1
|
Nakamura A, Towheed T. Pathogenesis, assessment, and management of bone loss in axial spondyloarthritis. Semin Arthritis Rheum 2024; 64:152345. [PMID: 38103486 DOI: 10.1016/j.semarthrit.2023.152345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Axial spondyloarthritis (axSpA) presents a complex scenario where both new bone formation in entheseal tissues and significant trabecular bone loss coexist, emphasizing the intricate nature of bone dynamics in this context. METHODS A search of the literature was conducted to compose a narrative review exploring the pathogenesis, possible assessment methods, and potential management options for axSpA. RESULTS While chronic systemic and local inflammation contribute to bone loss, the mechanisms behind axSpA-associated bone loss exhibit distinct characteristics influenced by factors like mechanical stress and the gut microbiome. These factors directly or indirectly stimulate osteoclast differentiation and activation through the RANK-RANKL axis, while simultaneously impeding osteoblast differentiation via negative regulation of bone anabolic pathways, including the Wnt signaling pathway. This disruption in the balance between bone-resorbing osteoclasts and bone-forming osteoblasts contributes to overall bone loss in axSpA. Early evaluation at diagnosis is prudent for detecting bone changes. While traditional dual x-ray absorptiometry (DXA) has limitations due to potential overestimation from spinal new bone formation, alternative methods like trabecular bone score (TBS), quantitative CT (QCT), and quantitative ultrasound (QUS) show promise. However, their integration into routine clinical practice remains limited. In addition to approved anti-inflammatory drugs, lifestyle adjustments like regular exercise play a key role in preserving bone health. Tailoring interventions based on individual risk profiles holds potential for mitigating bone loss progression. CONCLUSION Recognizing the pivotal role of bone loss in axSpA underscores the importance of integrating regular assessments and effective management strategies into clinical practice. Given the multifaceted contributors to bone loss in axSpA, a multidisciplinary approach is essential.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Translational Institute of Medicine, School of Medicine, Queen's University, Ontario, Canada; Kingston Health Science Centre, Kingston, Ontario, Canada.
| | - Tanveer Towheed
- Department of Medicine, Division of Rheumatology, Queen's University, Kingston, Ontario, Canada; Translational Institute of Medicine, School of Medicine, Queen's University, Ontario, Canada; Kingston Health Science Centre, Kingston, Ontario, Canada.
| |
Collapse
|
2
|
Weng W, Bovard D, Zanetti F, Ehnert S, Braun B, Uynuk-Ool T, Histing T, Hoeng J, Nussler AK, Aspera-Werz RH. Tobacco heating system has less impact on bone metabolism than cigarette smoke. Food Chem Toxicol 2023; 173:113637. [PMID: 36708864 DOI: 10.1016/j.fct.2023.113637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Cigarette smoking promotes osteoclast activity, thus increasing the risk of secondary osteoporosis, leading to osteoporosis-associated fracture and impaired fracture healing. Heated tobacco products (HTP) are considered potential reduced-risk alternatives to cigarettes. However, their impact on bone metabolism remains to be elucidated. We developed an in vitro model that mimics in vivo bone cell interactions to comparatively evaluate the effects of HTPs and cigarette smoke on bone cell functionality and viability. We generated an in vitro coculture system with SCP-1 and THP-1 cells (1:8 ratio) cultured on a decellularized Saos-2 matrix with an optimized coculture medium. We found that, following acute or chronic exposure, particulate matter extract from the aerosol of an HTP, the Tobacco Heating System (THS), was less harmful to the bone coculture system than reference cigarette (1R6F) smoke extract. In the fracture healing model, cultures exposed to the THS extract maintained similar osteoclast activity and calcium deposits as control cultures. Conversely, smoke extract exposure promoted osteoclast activity, resulting in an osteoporotic environment, whose formation could be prevented by bisphosphonate coadministration. Thus, THS is potentially less harmful than cigarette smoke to bone cell differentiation and bone mineralization - both being crucial aspects during the reparative phase of fracture healing.
Collapse
Affiliation(s)
- Weidong Weng
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Bianca Braun
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Tatiana Uynuk-Ool
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Tina Histing
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Andreas K Nussler
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Romina H Aspera-Werz
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| |
Collapse
|
3
|
Moritani Y, Hasegawa T, Yamamoto T, Hongo H, Yimin, Abe M, Yoshino H, Nakanishi K, Maruoka H, Ishizu H, Shimizu T, Takahata M, Iwasaki N, Li M, Tei K, Ohiro Y, Amizuka N. Histochemical assessment of accelerated bone remodeling and reduced mineralization in Il-6 deficient mice. J Oral Biosci 2022; 64:410-421. [DOI: 10.1016/j.job.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
4
|
Qu X, Xu G, Hou X, Chen G, Fan T, Yang X, Chen Z. M1 Macrophage-Derived Interleukin-6 Promotes the Osteogenic Differentiation of Ligamentum Flavum Cells. Spine (Phila Pa 1976) 2022; 47:E527-E535. [PMID: 35044344 DOI: 10.1097/brs.0000000000004319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/17/2021] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Basic experimental study. OBJECTIVE The aim of this study was to clarify the role of macrophages (Mφs) in the osteogenic differentiation of ligamentum flavum (LF) cells. SUMMARY OF BACKGROUND DATA Mφs and secreted factors are involved in the regulation of cell osteogenic differentiation, and play an important role in the process of heterotopic ossification. Whether Mφs are involved in the development of ossification of the ligamentum flavum (OLF) have not been reported. METHODS The expression of CD68+ Mφs in ossified LF tissue was identified by immunohistochemical staining. THP-1 cells were polarized to M1 and M2, and identified by flow cytometry and immunofluorescence. The alkaline phosphatase activity and osteogenic differentiation-related gene expression in LF cells were evaluated following incubation with each Mφs conditioned medium (CM). Enzyme-linked immunosorbent assay was used to detect the pro-inflammatory cytokines in the supernatants, and qPCR was used to detect the expression of the corresponding receptors in the LF cells after incubation with the CM. LF cells were induced with CM-M1 in the presence of neutralizing antibodies to further test whether cytokines secreted by M1 Mφs impacted their osteogenic differentiation. RESULTS CD68+ Mφs were found on the OLF samples. THP-1 cells were polarized into M1 and M2, and both M1 and M2 Mφs promoted the osteogenic differentiation of LF cells. The concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1 β, and IL-6 in M1 Mφ supernatants were greater than those in M2, and greater levels of these cytokine receptors were observed in LF cells induced with CM-M1 than those with CM-M2. Osteogenic differentiation of LF cells induced by CM-M1 decreased after IL-6 was neutralized; however, not after IL-1β and TNF-α were neutralized. CONCLUSION M1 Mφ-derived IL-6 promotes the osteogenic differentiation of LF cells, which may be a pathway in which Mφs regulate the osteogenic differentiation of LF cells.
Collapse
Affiliation(s)
- Xiaochen Qu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopadic Diseases, Liaoning Province, Dalian, PR China
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| | - Gang Xu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopadic Diseases, Liaoning Province, Dalian, PR China
| | - Xiaofei Hou
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing, PR China
| | - Guanghui Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| | - Tianqi Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| | - Xiaoxi Yang
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| | - Zhongqiang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, PR China
| |
Collapse
|
5
|
Sabbaghzadeh A, Bonakdar S, Gorji M, Gholipour M. Evaluation of the effect of preoperative hemoglobin level and proinflammatory factors on intertrochanteric fracture union. Wien Klin Wochenschr 2022; 134:458-462. [PMID: 35639200 DOI: 10.1007/s00508-022-02042-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Intertrochanteric fractures are associated with high mortality and morbidity, so these patients should undergo fracture fixation surgery immediately. Despite surgery, the possibility of fracture fusion may not occur due to the association with various causes. Therefore, our aim is to investigate these factors (TNF‑a, IL‑1, Hb) and their effect on fracture union after fixation. METHODS From 2018 to 2020, at our orthopedic trauma center, 163 patients older than 50 years with intertrochanteric fractures underwent DHS fixation surgery. Patients were divided into anemic and non-anemic groups in terms of preoperative hemoglobin level (standard hemoglobin 11 mg/dl). For 3 months, patients were assessed for union and failure fixation criteria, levels of proinflammation (TNF‑α, IL-1) and level of hemoglobin. RESULTS The results show that out of 163 patients with fractures, at the time of initial admission, 74 patients had less than 11 hemoglobin g/dl. Patients with union fractures had higher hemoglobin levels than patients with non-union (11.71 ± 1.51 versus 11.24 ± 1.96), which was statistically significant between hemoglobin and union level (p = 0.030). At the end of the third visit (third month), 44 (59.5%) anemic patients received union completly, while among the patients with normal hemoglobin level, 32 (36%) received union bread, which was statistically significant (p = 0.003). There were no statistically significant differences between proinflammatory factors before surgery and 3 months after surgery (p > 0.05). CONCLUSION Due to the effect of anemia and proinflammatory factors in the process of healing fractures and bone formation and creating musculoskeletal balance, low hemoglobin level before surgery has a significant effect on fracture union and failure of fixation. So it is recommended to correct this anemia in these patients before surgery and during follow-up.
Collapse
Affiliation(s)
- Amir Sabbaghzadeh
- Physiotherapy Research Center, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,Clinical Research Development Unit, Akhtar Hospital Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Sona Bonakdar
- Department of Foreign Languages, Urmia University, Urmia, Iran
| | - Mona Gorji
- Physiotherapy Research Center, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,Skin research center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Morteza Gholipour
- Physiotherapy Research Center, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran. .,Clinical Research Development Unit, Akhtar Hospital Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
6
|
Hayashi Y, Kawabata KC, Tanaka Y, Uehara Y, Mabuchi Y, Murakami K, Nishiyama A, Kiryu S, Yoshioka Y, Ota Y, Sugiyama T, Mikami K, Tamura M, Fukushima T, Asada S, Takeda R, Kunisaki Y, Fukuyama T, Yokoyama K, Uchida T, Hagihara M, Ohno N, Usuki K, Tojo A, Katayama Y, Goyama S, Arai F, Tamura T, Nagasawa T, Ochiya T, Inoue D, Kitamura T. MDS cells impair osteolineage differentiation of MSCs via extracellular vesicles to suppress normal hematopoiesis. Cell Rep 2022; 39:110805. [PMID: 35545056 DOI: 10.1016/j.celrep.2022.110805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/15/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a clonal disorder of hematopoietic stem cells (HSCs), characterized by ineffective hematopoiesis and frequent progression to leukemia. It has long remained unresolved how MDS cells, which are less proliferative, inhibit normal hematopoiesis and eventually dominate the bone marrow space. Despite several studies implicating mesenchymal stromal or stem cells (MSCs), a principal component of the HSC niche, in the inhibition of normal hematopoiesis, the molecular mechanisms underlying this process remain unclear. Here, we demonstrate that both human and mouse MDS cells perturb bone metabolism by suppressing the osteolineage differentiation of MSCs, which impairs the ability of MSCs to support normal HSCs. Enforced MSC differentiation rescues the suppressed normal hematopoiesis in both in vivo and in vitro MDS models. Intriguingly, the suppression effect is reversible and mediated by extracellular vesicles (EVs) derived from MDS cells. These findings shed light on the novel MDS EV-MSC axis in ineffective hematopoiesis.
