is plausible to presume that cIF proteins as complementary constituents of the nuclear matrix participate in the cell- and tissue-specific regulation of these processes.
Collapse
|
20
|
Herrmann H, Aebi U. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 2004; 73:749-89. [PMID: 15189158 DOI: 10.1146/annurev.biochem.73.011303.073823] [Citation(s) in RCA: 509] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The superfamily of intermediate filament (IF) proteins contains at least 65 distinct proteins in man, which all assemble into approximately 10 nm wide filaments and are principal structural elements both in the nucleus and the cytoplasm with essential scaffolding functions in metazoan cells. At present, we have only circumstantial evidence of how the highly divergent primary sequences of IF proteins lead to the formation of seemingly similar polymers and how this correlates with their function in individual cells and tissues. Point mutations in IF proteins, particularly in lamins, have been demonstrated to lead to severe, inheritable multi-systemic diseases, thus underlining their importance at several functional levels. Recent structural work has now begun to shed some light onto the complex fine tuning of structure and function in these fibrous, coiled coil forming multidomain proteins and their contribution to cellular physiology and gene regulation.
Collapse
Affiliation(s)
- Harald Herrmann
- Department of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
21
|
Gu L, Troncoso JC, Wade JB, Monteiro MJ. In vitro assembly properties of mutant and chimeric intermediate filament proteins: insight into the function of sequences in the rod and end domains of IF. Exp Cell Res 2004; 298:249-61. [PMID: 15242779 DOI: 10.1016/j.yexcr.2004.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 04/19/2004] [Indexed: 11/30/2022]
Abstract
The factors and mechanisms regulating assembly of intermediate filament (IF) proteins to produce filaments with their characteristic 10 nm diameter are not fully understood. All IF proteins contain a central rod domain flanked by variable head and tail domains. To elucidate the role that different domains of IF proteins play in filament assembly, we used negative staining and electron microscopy (EM) to study the in vitro assembly properties of purified bacterially expressed IF proteins, in which specific domains of the proteins were either mutated or swapped between a cytoplasmic (mouse neurofilament-light (NF-L) subunit) and nuclear intermediate filament protein (human lamin A). Our results indicate that filament formation is profoundly influenced by the composition of the assembly buffer. Wild type (wt) mouse NF-L formed 10 nm filaments in assembly buffer containing 175 mM NaCl, whereas a mutant deleted of 18 NH2-terminal amino acids failed to assemble under similar conditions. Instead, the mutant assembled efficiently in buffers containing CaCl2 > or = 6 mM forming filaments that were 10 times longer than those formed by wt NF-L, although their diameter was significantly smaller (6-7 nm). These results suggest that the 18 NH2-terminal sequence of NF-L might serve two functions, to inhibit filament elongation and to promote lateral association of NF-L subunits. We also demonstrate that lengthening of the NF-L rod domain, by inserting a 42 aa sequence unique to nuclear IF proteins, does not compromise filament assembly in any noticeable way. Our results suggests that the known inability of nuclear lamin proteins to assemble into 10 nm filaments in vitro cannot derive solely from their longer rod domain. Finally, we demonstrate that the head domain of lamin A can substitute for that of NF-L in filament assembly, whereas substitution of both the head and tail domains of lamins for those of NF-L compromises assembly. Therefore, the effect of lamin A "tail" domain alone, or the synergistic effect of lamin "head" and the "tail" domains together, interferes with assembly into 10-nm filaments.
Collapse
Affiliation(s)
- Lisa Gu
- Molecular and Cell Biology Graduate Program, University of Maryland Biotechnology Institute, Baltimore 21201, USA
| | | | | | | |
Collapse
|
22
|
Li G, Tolstonog GV, Traub P. Interaction in vitro of type III intermediate filament proteins with Z-DNA and B-Z-DNA junctions. DNA Cell Biol 2003; 22:141-69. [PMID: 12804114 DOI: 10.1089/104454903321655783] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The selection of DNA fragments containing simple d(GT)(n) and composite d(GT)(m). d(GA)(n) microsatellites during affinity binding of mouse genomic DNA to type III cytoplasmic intermediate filaments (cIFs) in vitro, and the detection of such repeats, often as parts of nuclear matrix attachment region (MAR)-like DNA, in SDS-stable DNA-vimentin crosslinkage products isolated from intact fibroblasts, prompted a detailed study of the interaction of type III cIF proteins with left-handed Z-DNA formed from d(GT)(17) and d(CG)(17) repeats under the topological tension of negatively supercoiled plasmids. Although d(GT)(n) tracts possess a distinctly lower Z-DNA-forming potential than d(CG)(n) tracts, the filament proteins produced a stronger electrophoretic mobility shift with a plasmid carrying a d(GT)(17) insert than with plasmids containing different d(CG)(n) inserts, consistent with the facts that the B-Z transition of d(GT)(n) repeats requires a higher negative superhelical density than that of d(CG)(n) repeats and the affinity of cIF proteins for plasmid DNA increases with its superhelical tension. That both types of dinucleotide repeat had indeed undergone B-Z transition was confirmed by S1 nuclease and chemical footprinting analysis of the plasmids, which also demonstrated efficient protection by cIF proteins from nucleolytic and chemical attack of the Z-DNA helices as such, as well as of the flanking B-Z junctions. The analysis also revealed sensibilization of nucleotides in the center of one of the two strands of a perfect d(CG)(17) insert toward S1 nuclease, indicating cIF protein-induced bending of the repeat. In all these assays, vimentin and glial fibrillary acidic protein (GFAP) showed comparable activities, versus desmin, which was almost inactive. In addition, vimentin and GFAP exhibited much higher affinities for the Z-DNA conformation of brominated, linear d(CG)(25) repeats than for the B-DNA configuration of the unmodified oligonucleotides. While double-stranded DNA was incapable of chasing the Z-DNA from its protein complexes, and Holliday junction and single-stranded (ss)DNA were distinguished by reasonable competitiveness, phosphatidylinositol (PI) and, particularly, phosphatidylinositol 4,5-diphosphate (PIP(2)) turned out to be extremely potent competitors. Because PIP(2) is an important member of the nuclear PI signal transduction cascade, it might exert a regulatory influence on the binding of cIF proteins to Z- and other DNA conformations. From this interaction of cIF proteins with Z- and bent DNA and their previously detected affinities for MAR-like, ss, triple helical, and four-way junction DNA, it may be concluded that the filament proteins play a general role in such nuclear matrix-associated processes as DNA replication, recombination, repair, and transcription.
Collapse
Affiliation(s)
- Guohong Li
- Max-Planck Institut für Zellbiologie, Rosenhof, 68526 Ladenburg, Germany
| | | | | |
Collapse
|