1
|
Xu R, Wang Y, Du J, Salido EM. Retinal Metabolic Profile on IMPG2 Deficiency Mice with Subretinal Lesions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:457-463. [PMID: 37440072 DOI: 10.1007/978-3-031-27681-1_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The interphotoreceptor matrix (IPM) is the extracellular matrix between the photoreceptors and the retinal pigment epithelium (RPE). The IPM has two proteoglycans: the IPM proteoglycans 1 and 2 (IMPG1 and IMPG2, respectively). Patients with mutations on IMPG2 develop subretinal vitelliform lesions that affect vision. We previously created an IMPG2 knockout (KO) mice model that generates subretinal lesions similar to those found in humans. These subretinal lesions in IMPG2 KO mice retinas are, in part, composed of mislocalized IMPG1. In addition, IMPG2 KO mice show microscopic IMPG1 material accumulation between the RPE and the photoreceptor outer segments. In this work we discuss the possibility that material accumulation on IMPG2 KO mice retinas affects photoreceptor metabolism. To further investigate this idea, we used targeted metabolomics to profile retinal metabolome on IMPG2 KO mice. The metabolite set enrichment analysis showed reduced glutamate metabolism, urea cycle, and galactose metabolism suggesting affected energy metabolism in mice retinas of IMPG2 KO mice with subretinal lesion.
Collapse
Affiliation(s)
- Rong Xu
- Departments of Biochemistry and molecular medicine, and Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Yekai Wang
- Departments of Biochemistry and molecular medicine, and Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Jianhai Du
- Departments of Biochemistry and molecular medicine, and Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Ezequiel M Salido
- Departments of Biochemistry and molecular medicine, and Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
2
|
Mitchell B, Coulter C, Geldenhuys WJ, Rhodes S, Salido EM. Interphotoreceptor matrix proteoglycans IMPG1 and IMPG2 proteolyze in the SEA domain and reveal localization mutual dependency. Sci Rep 2022; 12:15535. [PMID: 36109576 PMCID: PMC9478142 DOI: 10.1038/s41598-022-19910-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
The interphotoreceptor matrix (IPM) is a specialized extracellular mesh of molecules surrounding the inner and outer segments of photoreceptor neurons. Interphotoreceptor matrix proteoglycan 1 and 2 (IMPG1 and IMPG2) are major components of the IPM. Both proteoglycans possess SEA (sperm protein, enterokinase and agrin) domains, which may support proteolysis. Interestingly, mutations in the SEA domains of IMPG1 and IMPG2 are associated with vision disease in humans. However, if SEA domains in IMPG molecules undergo proteolysis, and how this contributes to vision pathology is unknown. Therefore, we investigated SEA-mediated proteolysis of IMPG1 and IMPG2 and its significance to IPM physiology. Immunoblot analysis confirmed proteolysis of IMPG1 and IMPG2 in the retinas of wildtype mice. Point mutations mimicking human mutations in the SEA domain of IMPG1 that are associated with vision disease inhibited proteolysis. These findings demonstrate that proteolysis is part of the maturation of IMPG1 and IMPG2, in which deficits are associated with vision diseases. Further, immunohistochemical assays showed that proteolysis of IMPG2 generated two subunits, a membrane-attached peptide and an extracellular peptide. Notably, the extracellular portion of IMPG2 trafficked from the IPM around the inner segment toward the outer segment IPM by an IMPG1-dependent mechanism. This result provides the first evidence of a trafficking system that shuttles IMPG1 and IMPG2 from the inner to outer IPM in a co-dependent manner. In addition, these results suggest an interaction between IMPG1-IMPG2 and propose that mutations affecting one IMPG could affect the localization of the normal IMPG partner, contributing to the disease mechanism of vision diseases associated with defective IMPG molecules.
Collapse
Affiliation(s)
- Benjamin Mitchell
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
| | - Chloe Coulter
- Undergraduate Program in Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Scott Rhodes
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA
| | - Ezequiel M Salido
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, USA.
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
3
|
Liva F, Cuffaro D, Nuti E, Nencetti S, Orlandini E, Vozzi G, Rossello A. Age-related Macular Degeneration: Current Knowledge of Zinc Metalloproteinases Involvement. Curr Drug Targets 2020; 20:903-918. [PMID: 30666909 DOI: 10.2174/1389450120666190122114857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/21/2018] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly with limited therapeutic options. The disease is characterized by photoreceptor loss in the macula and reduced Retinal Pigment Epithelium (RPE) function, associated with matrix degradation, cell proliferation, neovascularization and inflammation. Matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) play a critical role in the physiology of extracellular matrix (ECM) turnover and, in turn, in ECM pathologies, such as AMD. A balance between the activities of MMPs and Tissue Inhibitors of Metalloproteinase (TIMPs) is crucial for the integrity of the ECM components; indeed, a dysregulation in the ratio of these factors produces profound changes in the ECM, including thickening and deposit formation, which eventually might lead to AMD development. OBJECTIVE This article reviews the relevance and impact of zinc metalloproteinases on the development of AMD and their roles as biomarkers and/or therapeutic targets. We illustrate some studies on several inhibitors of MMPs currently used to dissect physiological properties of MMPs. Moreover, all molecules or technologies used to control MMP and ADAM activity in AMD are analyzed. CONCLUSION This study underlines the changes in the activity of MMPs expressed by RPE cells, highlights the functions of already used MMP inhibitors and consequently suggests their application as therapeutic agents for the treatment of AMD.