Collapse
Affiliation(s)
- Yasutaka Hayashi
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Kimihito C Kawabata
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Division of Hematology/Medical Oncology, Department of Medicine, Weill-Cornell Medical College, Cornell University, NY 10021, USA
| | - Yosuke Tanaka
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasufumi Uehara
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Koichi Murakami
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0043, Japan; Advanced Medical Research Center, Yokohama City University, Yokohama 236-0043, Japan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0043, Japan
| | - Shigeru Kiryu
- Department of Radiology, International University of Health and Welfare Narita Hospital, Chiba 286-8686, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yasunori Ota
- Department of Pathology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuki Sugiyama
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Keiko Mikami
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Moe Tamura
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shuhei Asada
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Reina Takeda
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yuya Kunisaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoyuki Uchida
- Department of Hematology, Eiju General Hospital, Tokyo 110-8645, Japan
| | - Masao Hagihara
- Department of Hematology, Eiju General Hospital, Tokyo 110-8645, Japan
| | - Nobuhiro Ohno
- Department of Hematology, Kanto Rosai Hospital, Kawasaki 211-8510, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo 141-8625, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | | | - Susumu Goyama
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomohiko Tamura
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama 236-0043, Japan
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Minatojimaminami-machi, Chuo-ku, Kobe 650-0047, Japan.
| | - Toshio Kitamura
- Division of Cellular Therapy, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
7
|
Khalili M, Keshvari H, Imani R, Sohi AN, Esmaeili E, Tajabadi M. Study of osteogenic potential of electrospun
PCL
incorporated by dendrimerized superparamagnetic nanoparticles as a bone tissue engineering scaffold. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mahsa Khalili
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Hamid Keshvari
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Rana Imani
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Alireza Naderi Sohi
- Department of Nanobiotechnology, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Elaheh Esmaeili
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Maryam Tajabadi
- School of Metallurgy and Materials Engineering Iran University of Science and Technology (IUST) Tehran Iran
| |
Collapse
|
8
|
Zhang D, Zhang R, Song X, Yan KC, Liang H. Uniaxial Cyclic Stretching Promotes Chromatin Accessibility of Gene Loci Associated With Mesenchymal Stem Cells Morphogenesis and Osteogenesis. Front Cell Dev Biol 2021; 9:664545. [PMID: 34307349 PMCID: PMC8294092 DOI: 10.3389/fcell.2021.664545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/28/2021] [Indexed: 01/08/2023] Open
Abstract
It has been previously demonstrated that uniaxial cyclic stretching (UCS) induces differentiation of mesenchymal stem cells (MSCs) into osteoblasts in vitro. It is also known that interactions between cells and external forces occur at various aspects including cell–matrix, cytoskeleton, nucleus membrane, and chromatin. However, changes in chromatin landscape during this process are still not clear. The present study was aimed to determine changes of chromatin accessibility under cyclic stretch. The influence of cyclic stretching on the morphology, proliferation, and differentiation of hMSCs was characterized. Changes of open chromatin sites were determined by assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq). Our results showed that UCS induced cell reorientation and actin stress fibers realignment, and in turn caused nuclear reorientation and deformation. Compared with unstrained group, the expression of osteogenic and chondrogenic marker genes were the highest in group of 1 Hz + 8% strain; this condition also led to lower cell proliferation rate. Furthermore, there were 2022 gene loci with upregulated chromatin accessibility in 1 Hz + 8% groups based on the analysis of chromatin accessibility. These genes are associated with regulation of cell morphogenesis, cell–substrate adhesion, and ossification. Signaling pathways involved in osteogenic differentiation were found in up-regulated GO biological processes. These findings demonstrated that UCS increased the openness of gene loci associated with regulation of cell morphogenesis and osteogenesis as well as the corresponding transcription activities. Moreover, the findings also connect the changes in chromatin accessibility with cell reorientation, nuclear reorientation, and deformation. Our study may provide reference for directed differentiation of stem cells induced by mechanical microenvironments.
Collapse
Affiliation(s)
- Duo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Ran Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Karen Chang Yan
- Mechanical Engineering and Biomedical Engineering, The College of New Jersey, Ewing Township, NJ, United States
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Kreps LM, Addison CL. Targeting Intercellular Communication in the Bone Microenvironment to Prevent Disseminated Tumor Cell Escape from Dormancy and Bone Metastatic Tumor Growth. Int J Mol Sci 2021; 22:ijms22062911. [PMID: 33805598 PMCID: PMC7998601 DOI: 10.3390/ijms22062911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Metastasis to the bone is a common feature of many cancers including those of the breast, prostate, lung, thyroid and kidney. Once tumors metastasize to the bone, they are essentially incurable. Bone metastasis is a complex process involving not only intravasation of tumor cells from the primary tumor into circulation, but extravasation from circulation into the bone where they meet an environment that is generally suppressive of their growth. The bone microenvironment can inhibit the growth of disseminated tumor cells (DTC) by inducing dormancy of the DTC directly and later on following formation of a micrometastatic tumour mass by inhibiting metastatic processes including angiogenesis, bone remodeling and immunosuppressive cell functions. In this review we will highlight some of the mechanisms mediating DTC dormancy and the complex relationships which occur between tumor cells and bone resident cells in the bone metastatic microenvironment. These inter-cellular interactions may be important targets to consider for development of novel effective therapies for the prevention or treatment of bone metastases.
Collapse
Affiliation(s)
- Lauren M. Kreps
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Christina L. Addison
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Correspondence: ; Tel.: +1-613-737-7700
| |
Collapse
|
10
|
Niu Y, Wang Z, Shi Y, Dong L, Wang C. Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches. Bioact Mater 2021; 6:244-261. [PMID: 32913932 PMCID: PMC7451865 DOI: 10.1016/j.bioactmat.2020.08.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023] Open
Abstract
A coordinated interaction between osteogenesis and osteoimmune microenvironment is essential for successful bone healing. In particular, macrophages play a central regulatory role in all stages of bone repair. Depending on the signals they sense, these highly plastic cells can mediate the host immune response against the exterior signals of molecular stimuli and implanted scaffolds, to exert regenerative potency to a varying extent. In this article, we first encapsulate the immunomodulatory functions of macrophages during bone regeneration into three aspects, as sweeper, mediator and instructor. We introduce the phagocytic role of macrophages in different bone healing periods ('sweeper') and overview a variety of paracrine cytokines released by macrophages either mediating cell mobilisation, vascularisation and matrix remodelling ('mediator'), or directly driving the osteogenic differentiation of bone progenitors and bone repair ('instructor'). Then, we systematically classify and discuss the emerging engineering strategies to recruit, activate and modulate the phenotype transition of macrophages, to exploit the power of endogenous macrophages to enhance the performance of engineered bone tissue.
Collapse
Affiliation(s)
- Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Zhenzhen Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Yuchen Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Macau SAR, China
| |
Collapse
|
11
|
Sukul M, Sahariah P, Lauzon HL, Borges J, Másson M, Mano JF, Haugen HJ, Reseland JE. In vitro biological response of human osteoblasts in 3D chitosan sponges with controlled degree of deacetylation and molecular weight. Carbohydr Polym 2020; 254:117434. [PMID: 33357907 DOI: 10.1016/j.carbpol.2020.117434] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/03/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022]
Abstract
We have studied the effect of chitosan sponges, produced from chitosan batches with distinct degree of deacetylation (DDA) and molecular weight (Mw), on the adhesion, growth and differentiation of primary human osteoblasts with an aim to offer a suitable tool for guided bone regeneration. All the chitosan sponges revealed similar microstructure, irrespective of the DDA (58, 73, 82, 88, and 91 %) and Mw (749, 547, 263, 215, and 170 kDa, respectively). Cell spreading was higher on sponges having a higher DDA. Higher DDA induced a more pronounced increase in alkaline phosphatase activity, osteopontin (OPN), vascular endothelial growth factor-A (VEGF), interleukin-6 (IL-6), and reduction in monocyte chemoattractant protein-1 (MCP-1), sclerostin (SOST) and dickkopf related protein-1 as compared to lower DDA. Lower DDA induced the increased secretion of osteoprotegerin and SOST as compared to higher DDA. The combination of higher DDA and Mw induced an increased secretion of VEGF and IL-6, however reduced the secretion of OPN as compared to chitosan with similar DDA but with lower Mw. In summary, the variations in cellular responses to the different chitosan sponges indicate a potential for individual tailoring of desired responses in guided bone regeneration.
Collapse
Affiliation(s)
- Mousumi Sukul
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway.
| | - Priyanka Sahariah
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland
| | | | - João Borges
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
12
|
Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency. Nat Commun 2020; 11:4977. [PMID: 33020483 PMCID: PMC7536220 DOI: 10.1038/s41467-020-18701-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Although thousands of breast cancer cells disseminate and home to bone marrow until primary surgery, usually less than a handful will succeed in establishing manifest metastases months to years later. To identify signals that support survival or outgrowth in patients, we profile rare bone marrow-derived disseminated cancer cells (DCCs) long before manifestation of metastasis and identify IL6/PI3K-signaling as candidate pathway for DCC activation. Surprisingly, and similar to mammary epithelial cells, DCCs lack membranous IL6 receptor expression and mechanistic dissection reveals IL6 trans-signaling to regulate a stem-like state of mammary epithelial cells via gp130. Responsiveness to IL6 trans-signals is found to be niche-dependent as bone marrow stromal and endosteal cells down-regulate gp130 in premalignant mammary epithelial cells as opposed to vascular niche cells. PIK3CA activation renders cells independent from IL6 trans-signaling. Consistent with a bottleneck function of microenvironmental DCC control, we find PIK3CA mutations highly associated with late-stage metastatic cells while being extremely rare in early DCCs. Our data suggest that the initial steps of metastasis formation are often not cancer cell-autonomous, but also depend on microenvironmental signals. Metastatic dissemination in breast cancer patients occurs early in malignant transformation, raising questions about how disseminated cancer cells (DCC) progress at distant sites. Here, the authors show that DCCs in bone marrow are activated via IL6-trans-signaling and thereby acquire stemness traits relevant for metastasis formation.
Collapse
|
13
|
Xiong L, Zhao K, Cao Y, Guo HH, Pan JX, Yang X, Ren X, Mei L, Xiong WC. Linking skeletal muscle aging with osteoporosis by lamin A/C deficiency. PLoS Biol 2020; 18:e3000731. [PMID: 32479501 PMCID: PMC7310860 DOI: 10.1371/journal.pbio.3000731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/23/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
The nuclear lamina protein lamin A/C is a key component of the nuclear envelope. Mutations in the lamin A/C gene (LMNA) are identified in patients with various types of laminopathy-containing diseases, which have features of accelerated aging and osteoporosis. However, the underlying mechanisms for laminopathy-associated osteoporosis remain largely unclear. Here, we provide evidence that loss of lamin A/C in skeletal muscles, but not osteoblast (OB)-lineage cells, results in not only muscle aging-like deficit but also trabecular bone loss, a feature of osteoporosis. The latter is due in large part to elevated bone resorption. Further cellular studies show an increase of osteoclast (OC) differentiation in cocultures of bone marrow macrophages/monocytes (BMMs) and OBs after treatment with the conditioned medium (CM) from lamin A/C-deficient muscle cells. Antibody array screening analysis of the CM proteins identifies interleukin (IL)-6, whose expression is markedly increased in lamin A/C-deficient muscles. Inhibition of IL-6 by its blocking antibody in BMM-OB cocultures diminishes the increase of osteoclastogenesis. Knockout (KO) of IL-6 in muscle lamin A/C-KO mice diminishes the deficits in trabecular bone mass but not muscle. Further mechanistic studies reveal an elevation of cellular senescence marked by senescence-associated beta-galactosidase (SA-β-gal), p16Ink4a, and p53 in lamin A/C-deficient muscles and C2C12 muscle cells, and the p16Ink4a may induce senescence-associated secretory phenotype (SASP) and IL-6 expression. Taken together, these results suggest a critical role for skeletal muscle lamin A/C to prevent cellular senescence, IL-6 expression, hyperosteoclastogenesis, and trabecular bone loss, uncovering a pathological mechanism underlying the link between muscle aging/senescence and osteoporosis.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Yu Cao
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
| | - Xiao Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Louis Stoke VA Medical Center, Cleveland, Ohio, United States of America
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
14
|
mTOR and STAT3 Pathway Hyper-Activation is Associated with Elevated Interleukin-6 Levels in Patients with Shwachman-Diamond Syndrome: Further Evidence of Lymphoid Lineage Impairment. Cancers (Basel) 2020; 12:cancers12030597. [PMID: 32150944 PMCID: PMC7139896 DOI: 10.3390/cancers12030597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/29/2022] Open
Abstract
Shwachman–Diamond syndrome (SDS) is a rare inherited bone marrow failure syndrome, resulting in neutropenia and a risk of myeloid neoplasia. A mutation in a ribosome maturation factor accounts for almost all of the cases. Lymphoid involvement in SDS has not been well characterized. We recently reported that lymphocyte subpopulations are reduced in SDS patients. We have also shown that the mTOR-STAT3 pathway is hyper-activated in SDS myeloid cell populations. Here we show that mTOR-STAT3 signaling is markedly upregulated in the lymphoid compartment of SDS patients. Furthermore, our data reveal elevated IL-6 levels in cellular supernatants obtained from lymphoblasts, bone marrow mononuclear and mesenchymal stromal cells, and plasma samples obtained from a cohort of 10 patients. Of note, everolimus-mediated inhibition of mTOR signaling is associated with basal state of phosphorylated STAT3. Finally, inhibition of mTOR-STAT3 pathway activation leads to normalization of IL-6 expression in SDS cells. Altogether, our data strengthen the hypothesis that SDS affects both lymphoid and myeloid blood compartment and suggest everolimus as a potential therapeutic agent to reduce excessive mTOR-STAT3 activation in SDS.
Collapse
|
15
|
Ragipoglu D, Dudeck A, Haffner-Luntzer M, Voss M, Kroner J, Ignatius A, Fischer V. The Role of Mast Cells in Bone Metabolism and Bone Disorders. Front Immunol 2020; 11:163. [PMID: 32117297 PMCID: PMC7025484 DOI: 10.3389/fimmu.2020.00163] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mast cells (MCs) are important sensor and effector cells of the immune system that are involved in many physiological and pathological conditions. Increasing evidence suggests that they also play an important role in bone metabolism and bone disorders. MCs are located in the bone marrow and secrete a wide spectrum of mediators, which can be rapidly released upon activation of mature MCs following their differentiation in mucosal or connective tissues. Many of these mediators can exert osteocatabolic effects by promoting osteoclast formation [e.g., histamine, tumor necrosis factor (TNF), interleukin-6 (IL-6)] and/or by inhibiting osteoblast activity (e.g., IL-1, TNF). By contrast, MCs could potentially act in an osteoprotective manner by stimulating osteoblasts (e.g., transforming growth factor-β) or reducing osteoclastogenesis (e.g., IL-12, interferon-γ). Experimental studies investigating MC functions in physiological bone turnover using MC-deficient mouse lines give contradictory results, reporting delayed or increased bone turnover or no influence depending on the mouse model used. By contrast, the involvement of MCs in various pathological conditions affecting bone is evident. MCs may contribute to the pathogenesis of primary and secondary osteoporosis as well as inflammatory disorders, including rheumatoid arthritis and osteoarthritis, because increased numbers of MCs were found in patients suffering from these diseases. The clinical observations could be largely confirmed in experimental studies using MC-deficient mouse models, which also provide mechanistic insights. MCs also regulate bone healing after fracture by influencing the inflammatory response toward the fracture, vascularization, bone formation, and callus remodeling by osteoclasts. This review summarizes the current view and understanding of the role of MCs on bone in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Deniz Ragipoglu
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Melanie Haffner-Luntzer
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jochen Kroner
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| | - Verena Fischer
- Trauma Research Center Ulm, Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
16
|
El-Jawhari JJ, Kleftouris G, El-Sherbiny Y, Saleeb H, West RM, Jones E, Giannoudis PV. Defective Proliferation and Osteogenic Potential with Altered Immunoregulatory phenotype of Native Bone marrow-Multipotential Stromal Cells in Atrophic Fracture Non-Union. Sci Rep 2019; 9:17340. [PMID: 31758052 PMCID: PMC6874596 DOI: 10.1038/s41598-019-53927-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023] Open
Abstract
Bone marrow-Multipotential stromal cells (BM-MSCs) are increasingly used to treat complicated fracture healing e.g., non-union. Though, the quality of these autologous cells is not well characterized. We aimed to evaluate bone healing-related capacities of non-union BM-MSCs. Iliac crest-BM was aspirated from long-bone fracture patients with normal healing (U) or non-united (NU). Uncultured (native) CD271highCD45low cells or passage-zero cultured BM-MSCs were analyzed for gene expression levels, and functional assays were conducted using culture-expanded BM-MSCs. Blood samples were analyzed for serum cytokine levels. Uncultured NU-CD271highCD45low cells significantly expressed fewer transcripts of growth factor receptors, EGFR, FGFR1, and FGRF2 than U cells. Significant fewer transcripts of alkaline phosphatase (ALPL), osteocalcin (BGLAP), osteonectin (SPARC) and osteopontin (SPP1) were detected in NU-CD271highCD45low cells. Additionally, immunoregulation-related markers were differentially expressed between NU- and U-CD271highCD45low cells. Interestingly, passage-zero NU BM-MSCs showed low expression of immunosuppressive mediators. However, culture-expanded NU and U BM-MSCs exhibited comparable proliferation, osteogenesis, and immunosuppression. Serum cytokine levels were found similar for NU and U groups. Collectively, native NU-BM-MSCs seemed to have low proliferative and osteogenic capacities; therefore, enhancing their quality should be considered for regenerative therapies. Further research on distorted immunoregulatory molecules expression in BM-MSCs could potentially benefit the prediction of complicated fracture healing.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, UK. .,Clinical pathology department, Mansoura University, Mansoura, Egypt.
| | - George Kleftouris
- Academic Department of Trauma and Orthopaedic, Leeds General Infirmary, School of Medicine, University of Leeds, Leeds, UK
| | - Yasser El-Sherbiny
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK.,Clinical pathology department, Mansoura University, Mansoura, Egypt.,Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Hany Saleeb
- Academic Department of Trauma and Orthopaedic, Leeds General Infirmary, School of Medicine, University of Leeds, Leeds, UK
| | - Robert M West
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, UK.,Academic Department of Trauma and Orthopaedic, Leeds General Infirmary, School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
17
|
Lee A, Wei S, Schwertani A. A Notch more: Molecular players in bicuspid aortic valve disease. J Mol Cell Cardiol 2019; 134:62-68. [DOI: 10.1016/j.yjmcc.2019.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 12/20/2022]
|
18
|
Wu X, Ma Y, Chen H, Hao Z, Su N, Li X, Shen J, Wang H. Lysophosphatidic acid induces interleukin-6 and CXCL15 secretion from MLO-Y4 cells through activation of the LPA 1 receptor and PKCθ signaling pathway. Int Immunopharmacol 2019; 74:105664. [PMID: 31233937 DOI: 10.1016/j.intimp.2019.05.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a multifunctional phospholipid. Osteocytes are the most abundant cells in bone and can orchestrate bone formation and resorption, in part by producing cytokines that regulate osteoblast and osteoclast differentiation and activity. Interleukin (IL)-6 and IL-8 are two important cytokines that have potent effects on bone fracture healing. Previous studies suggest that platelet-derived LPA may influence fracture healing by inducing osteocyte dendrite outgrowth. However, the biological mechanism through which LPA induces cytokine production in osteocytes is poorly understood. In this study, we report that LPA markedly enhanced IL-6 and CXCL15 (mouse homologue of human IL-8) production in MLO-Y4 cells and that this enhancement was suppressed by the LPA1/3-selective antagonist Ki16425, the Gi/o protein inhibitor PTX or the protein kinase C (PKC) inhibitor sotrastaurin. We also observed that of all the PKC isoform targets of sotrastaurin, only PKCθ was activated by LPA in MLO-Y4 cells and that this activation was blocked by sotrastaurin, Ki16425 or PTX. Taken together, the results of the present study demonstrate that LPA may be a potent inducer of IL-6 and CXCL15 production in MLO-Y4 cells and that this induction is associated with the activation of LPA1, Gi/o protein and the PKCθ pathway. These findings may help us better understand the mechanism of fracture healing and contribute to the treatment of bone damage.
Collapse
Affiliation(s)
- Xiangnan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuanyuan Ma
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Helin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhichao Hao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Naichuan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Lazzarini R, Caffarini M, Tang H, Cerqueni G, Pellegrino P, Monsurrò V, Di Primio R, Orciani M. The senescent status of endothelial cells affects proliferation, inflammatory profile and SOX2 expression in bone marrow-derived mesenchymal stem cells. Exp Gerontol 2019; 120:21-27. [PMID: 30822486 DOI: 10.1016/j.exger.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/05/2019] [Accepted: 02/24/2019] [Indexed: 12/16/2022]
Abstract
Human aging is a physiological process characterized by a chronic low-grade inflammation. Senescence may affect endothelial cells, subsequently involved in the most common age-related diseases (ARDs), as well as mesenchymal stem cells (MSCs) with an impairment of their properties in tissues regeneration. Endothelial cells seem to be able to exert a paracrine effect on BM-MSCs through the secretion of pro-inflammatory factors. This work is aimed to evaluate if the senescent status of human umbilical vein endothelial cells (HUVECs) could affect bone marrow derived MSCs (BM-MSCs) proliferative ability and stemness. HUVECs were cultured until the senescence status. Young (passage 3) and senescent HUVECs (passage 13) were indirectly co-cultured with BM-MSCs for 8 days in order to evaluate the effect of their senescence status on proliferative ability and stemness of MSCs. The co-culture of senescent HUVECs with BM-MSCs was associated with a reduced proliferative ability of BM-MSCs, an enforced pro-inflammatory phenotype of BM-MSCs (increased synthesis of proinflammatory cytokines such as IL-6 and TNF-α) and an increased expression of miR-126a-3p, in association with a significant decrease of SOX2, a stemmness- associated gene, targeted by miR-126a-3p. A more general IPA analysis, revealed as miR-126a-3p also modulates the expression of IRS1, IRS2, IL6ST and PIK3R2, all targets that enforce the hypothesis that senescent endothelial cells may reduce the proliferative ability and the stemness phenotype of bone marrow-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Miriam Caffarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Huijuan Tang
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Giorgia Cerqueni
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Pamela Pellegrino
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy.
| | - Monia Orciani
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
20
|
Smith JK. IL-6 and the dysregulation of immune, bone, muscle, and metabolic homeostasis during spaceflight. NPJ Microgravity 2018; 4:24. [PMID: 30534586 PMCID: PMC6279793 DOI: 10.1038/s41526-018-0057-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that exercise-related secretion of IL-6 by peripheral blood mononuclear cells is proportionate to body weight, suggesting that IL-6 is gravisensitive and that suboptimal production of this key cytokine may contribute to homeostatic dysregulations that occur during spaceflight. This review details what is known about the role of this key cytokine in innate and adaptive immunity, hematopoiesis, and in bone, muscle and metabolic homeostasis on Earth and in the microgravity of space and suggests an experimental approach to confirm or disavow the role of IL-6 in space-related dysregulations.
Collapse
Affiliation(s)
- John Kelly Smith
- Departments of Academic Affairs and Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN USA
| |
Collapse
|
21
|
Ding ZC, Lin YK, Gan YK, Tang TT. Molecular pathogenesis of fracture nonunion. J Orthop Translat 2018; 14:45-56. [PMID: 30035032 PMCID: PMC6019407 DOI: 10.1016/j.jot.2018.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 02/07/2023] Open
Abstract
Fracture nonunion, a serious bone fracture complication, remains a challenge in clinical practice. Although the molecular pathogenesis of nonunion remains unclear, a better understanding may provide better approaches for its prevention, diagnosis and treatment at the molecular level. This review tries to summarise the progress made in studies of the pathogenesis of fracture nonunion. We discuss the evidence supporting the concept that the development of nonunion is related to genetic factors. The importance of several cytokines that regulate fracture healing in the pathogenesis of nonunion, such as tumour necrosis factor-α, interleukin-6, bone morphogenetic proteins, insulin-like growth factors, matrix metalloproteinases and vascular endothelial growth factor, has been proven in vitro, in animals and in humans. Nitric oxide and the Wnt signalling pathway also play important roles in the development of nonunion. We present potential strategies for the prevention, diagnosis and treatment of nonunion, and the interaction between genetic alteration and abnormal cytokine expression warrants further investigation. The translational potential of this article A better understanding of nonunion molecular pathogenesis may provide better approaches for its prevention, diagnosis and treatment in clinical practice.
Collapse
Affiliation(s)
- Zi-Chuan Ding
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, 639 Zhizaoju Road, Shanghai, China
| | - Yi-Kai Lin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, 639 Zhizaoju Road, Shanghai, China
| | - Yao-Kai Gan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, 639 Zhizaoju Road, Shanghai, China
| | - Ting-Ting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, 639 Zhizaoju Road, Shanghai, China
| |
Collapse
|
22
|
Xu F, Yi J, Wang Z, Hu Y, Han C, Xue Q, Zhang X, Luan X. IL-27 regulates the adherence, proliferation, and migration of MSCs and enhances their regulatory effects on Th1 and Th2 subset generations. Immunol Res 2018; 65:903-912. [PMID: 28612255 PMCID: PMC5544780 DOI: 10.1007/s12026-017-8929-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin 27 (IL-27) regulates T cell function and is involved in inflammation. It has been reported that human placenta-derived mesenchymal stromal cells (hPMSCs) can inhibit T cell responses and attenuate inflammation reactions. However, it is unclear whether IL-27 can regulate hPMSC function. Here, we examined the effects of IL-27 upon adherence, migration, and proliferation as well as the immunomodulatory effects of hPMSCs. The results show that IL-27 receptor α chain (IL-27Rα) is expressed in hPMSCs. IL-27 at 30 ng/ml inhibited hPMSC adherence and proliferation, while the migration of hPMSCs was promoted with IL-27 at doses of 20 or 30 ng/ml, as determined with use of real-time cell analysis (RTCA). Moreover, IL-27 promoted regulatory effects of hPMSCs through enhancing Th2 and suppressing Th1 subset generation from activated T cells in human peripheral blood. IL-27 also enhanced the ability of hPMSCs to secrete IL-10 from CD4+T cells through increased expression levels of the programmed death ligand 1 (PDL1) in hPMSCs via the Janus kinase (JAK)/signal transducer and activator of transcription 1 (STAT1) signaling pathway. In conclusion, IL-27 has significant modulatory effects on adherence, proliferation, and migration of hPMSCs. IL-27 increased PDL1 expression levels in hPMSCs via the JAK/STAT1 pathway, which then enhanced the regulatory effects of hPMSCs upon Th1 and Th2 cell generations and IL-10 secretion from CD4+T cells.
Collapse
Affiliation(s)
- Fenghuang Xu
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Junzhu Yi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Zhuoya Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Yejia Hu
- Department of Pathophysiology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Chunlei Han
- Department of Health Statistics, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China
| | - Qun Xue
- Medical College of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Xueguang Zhang
- Medical College of Soochow University, Suzhou, Jiangsu, 215006, People's Republic of China
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China. .,Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, Shandong Province, 264003, People's Republic of China.
| |
Collapse
|
23
|
Zhu S, He H, Gao C, Luo G, Xie Y, Wang H, Tian L, Chen X, Yu X, He C. Ovariectomy-induced bone loss in TNFα and IL6 gene knockout mice is regulated by different mechanisms. J Mol Endocrinol 2018; 60:185-198. [PMID: 29339399 DOI: 10.1530/jme-17-0218] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/15/2018] [Indexed: 02/05/2023]
Abstract
We examined the effects of tumor necrosis factor-α (TNFα) and interleukin-6 (IL6) gene knockout in preserving the bone loss induced by ovariectomy (OVX) and the mechanisms involved in bone metabolism. Twenty female wild-type (WT), TNFα-knockout (TNFα-/-) or IL6-knockout (IL6-/-) mice aged 12 weeks were sham-operated (SHAM) or subjected to OVX and killed after 4 weeks. Bone mass and skeletal microarchitecture were determined using micro-CT. Bone marrow stromal cells (BMSCs) from all three groups (WT, TNFα-/- and IL6-/-) were induced to differentiate into osteoblasts or osteoclasts and treated with 17-β-estradiol. Bone metabolism was assessed by histological analysis, serum analyses and qRT-PCR. OVX successfully induced a high turnover in all mice, but a repair effect was observed in TNFα-/- and IL6-/- mice. The ratio of femoral trabecular bone volume to tissue volume, trabecular number and trabecular thickness were significantly decreased in WT mice subjected to OVX, but increased in TNFα-/- mice (1.62, 1.34, 0.27-fold respectively; P < 0.01) and IL6-/- mice (1.34, 0.80, 0.22-fold respectively; P < 0.01). Furthermore, we observed a 29.6% increase in the trabecular number in TNFα-/- mice when compared to the IL6-/- mice. Both, TNFα-/- and IL6-/- BMSCs exhibited decreased numbers of TRAP-positive cells and an increase in ALP-positive cells, with or without E2 treatment (P < 0.05). While the knockout of TNFα or IL6 significantly upregulated mRNA expressions of osteoblast-related genes (Runx2 and Col1a1) and downregulated osteoclast-related mRNA for TRAP, MMP9 and CTSK in vivo and in vitro, TNFα knockout appeared to have roles beyond IL6 knockout in upregulating Col1a1 mRNA expression and downregulating mRNA expressions of WNT-related genes (DKK1 and Sost) and TNF-related activation-induced genes (TRAF6). TNFα seemed to be more potentially invasive in inhibiting bone formation and enhancing TRAF6-mediated osteoclastogenesis than IL6, implying that the regulatory mechanisms of TNFα and IL6 in bone metabolism may be different.
Collapse
Affiliation(s)
- Siyi Zhu
- Rehabilitation Medicine CenterWest China Hospital, Sichuan University, Chengdu, China
- Rehabilitation Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University, Chengdu, China
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongchen He
- Rehabilitation Medicine CenterWest China Hospital, Sichuan University, Chengdu, China
| | - Chengfei Gao
- Rehabilitation Medicine CenterWest China Hospital, Sichuan University, Chengdu, China
- Rehabilitation Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and ReconstructionSichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Guojing Luo
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xie
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haiming Wang
- Rehabilitation Medicine CenterWest China Hospital, Sichuan University, Chengdu, China
- Rehabilitation Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Chen
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Rehabilitation Medicine CenterWest China Hospital, Sichuan University, Chengdu, China
- Rehabilitation Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and ReconstructionSichuan University-The Hong Kong Polytechnic University, Chengdu, China
| |
Collapse
|
24
|
Xie Z, Tang S, Ye G, Wang P, Li J, Liu W, Li M, Wang S, Wu X, Cen S, Zheng G, Ma M, Wu Y, Shen H. Interleukin-6/interleukin-6 receptor complex promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2018; 9:13. [PMID: 29357923 PMCID: PMC5776773 DOI: 10.1186/s13287-017-0766-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/24/2017] [Accepted: 12/27/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) with IL-6 receptor (IL-6R) play an important role in the tissue regeneration in vivo, especially bone metabolism. Bone marrow -derived mesenchymal stem cells (BM-MSCs) are multipotent stromal cells, which are main origin of osteoblasts. However, the roles of IL-6 and IL-6R in the osteogenic differentiation of BM-MSCs are still unclear. METHODS The expression of IL-6 and IL-6R was detected in BM-MSCs during osteogenic differentiation. The activation of the STAT3 pathway was assessed and its role in the osteogenic differentiation of BM-MSCs was determined using the specific inhibitor AG490. Exogenous IL-6/soluble IL-6R or antibodies against IL-6/IL-6R were used to confirm the mechanism by which the IL-6/IL-6R complex promotes the osteogenic differentiation. RESULTS The levels of IL-6 and IL-6R, especially the level of membranous IL-6R but not that of soluble IL-6R, increased during osteogenic differentiation in BM-MSCs. The levels of IL-6 and IL-6R were positively correlated with the osteogenic potential of BM-MSCs. The STAT3 signaling pathway was activated during the osteogenic differentiation of BM-MSCs. AG490 markedly inhibited the activation of the STAT3 pathway and, subsequently, the osteogenic differentiation potential of BM-MSCs. Additionally, exogenous IL-6 and soluble IL-6R accelerated the osteogenic differentiation of BM-MSCs. In contrast, antibodies against IL-6 or IL-6R suppressed the osteogenic differentiation of BM-MSCs. Moreover, IL-6 and IL-6R were found to stimulate each other's expression in BM-MSCs. CONCLUSIONS IL-6 and IL-6R levels increase during the osteogenic differentiation of BM-MSCs. These two molecules form a complex to activate the downstream STAT3 signaling pathway, which promotes osteogenic differentiation in BM-MSCs via an autocrine/paracrine feedback loop.
Collapse
Affiliation(s)
- Zhongyu Xie
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Su'an Tang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Guiwen Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Peng Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Jinteng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Wenjie Liu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Ming Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Shan Wang
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Xiaohua Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Shuizhong Cen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Guan Zheng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Mengjun Ma
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Yanfeng Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China.
| | - Huiyong Shen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107# Yan Jiang Road West, Guangzhou, Guangdong, 510120, People's Republic of China.
| |
Collapse
|
25
|
Affiliation(s)
- H T Hassan
- Institute of Medical Sciences, University of Lincoln, UK.
| | | |
Collapse
|
26
|
Hao Z, Ma Y, Wu J, Li X, Chen H, Shen J, Wang H. Osteocytes regulate osteoblast differentiation and osteoclast activity through Interleukin-6 under mechanical loading. RSC Adv 2017. [DOI: 10.1039/c7ra09308j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Osteocytes are the major mechanosensors that respond to mechanical strain and regulate bone formation and resorption.
Collapse
Affiliation(s)
- Zhichao Hao
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510055
| | - Yuanyuan Ma
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510055
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Xianxian Li
- Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital
- Chengdu 610041
- China
| | - Helin Chen
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| | - Hang Wang
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
| |
Collapse
|
27
|
Ge JR, Xie LH, Chen J, Li SQ, Xu HJ, Lai YL, Qiu LL, Ni CB. Liuwei Dihuang Pill () Treats Postmenopausal Osteoporosis with Shen (Kidney) Yin Deficiency via Janus Kinase/Signal Transducer and Activator of Transcription Signal Pathway by Up-regulating Cardiotrophin-Like Cytokine Factor 1 Expression. Chin J Integr Med 2016; 24:415-422. [PMID: 28028720 DOI: 10.1007/s11655-016-2744-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate the mechanism of Liuwei Dihuang Pill (, LDP) in treating postmenopausal osteoporosis (PMOP) with Shen (Kidney) yin deficiency. METHODS In this study, 205 cases of PMOP were divided into the PMOP Shen-yin deficiency group (Group A), PMOP Shen-yang deficiency group (Group B), PMOP without Shen deficiency group (Group C), and control group (Group N). Real-time polymerase chain reaction (RT-PCR) and Western blot techniques were used to observe the effects of LDP treatment on the cardiotrophin-like cytokine factor 1 (CLCF1), ankyrin repeat and SOCS box containing 1 (ASB1), and prokineticin 2 (PROK2) genes and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway. RESULTS The mRNA (P<0.05) and protein (P<0.01) expression levels of the CLCF1 gene in Group A were significantly lower than the corresponding levels in Group N. After LDP treatment for 3 months, the mRNA expression levels of the CLCF1 gene were obviously up-regulated (P<0.01). After 6-month treatment, the expression levels of CLCF1 mRNA and protein were significantly up-regulated (both P<0.01), and the average bone density of the top femur had significantly increased (P<0.05). In vitro, CLCF1 overexpression resulted in a significant increase in the total protein and phosphorylated protein levels of JAK2 and STAT3. CONCLUSIONS The CLCF1 gene is an important gene associated with PMOP Shen-yin deficiency and the therapeutic effects of LDP may be mediated by up-regulation of CLCF1 gene expression and activation of the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Ji-Rong Ge
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China.
| | - Li-Hua Xie
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Juan Chen
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Sheng-Qiang Li
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Hui-Juan Xu
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Yu-Lian Lai
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Long-Long Qiu
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| | - Chen-Bo Ni
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Traditional Chinese Medicine, Fuzhou, 350003, China
| |
Collapse
|
28
|
Abstract
The ischemia-induced death of cardiomyocytes results in scar formation and reduced contractility of the ventricle. Several preclinical and clinical studies have supported the notion that cell therapy may be used for cardiac regeneration. Most attempts for cardiomyoplasty have considered the bone marrow as the source of the “repair stem cell(s),” assuming that the hematopoietic stem cell can do the work. However, bone marrow is also the residence of other progenitor cells, including mesenchymal stem cells (MSCs). Since 1995 it has been known that under in vitro conditions, MSCs differentiate into cells exhibiting features of cardiomyocytes. This pioneer work was followed by many preclinical studies that revealed that ex vivo expanded, bone marrow–derived MSCs may represent another option for cardiac regeneration. In this work, we review evidence and new prospects that support the use of MSCs in cardiomyoplasty.
Collapse
Affiliation(s)
- José J Minguell
- Laboratorio de Trasplante de Médula Osea, Clínica Las Condes, Lo Fontecilla 441, Las Condes, Santiago, Chile.
| | | |
Collapse
|
29
|
Wang C, Tian L, Zhang K, Chen Y, Chen X, Xie Y, Zhao Q, Yu X. Interleukin-6 gene knockout antagonizes high-fat-induced trabecular bone loss. J Mol Endocrinol 2016; 57:161-70. [PMID: 27493246 DOI: 10.1530/jme-16-0076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 02/05/2023]
Abstract
The purpose of the study was to determine the roles of interleukin-6 (IL6) in fat and bone communication. Male wild-type (WT) mice and IL6 knockout (IL6(-/-)) mice were fed with either regular diet (RD) or high-fat diet (HFD) for 12 weeks. Bone mass and bone microstructure were evaluated by micro-computed tomography. Gene expression related to lipid and bone metabolisms was assayed with real-time quantitative polymerase chain reaction. Bone marrow cells from both genotypes were induced to differentiate into osteoblasts or osteoclasts, and treated with palmitic acid (PA). HFD increased the body weight and fat pad weight, and impaired lipid metabolism in both WT and IL6(-/-) mice. The dysregulation of lipid metabolism was more serious in IL6(-/-) mice. Trabecular bone volume fraction, trabecular bone number and trabecular bone thickness were significantly downregulated in WT mice after HFD than those in the RD (P < 0.05). However, these bone microstructural parameters were increased by 53%, 34% and 40%, respectively, in IL6(-/-) mice than those in WT mice on the HFD (P < 0.05). IL6(-/-) osteoblasts displayed higher alkaline phosphatase (ALP) activity and higher mRNA levels of Runx2 and Colla1 than those in WT osteoblasts both in the control and PA treatment group (P < 0.05). IL6(-/-) mice showed significantly lower mRNA levels of PPARγ and leptin and higher mRNA levels of adiponectin in comparison with WT mice on HFD. In conclusion, these findings suggested that IL6 gene deficiency antagonized HFD-induced bone loss. IL6 might bridge lipid and bone metabolisms and could be a new potential therapeutic target for lipid metabolism disturbance-related bone loss.
Collapse
Affiliation(s)
| | | | - Kun Zhang
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yaxi Chen
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiang Chen
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ying Xie
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qian Zhao
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xijie Yu
- Laboratory of Endocrinology and MetabolismDepartment of Endocrinology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
30
|
The Effect of Long-Term Exercise on the Production of Osteoclastogenic and Antiosteoclastogenic Cytokines by Peripheral Blood Mononuclear Cells and on Serum Markers of Bone Metabolism. J Osteoporos 2016; 2016:5925380. [PMID: 27642534 PMCID: PMC5013218 DOI: 10.1155/2016/5925380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/15/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022] Open
Abstract
Although it is recognized that the mechanical stresses associated with physical activity augment bone mineral density and improve bone quality, our understanding of how exercise modulates bone homeostasis at the molecular level is lacking. In a before and after trial involving 43 healthy adults, we measured the effect of six months of supervised exercise training on the spontaneous and phytohemagglutinin-induced production of osteoclastogenic cytokines (interleukin-1α, tumor necrosis factor-α), antiosteoclastogenic cytokines (transforming growth factor-β1 and interleukins 4 and 10), pleiotropic cytokines with variable effects on osteoclastogenesis (interferon-γ, interleukin-6), and T cell growth and differentiation factors (interleukins 2 and 12) by peripheral blood mononuclear cells. We also measured lymphocyte phenotypes and serum markers of bone formation (osteocalcin), bone resorption (C-terminal telopeptides of Type I collagen), and bone homeostasis (25 (OH) vitamin D, estradiol, testosterone, parathyroid hormone, and insulin-like growth factor 1). A combination of aerobic, resistance, and flexibility exercises done on average of 2.5 hours a week attenuated the production of osteoclastogenic cytokines and enhanced the production of antiosteoclastogenic cytokines. These changes were accompanied by a 16% reduction in collagen degradation products and a 9.8% increase in osteocalcin levels. We conclude that long-term moderate intensity exercise exerts a favorable effect on bone resorption by changing the balance between blood mononuclear cells producing osteoclastogenic cytokines and those producing antiosteoclastogenic cytokines. This trial is registered with Clinical Trials.gov Identifier: NCT02765945.
Collapse
|
31
|
Feng W, Liu B, Liu D, Hasegawa T, Wang W, Han X, Cui J, Yimin, Oda K, Amizuka N, Li M. Long-Term Administration of High-Fat Diet Corrects Abnormal Bone Remodeling in the Tibiae of Interleukin-6-Deficient Mice. J Histochem Cytochem 2015; 64:42-53. [PMID: 26416243 DOI: 10.1369/0022155415611931] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022] Open
Abstract
In this study, we aimed to evaluate the influence of diet-induced obesity on IL-6 deficiency-induced bone remodeling abnormality. Seven-week-old IL-6(-/-) mice and their wild type (WT) littermates were fed a standard diet (SD) or high-fat diet (HFD) for 25 weeks. Lipid formation and bone metabolism in mice tibiae were investigated by histochemical analysis. Both IL-6(-/-) and WT mice fed the HFD showed notable body weight gain, thickened cortical bones, and adipose accumulation in the bone marrow. Notably, the HFD normalized the bone phenotype of IL-6(-/-) mice to that of their WT counterpart, as characterized by a decrease in bone mass and the presence of an obliquely arranged, plate-like morphology in the trabecular bone. Alkaline phosphatase and osteocalcin expressions were attenuated in both genotypes after HFD feeding, especially for the IL-6(-/-) mice. Meanwhile, tartrate-resistant acid phosphatase staining was inhibited, osteoclast apoptosis rate down-regulated (revealed by TUNEL assay), and the proportion of cathepsin K (CK)-positive osteoclasts significantly increased in IL-6(-/-) mice on a HFD as compared with IL-6(-/-) mice on standard chow. Our results demonstrate that HFD-induced obesity reverses IL-6 deficiency-associated bone metabolic disorders by suppressing osteoblast activity, upregulating osteoclastic activity, and inhibiting osteoclast apoptosis.
Collapse
Affiliation(s)
- Wei Feng
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China (WF, BL, DL, WW, XH, JC, ML)
| | - Bo Liu
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China (WF, BL, DL, WW, XH, JC, ML)
| | - Di Liu
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China (WF, BL, DL, WW, XH, JC, ML)
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan(TH, NA)
| | - Wei Wang
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China (WF, BL, DL, WW, XH, JC, ML)
| | - Xiuchun Han
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China (WF, BL, DL, WW, XH, JC, ML)
| | - Jian Cui
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China (WF, BL, DL, WW, XH, JC, ML)
| | - Yimin
- Department of Advanced Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan (Y)
| | - Kimimitsu Oda
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (KO)
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan(TH, NA)
| | - Minqi Li
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China (WF, BL, DL, WW, XH, JC, ML)
| |
Collapse
|
32
|
Cuadros TR, Erices AA, Aguilera JM. Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J Mech Behav Biomed Mater 2015; 46:331-42. [DOI: 10.1016/j.jmbbm.2014.08.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
33
|
Bakker AD, Jaspers RT. IL-6 and IGF-1 Signaling Within and Between Muscle and Bone: How Important is the mTOR Pathway for Bone Metabolism? Curr Osteoporos Rep 2015; 13:131-9. [PMID: 25712618 PMCID: PMC4417129 DOI: 10.1007/s11914-015-0264-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor 1 (IGF-1) and interleukin 6 (IL-6) play an important role in the adaptation of both muscle and bone to mechanical stimuli. Here, we provide an overview of the functions of IL-6 and IGF-1 in bone and muscle metabolism, and the intracellular signaling pathways that are well known to mediate these functions. In particular, we discuss the Akt/mammalian target of rapamycin (mTOR) pathway which in skeletal muscle is known for its key role in regulating the rate of mRNA translation (protein synthesis). Since the role of the mTOR pathway in bone is explored to a much lesser extent, we discuss what is known about this pathway in bone and the potential role of this pathway in bone remodeling. We will also discuss the possible ways of influencing IGF-1 or IL-6 signaling by osteocytes and the clinical implications of pharmacological or nutritional modulation of the Akt/mTOR pathway.
Collapse
Affiliation(s)
- Astrid D. Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
| | - Richard T. Jaspers
- Laboratory for Myology, MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
34
|
Liu H, Feng W, Yimin, Cui J, Lv S, Hasegawa T, Sun B, Li J, Oda K, Amizuka N, Li M. Histological Evidence of Increased Osteoclast Cell Number and Asymmetric Bone Resorption Activity in the Tibiae of Interleukin-6-Deficient Mice. J Histochem Cytochem 2014; 62:556-64. [DOI: 10.1369/0022155414537830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/03/2014] [Indexed: 11/22/2022] Open
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine considered to modulate bone homeostasis. Based on previous contradictory studies, we aimed to verify the influence of IL-6 deficiency on bone remodeling using an IL-6 knockout (IL-6-/-) murine model. Eight-month-old male mice, homozygous for the disrupted IL-6 gene, and their wild type (WT) littermates (control), were used. After transcardiac perfusion, tibiae were removed for histochemical analysis. Compared with the control group, IL-6 deficiency increased tartrate resistant acid phosphatase (TRAP)-positive osteoclast numbers and up-regulated the alkaline phosphatase (ALP) activity of osteoblasts in the metaphysis of the tibia. However, further analysis of serial histological sections from IL-6-/- mice found a significant discrepancy in osteoclast number, with the higher number of TRAP-positive osteoclasts conflicting with the lower number of cathepsin K-positive osteoclasts. Moreover, TUNEL staining identified a significantly higher rate of osteoclast apoptosis in IL-6-/- mice as compared with their WT controls. IL-6 deficiency induced abundant TRAP-positive osteoclasts but delayed bone remodeling by significantly inhibiting the bone resorption activity of osteoclasts and promoting osteoclast apoptosis.
Collapse
Affiliation(s)
- Hongrui Liu
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China (HL, WF, JC, SL, BS, JL, ML)
- Department of Advanced Medicine, Graduate School of Medicine (Y), Hokkaido University, Sapporo, Japan
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (TH, NA), Hokkaido University, Sapporo, Japan
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (KO)
| | - Wei Feng
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China (HL, WF, JC, SL, BS, JL, ML)
- Department of Advanced Medicine, Graduate School of Medicine (Y), Hokkaido University, Sapporo, Japan
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (TH, NA), Hokkaido University, Sapporo, Japan
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (KO)
| | - Yimin
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China (HL, WF, JC, SL, BS, JL, ML)
- Department of Advanced Medicine, Graduate School of Medicine (Y), Hokkaido University, Sapporo, Japan
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (TH, NA), Hokkaido University, Sapporo, Japan
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (KO)
| | - Jian Cui
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China (HL, WF, JC, SL, BS, JL, ML)
- Department of Advanced Medicine, Graduate School of Medicine (Y), Hokkaido University, Sapporo, Japan
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (TH, NA), Hokkaido University, Sapporo, Japan
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (KO)
| | - Shengyu Lv
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China (HL, WF, JC, SL, BS, JL, ML)
- Department of Advanced Medicine, Graduate School of Medicine (Y), Hokkaido University, Sapporo, Japan
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (TH, NA), Hokkaido University, Sapporo, Japan
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (KO)
| | - Tomoka Hasegawa
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China (HL, WF, JC, SL, BS, JL, ML)
- Department of Advanced Medicine, Graduate School of Medicine (Y), Hokkaido University, Sapporo, Japan
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (TH, NA), Hokkaido University, Sapporo, Japan
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (KO)
| | - Bao Sun
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China (HL, WF, JC, SL, BS, JL, ML)
- Department of Advanced Medicine, Graduate School of Medicine (Y), Hokkaido University, Sapporo, Japan
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (TH, NA), Hokkaido University, Sapporo, Japan
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (KO)
| | - Juan Li
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China (HL, WF, JC, SL, BS, JL, ML)
- Department of Advanced Medicine, Graduate School of Medicine (Y), Hokkaido University, Sapporo, Japan
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (TH, NA), Hokkaido University, Sapporo, Japan
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (KO)
| | - Kimimitsu Oda
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China (HL, WF, JC, SL, BS, JL, ML)
- Department of Advanced Medicine, Graduate School of Medicine (Y), Hokkaido University, Sapporo, Japan
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (TH, NA), Hokkaido University, Sapporo, Japan
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (KO)
| | - Norio Amizuka
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China (HL, WF, JC, SL, BS, JL, ML)
- Department of Advanced Medicine, Graduate School of Medicine (Y), Hokkaido University, Sapporo, Japan
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (TH, NA), Hokkaido University, Sapporo, Japan
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (KO)
| | - Minqi Li
- Department of Bone Metabolism, School of Stomatology Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China (HL, WF, JC, SL, BS, JL, ML)
- Department of Advanced Medicine, Graduate School of Medicine (Y), Hokkaido University, Sapporo, Japan
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine (TH, NA), Hokkaido University, Sapporo, Japan
- Division of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (KO)
| |
Collapse
|
35
|
Yoon DS, Kim YH, Lee S, Lee K, Park KH, Jang Y, Lee JW. Interleukin‐6 induces the lineage commitment of bone marrow‐derived mesenchymal multipotent cells through down‐regulation of Sox2 by osteogenic transcription factors. FASEB J 2014; 28:3273-86. [DOI: 10.1096/fj.13-248567] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dong Suk Yoon
- Department of Orthopaedic SurgeryYonsei University College of MedicineYonsei UniversitySeoulSouth Korea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulSouth Korea
| | - Yun Hee Kim
- Department of Orthopaedic SurgeryYonsei University College of MedicineYonsei UniversitySeoulSouth Korea
| | - Seulgi Lee
- Department of Orthopaedic SurgeryYonsei University College of MedicineYonsei UniversitySeoulSouth Korea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulSouth Korea
| | - Kyoung‐Mi Lee
- Department of Orthopaedic SurgeryYonsei University College of MedicineYonsei UniversitySeoulSouth Korea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulSouth Korea
| | - Kwang Hwan Park
- Department of Orthopaedic SurgeryYonsei University College of MedicineYonsei UniversitySeoulSouth Korea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulSouth Korea
| | - Yeonsue Jang
- Department of Orthopaedic SurgeryYonsei University College of MedicineYonsei UniversitySeoulSouth Korea
| | - Jin Woo Lee
- Department of Orthopaedic SurgeryYonsei University College of MedicineYonsei UniversitySeoulSouth Korea
- Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulSouth Korea
| |
Collapse
|
36
|
Juffer P, Jaspers RT, Klein-Nulend J, Bakker AD. Mechanically loaded myotubes affect osteoclast formation. Calcif Tissue Int 2014; 94:319-26. [PMID: 24264813 DOI: 10.1007/s00223-013-9813-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/24/2013] [Indexed: 01/06/2023]
Abstract
In response to mechanical loading skeletal muscle produces numerous growth factors and cytokines that enter the circulation. We hypothesized that myotubes produce soluble factors that affect osteoclast formation and aimed to identify which osteoclastogenesis-modulating factors are differentially produced by mechanically stimulated myotubes. C2C12 myotubes were subjected to mechanical loading by cyclic strain for 1 h, and postincubated with or without cyclic strain for 24 h. The effect of cyclic strain on gene expression in myotubes was determined by PCR. Conditioned medium (CM) was collected from cultures of unloaded and loaded myotubes and from MLO-Y4 osteocytes. CM was added to mouse bone marrow cells containing osteoclast precursors, and after 6 days osteoclasts were counted. Compared to unconditioned medium, CM from unloaded osteocytes increased osteoclast formation, while CM from unloaded myotubes decreased osteoclast formation. Cyclic strain strongly enhanced IL-6 expression in myotubes. CM from cyclically strained myotubes increased osteoclast formation compared to CM from unloaded myotubes, but this effect did not occur in the presence of an IL-6 antibody. In conclusion, mechanically loaded myotubes secrete soluble factors, among others IL-6, which affect osteoclast formation. These results suggest that muscle could potentially affect bone homeostasis in vivo via production of growth factors and/or cytokines.
Collapse
Affiliation(s)
- Petra Juffer
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), MOVE Research Institute Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
37
|
Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, Wagers AJ, Hsiao EC, Passegué E. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 2013; 13:285-99. [PMID: 23850243 DOI: 10.1016/j.stem.2013.06.009] [Citation(s) in RCA: 476] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 05/07/2013] [Accepted: 06/11/2013] [Indexed: 01/16/2023]
Abstract
Multipotent stromal cells (MSCs) and their osteoblastic lineage cell (OBC) derivatives are part of the bone marrow (BM) niche and contribute to hematopoietic stem cell (HSC) maintenance. Here, we show that myeloproliferative neoplasia (MPN) progressively remodels the endosteal BM niche into a self-reinforcing leukemic niche that impairs normal hematopoiesis, favors leukemic stem cell (LSC) function, and contributes to BM fibrosis. We show that leukemic myeloid cells stimulate MSCs to overproduce functionally altered OBCs, which accumulate in the BM cavity as inflammatory myelofibrotic cells. We identify roles for thrombopoietin, CCL3, and direct cell-cell interactions in driving OBC expansion, and for changes in TGF-β, Notch, and inflammatory signaling in OBC remodeling. MPN-expanded OBCs, in turn, exhibit decreased expression of many HSC retention factors and severely compromised ability to maintain normal HSCs, but effectively support LSCs. Targeting this pathological interplay could represent a novel avenue for treatment of MPN-affected patients and prevention of myelofibrosis.
Collapse
Affiliation(s)
- Koen Schepers
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Huh JE, Lee SY. IL-6 is produced by adipose-derived stromal cells and promotes osteogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2608-2616. [PMID: 23830919 DOI: 10.1016/j.bbamcr.2013.06.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/31/2013] [Accepted: 06/24/2013] [Indexed: 01/23/2023]
Abstract
Although Toll-like receptors (TLRs) have been implicated in the regulation of stem cell functions, their role in osteogenic differentiation of adipose-derived stromal cells (ASCs) has not been reported. We found that ASCs express a restricted subset of TLRs, including TLR1-TLR5, and that TLR agonists such as Pam3CSK4 (TLR1/2 agonist), polyinosinic:polycytidylic acid (TLR3 agonist), lipopolysaccharide (TLR4 agonist), and flagellin (TLR5 agonist), but not R848 (TLR7/8 agonist), consistently induced osteogenic differentiation in murine-derived ASCs, which coincided with the TLR expression pattern of ASCs. Cytokine expression profiles induced by TLR agonists and results from subsequent functional assays indicated that interleukin-6 (IL-6) together with soluble IL-6 receptor (sIL-6R) enhanced osteogenic differentiation of ASCs by activating STAT3. Small interfering RNA (siRNA)-mediated STAT3-silencing blunted osteogenesis and the expression of osteogenic markers, whereas STAT3 overexpression resulted in an increase in osteogenesis. Consistently, STAT3 inhibitor treatment reduced osteogenesis, STAT3 phosphorylation, and expression of osteogenic markers including osterix. Chromatin immunoprecipitation (ChIP) assays indicated that STAT3 binding to the STAT3-binding sites on the osterix promoter increased during IL-6-stimulated osteogenesis. Our results thus establish TLRs as novel regulators of ASCs which signal through IL-6/STAT3 pathway and induce osterix expression as a part of the osteogenesis.
Collapse
Affiliation(s)
- Jeong-Eun Huh
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Soo Young Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea; Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
39
|
Neonatal mesenchymal-like cells adapt to surrounding cells. Stem Cell Res 2013; 11:634-46. [DOI: 10.1016/j.scr.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 12/17/2022] Open
|
40
|
Mathieu M, Rigutto S, Ingels A, Spruyt D, Stricwant N, Kharroubi I, Albarani V, Jayankura M, Rasschaert J, Bastianelli E, Gangji V. Decreased pool of mesenchymal stem cells is associated with altered chemokines serum levels in atrophic nonunion fractures. Bone 2013; 53:391-8. [PMID: 23318974 DOI: 10.1016/j.bone.2013.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/02/2013] [Accepted: 01/03/2013] [Indexed: 01/21/2023]
Abstract
Nonunion fractures can cause severe dysfunction and are often difficult to treat mainly due to a poor understanding of their physiopathology. Although many aspects of impaired fracture healing have been extensively studied, little is known about the cellular and molecular mechanisms leading to atrophic nonunion. Therefore, the aim of the present study was to assess the pools and biological functions of bone marrow-derived mesenchymal stem cells (hMSCs) and circulating endothelial progenitor cells (EPCs) in atrophic nonunion patients compared to healthy subjects, and the systemic levels of growth factors involved in the recruitment, proliferation and differentiation of these cells. In nonunions, the pool of hMSCs was decreased and their proliferation delayed. However, once committed, hMSCs from nonunions were able to proliferate, differentiate into osteoblastic cells and mineralize in vitro as efficiently as hMSCs from healthy subjects. In parallel, we found altered serum levels of chemokines and growth factors involved in the chemotaxis and proliferation of hMSCs such as leptin, interleukin-6 (IL-6) and its soluble receptor, platelet-derived growth factor-BB (PDGF-BB), stem cell factor (SCF) and insulin-like growth factor-1 (IGF-1). Moreover, we showed that the number of EPCs and their regulating growth factors were not affected in nonunion patients. If nonunion is generally attributed to a vascular defect, our results also support a role for a systemic mesenchymal and osteogenic cell pool defect that might be related to alterations in systemic levels of factors implicated in their chemotaxis and proliferation.
Collapse
Affiliation(s)
- Myrielle Mathieu
- Laboratory of Bone and Metabolic Biochemistry, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cho SW, Pirih FQ, Koh AJ, Michalski M, Eber MR, Ritchie K, Sinder B, Oh S, Al-Dujaili SA, Lee J, Kozloff K, Danciu T, Wronski TJ, McCauley LK. The soluble interleukin-6 receptor is a mediator of hematopoietic and skeletal actions of parathyroid hormone. J Biol Chem 2013; 288:6814-25. [PMID: 23297399 DOI: 10.1074/jbc.m112.393363] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both PTH and IL-6 signaling play pivotal roles in hematopoiesis and skeletal biology, but their interdependence is unclear. The purpose of this study was to evaluate the effect of IL-6 and soluble IL-6 receptor (sIL-6R) on hematopoietic and skeletal actions of PTH. In the bone microenvironment, PTH stimulated sIL-6R protein levels in primary osteoblast cultures in vitro and bone marrow in vivo in both IL-6(+/+) and IL-6(-/-) mice. PTH-mediated hematopoietic cell expansion was attenuated in IL-6(-/-) compared with IL-6(+/+) bone marrow, whereas sIL-6R treatment amplified PTH actions in IL-6(-/-) earlier than IL-6(+/+) marrow cultures. Blocking sIL-6R signaling with sgp130 (soluble glycoprotein 130 receptor) inhibited PTH-dependent hematopoietic cell expansion in IL-6(-/-) marrow. In the skeletal system, although intermittent PTH administration to IL-6(+/+) and IL-6(-/-) mice resulted in similar anabolic actions, blocking sIL-6R significantly attenuated PTH anabolic actions. sIL-6R showed no direct effects on osteoblast proliferation or differentiation in vitro; however, it up-regulated myeloid cell expansion and production of the mesenchymal stem cell recruiting agent, TGF-β1 in the bone marrow microenvironment. Collectively, sIL-6R demonstrated orphan function and mediated PTH anabolic actions in bone in association with support of myeloid lineage cells in the hematopoietic system.
Collapse
Affiliation(s)
- Sun Wook Cho
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Inflammatory cytokine and chemokine expression is associated with heterotopic ossification in high-energy penetrating war injuries. J Orthop Trauma 2012; 26:e204-13. [PMID: 22588530 DOI: 10.1097/bot.0b013e31825d60a5] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Heterotopic ossification (HO) develops frequently after modern high-energy penetrating war injuries. The purpose of this prospective study was to identify and characterize the unique cytokine and chemokine profile associated with the development of HO as it pertained to the systemic inflammatory response after penetrating combat-related trauma. METHODS Patients with high-energy penetrating extremity wounds were prospectively enrolled. Surgical debridement along with the use of a pulse lavage and vacuum-assisted-closure device was performed every 48-72 hours until definitive wound closure. Wound bed tissue biopsy, wound effluent, and serum were collected before each debridement. Effluent and serum were analyzed for 22 relevant cytokines and chemokines. Tissue was analyzed quantitatively for bacterial colonization. Correlations between specific wound and patient characteristics were also analyzed. The primary clinical outcome measure was the formation of HO as confirmed by radiographs at a minimum of 2 months of follow-up. RESULTS Thirty-six penetrating extremity war wounds in 24 patients were investigated. The observed rate of HO in the study population was 38%. Of the 36 wounds, 13 (36%) demonstrated HO at a minimum follow-up of 2 months. An elevated injury severity score was associated with the development of HO (P = 0.006). Wound characteristics that correlated with the development of HO included impaired healing (P = 0.005) and bacterial colonization (P < 0.001). Both serum (interleukin-6, interleukin-10, and MCP-1) and wound effluent (IP-10 and MIP-1α) cytokine and chemokine bioprofiles were individually associated and suggestive of the development of HO (P < 0.05). CONCLUSIONS A severe systemic and wound-specific inflammatory state as evident by elevated levels of inflammatory cytokines, elevated injury severity score, and bacterial wound colonization is associated with the development of HO. These findings suggest that the development of HO in traumatic combat-related wounds is associated with a hyper-inflammatory systemic response to injury. LEVEL OF EVIDENCE Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.
Collapse
|
43
|
Rusanescu G, Weissleder R, Aikawa E. Notch signaling in cardiovascular disease and calcification. Curr Cardiol Rev 2011; 4:148-56. [PMID: 19936191 PMCID: PMC2780816 DOI: 10.2174/157340308785160552] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/28/2008] [Accepted: 05/28/2008] [Indexed: 01/30/2023] Open
Abstract
Recent increase in human lifespan has shifted the spectrum of aging-related disorders to an unprecedented upsurge in cardiovascular diseases, especially calcific aortic valve stenosis, which has an 80% risk of progression to heart failure and death. A current therapeutic option for calcified valves is surgical replacement, which provides only temporary relief. Recent progress in cardiovascular research has suggested that arterial and valve calcification are the result of an active process of osteogenic differentiation, induced by a pro-atherogenic inflammatory response. At molecular level, the calcification process is regulated by a network of signaling pathways, including Notch, Wnt and TGFbeta/BMP pathways, which control the master regulator of osteogenesis Cbfa1/Runx2. Genetic and in vitro studies have implicated Notch signaling in the regulation of macrophage activation and cardiovascular calcification. Individuals with inactivating Notch1 mutations have a high rate of cardiovascular disorders, including valve stenosis and calcification. This article reviews recent progress in the mechanism of cardiovascular calcification and discusses potential molecular mechanisms involved, focusing on Notch receptors. We propose a calcification model where extreme increases in vascular wall cell density due to inflammation-induced cell proliferation can trigger an osteogenic differentiation program mediated by Notch receptors.
Collapse
Affiliation(s)
- Gabriel Rusanescu
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
44
|
Deng W, Chen QW, Li XS, Liu H, Niu SQ, Zhou Y, Li GQ, Ke DZ, Mo XG. Bone marrow mesenchymal stromal cells with support of bispecific antibody and ultrasound-mediated microbubbles prevent myocardial fibrosis via the signal transducer and activators of transcription signaling pathway. Cytotherapy 2011; 13:431-40. [DOI: 10.3109/14653249.2010.542458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Neve A, Corrado A, Cantatore FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res 2010; 343:289-302. [PMID: 21120535 DOI: 10.1007/s00441-010-1086-1] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/03/2010] [Indexed: 12/13/2022]
Abstract
Osteoblasts are mononucleated cells that are derived from mesenchymal stem cells and that are responsible for the synthesis and mineralization of bone during initial bone formation and later bone remodelling. Osteoblasts also have a role in the regulation of osteoclast activity through the receptor activator of nuclear factor κ-B ligand and osteoprotegerin. Abnormalities in osteoblast differentiation and activity occur in some common human diseases such as osteoporosis and osteoarthritis. Recent studies also suggest that osteoblast functions are compromised at sites of focal bone erosion in rheumatoid arthritis.
Collapse
Affiliation(s)
- Anna Neve
- Rheumatology Clinic, Department of Medical and Occupational Sciences, University of Foggia, Foggia, Italy
| | | | | |
Collapse
|
46
|
Parathyroid hormone mediates hematopoietic cell expansion through interleukin-6. PLoS One 2010; 5:e13657. [PMID: 21048959 PMCID: PMC2965090 DOI: 10.1371/journal.pone.0013657] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/08/2010] [Indexed: 11/19/2022] Open
Abstract
Parathyroid hormone (PTH) stimulates hematopoietic cells through mechanisms of action that remain elusive. Interleukin-6 (IL-6) is upregulated by PTH and stimulates hematopoiesis. The purpose of this investigation was to identify actions of PTH and IL-6 in hematopoietic cell expansion. Bone marrow cultures from C57B6 mice were treated with fms-like tyrosine kinase-3 ligand (Flt-3L), PTH, Flt-3L plus PTH, or vehicle control. Flt-3L alone increased adherent and non-adherent cells. PTH did not directly impact hematopoietic or osteoclastic cells but acted in concert with Flt-3L to further increase cell numbers. Flt-3L alone stimulated proliferation, while PTH combined with Flt-3L decreased apoptosis. Flt-3L increased blasts early in culture, and later increased CD45+ and CD11b+ cells. In parallel experiments, IL-6 acted additively with Flt-3L to increase cell numbers and IL-6-deficient bone marrow cultures (compared to wildtype controls) but failed to amplify in response to Flt-3L and PTH, suggesting that IL-6 mediated the PTH effect. In vivo, PTH increased Lin- Sca-1+c-Kit+ (LSK) hematopoietic progenitor cells after PTH treatment in wildtype mice, but failed to increase LSKs in IL-6-deficient mice. In conclusion, PTH acts with Flt-3L to maintain hematopoietic cells by limiting apoptosis. IL-6 is a critical mediator of bone marrow cell expansion and is responsible for PTH actions in hematopoietic cell expansion.
Collapse
|
47
|
Lam SP, Luk JM, Man K, Ng KTP, Cheung CK, Rose-John S, Lo CM. Activation of interleukin-6-induced glycoprotein 130/signal transducer and activator of transcription 3 pathway in mesenchymal stem cells enhances hepatic differentiation, proliferation, and liver regeneration. Liver Transpl 2010; 16:1195-206. [PMID: 20879018 DOI: 10.1002/lt.22136] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult bone marrow-derived mesenchymal stem cells (MSCs) exist in all living species and are capable of differentiating into different types of specific cells. In this study, we demonstrate the therapeutic effectiveness of rat MSC transplantation in D-galactosamine (GalN)-induced acute liver injury and identified the novel pathways which are involved in hepatic differentiation of MSCs. In vivo, intraportal transplantation with 5 × 10(6) MSCs at 24 hours after GalN administration resulted in significant reduction in serum levels of alanine aminotransferase, aspartate aminotransferase, and total bilirubin compared to the control group. Engrafted MSCs actively proliferated, differentiated, and further enhanced hepatocyte proliferation activity. In vitro, coculture of MSCs with GalN-induced injured hepatocytes showed efficient differentiation and was evidenced by progressive increase in messenger RNA levels of hepatic markers, including albumin, α-fetoprotein, CCAAT-enhancer binding protein α, α-1-antitryspin, and hepatocyte nuclear factor-3β. Immunofluorescent staining revealed that these cells were positive for albumin, α-fetoprotein, and cytokeratin 18, but not clusters of differentiation 34, cytokeratin 19, or OV6. During hepatic differentiation, signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling were constantly activated, and a gradual down-regulation of β-catenin expression in messenger RNA and protein levels was detected. Hyper-interleukin-6 fusion protein but not interleukin-6 (IL-6) alone caused reduction in β-catenin expression associated with the up-regulation of Wnt-5a in MSCs via activating the glycoprotein 130 (gp130)-mediated STAT3 signaling pathway, which indicates the operation of the trans-signaling mechanism. Activation of IL-6/gp130-mediated STAT3 signaling pathway in MSCs triggered wound healing, cell migration, and proliferation. In conclusion, transplantation of MSCs promotes cell proliferation and organ repair, and activation of IL-6/gp130-mediated STAT3 signaling pathway via soluble IL-6 receptor is crucial in hepatic differentiation of MSCs.
Collapse
Affiliation(s)
- Shuk Pik Lam
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Tamburstuen MV, Reppe S, Spahr A, Sabetrasekh R, Kvalheim G, Slaby I, Syversen U, Lyngstadaas SP, Reseland JE. Ameloblastin promotes bone growth by enhancing proliferation of progenitor cells and by stimulating immunoregulators. Eur J Oral Sci 2010; 118:451-9. [PMID: 20831578 DOI: 10.1111/j.1600-0722.2010.00760.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we examined the role of the enamel matrix protein, ameloblastin, in bone growth and remodelling, and attempted to identify some of the molecular mechanisms involved in these processes. The effects of recombinant ameloblastin (rAmbn) were tested in vivo in rats, and in vitro in primary human mesenchymal stem cells, osteoblasts, chondrocytes, and osteoclasts. We used a microarray technique to identify genes that were regulated in human osteoblasts and verified our findings using multiplex protein analysis and real-time RT-PCR. Recombinant ameloblastin was found to stimulate bone healing in vivo, and to enhance the proliferation of mesenchymal stem cells and osteoblasts, as well as the differentiation of osteoclast precursor cells in vitro. The most profound effect was on the regulation of genes related to immune responses as well as on the expression of cytokines and markers of bone cell differentiation, indicating that ameloblastin has an effect on mesenchymal cell differentiation. A receptor has not yet been identified, but we found rAmbn to induce, directly and indirectly, signal transducer and activator of transcription (STAT) 1 and 2 and downstream factors in the interferon pathway.
Collapse
|
49
|
Ara T, Declerck YA. Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer 2010; 46:1223-31. [PMID: 20335016 DOI: 10.1016/j.ejca.2010.02.026] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/16/2010] [Indexed: 12/19/2022]
Abstract
The bone and bone marrow are among the most frequent sites of cancer metastasis. It is estimated that 350,000 patients die with bone metastases annually in the United States. The ability of tumor cells to colonize the bone marrow and invade the bone is the result of close interactions between tumor cells and the bone marrow microenvironment. In this article, we review the contribution of interleukin-6 (IL-6) produced in the bone marrow microenvironment to bone metastasis. This cytokine has a strong pro-tumorigenic activity due to its multiple effects on bone metabolism, tumor cell proliferation and survival, angiogenesis, and inflammation. These effects are mediated by several signaling pathways, in particular the Janus kinase/signal transducer and transcription activator (JAK/STAT-3), Ras/mitogen activated protein kinase (MAPK), and phosphoinositol-3 kinase (PI3K)-protein kinase B/Akt (PkB/Akt), which are activated by IL-6 and amplified in the presence of soluble IL-6 receptor (sIL-6R). Supporting the role of IL-6 in human cancer is the observation of elevated serum levels of IL-6 and sIL-6R in patients with bone metastasis and their association with a poor clinical outcome. Over the last decade several large (monoclonal antibodies) and small (inhibitors of IL-6 mediated signaling) molecules that inhibit IL-6 activity in preclinical models have been developed. Several of these inhibitors are now undergoing phases I and II clinical trials, which will determine their inclusion in the list of effective targeted agents in the fight against cancer.
Collapse
Affiliation(s)
- Tasnim Ara
- Division of Hematology-Oncology, Department of Pediatrics, USC Keck School of Medicine and The Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | |
Collapse
|
50
|
Sumanasinghe RD, Pfeiler TW, Monteiro-Riviere NA, Loboa EG. Expression of proinflammatory cytokines by human mesenchymal stem cells in response to cyclic tensile strain. J Cell Physiol 2009; 219:77-83. [DOI: 10.1002/jcp.21653] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|