Collapse
Affiliation(s)
- Francesca Liva
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.,Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy.,Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| | - Giovanni Vozzi
- Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.,Research Center "E. Piaggio," University of Pisa, Pisa, 56122, Italy
| |
Collapse
|
4
|
Proteoglycan IMPG2 Shapes the Interphotoreceptor Matrix and Modulates Vision. J Neurosci 2020; 40:4059-4072. [PMID: 32265257 DOI: 10.1523/jneurosci.2994-19.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/29/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Photoreceptor neurons are surrounded by an extracellular matrix, called the interphotoreceptor matrix (IPM). Activities crucial to vision occur within the IPM, including trafficking of nutrients and metabolites, retinal attachment, and interactions needed for normal outer segment phagocytosis. The IPM includes the following two unique proteoglycans: IPM proteoglycan 1 (IMPG1) and IMPG2. Patients with mutations in IMPG1/IMPG2 develop visual deficits with subretinal material accumulation, highlighting the critical role of the IPM in vision. To determine the role of these proteoglycans in retinal physiology and the pathologic mechanisms that lead to vision loss, we generated mouse models lacking IMPG1/IMPG2. In normal retina, IMPG1 and IMPG2 occupy distinct IPM compartments, represent the main source of chondroitin sulfate and are fundamental for the constitution of the cone-specific glycocalyx stained by the PNA (peanut agglutinin) lectin marker. No evident morphologic or functional deficits were found in mice lacking IMPG1. In the absence of IMPG2, IMPG1 abnormally accumulated at the subretinal space need, likely leading to the formation of subretinal lesions and reduced visual function. Interestingly, mice lacking both IMPG1 and IMPG2, regardless of sex, showed normal retinal structure and function, demonstrating that the aberrant IMPG1 distribution is the main cause of the visual alterations observed in the absence of IMPG2. In conclusion, our results show the dependence of secreted proteoglycans such as IMPG1 on the extracellular environment to properly integrate into the matrix, demonstrate the role of IMPG2 in shaping the IPM, and shed light on the potential mechanisms leading to the development of subretinal lesions and vision loss.SIGNIFICANCE STATEMENT The photoreceptors are specialized neurons that drive phototransduction in the mammalian retina. These cells are organized and surrounded by an extracellular matrix, the interphotoreceptor matrix (IPM). Mutations in IPM proteoglycans are associated with blindness in humans. Our studies show that two specific proteoglycans of the IPM, IPM proteoglycan 1 (IMPG1) and IMPG2, form a dynamic structure with distinct localization and dependency. When IMPG2 is absent, IMPG1 cannot integrate into the IPM, leading to abnormal proteoglycan accumulation and visual deficits. This work adds a new layer of understanding to IPM physiology and describes the pathologic events following deficits in proteoglycans, providing novel possibilities for visual restoration in patients with IMPG-related pathologies.
Collapse
|
5
|
Gonzalez-Fernandez F, Fornalik M, Garlipp MA, Gonzalez-Fernandez P, Sung D, Meyer A, Baier R. Pericellular interphotoreceptor matrix dictates outer retina critical surface tension. Exp Eye Res 2017; 167:163-173. [PMID: 29051013 DOI: 10.1016/j.exer.2017.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/30/2017] [Accepted: 10/12/2017] [Indexed: 11/15/2022]
Abstract
Retinal detachments create two pathological surfaces, the surface of the outer neural retinal, and an apical retinal-pigmented epithelium (RPE) surface. The physicochemical properties of these two new surfaces are poorly understood. At a molecular level little is known how detachments form, how to optimize reattachment, or prevent extension of the detachment. A major limitation is lack of information about the biophysical consequences of the retina-RPE separation. The primary challenge is determining the molecular properties of the pathological interface surfaces. Here, using detached bovine retina, we show that this hurdle can be overcome through a combination of biophysical and ultrastructural approaches. The outer surface of freshly detached bovine neural retina, and isolated molecular components of the outer retina were subjected to: 1) Contact angle goniometry to determine the critical surface tension of the outer retinal surface, isolated insoluble interphotoreceptor matrix (IPM) and purified interphotoreceptor retinoid binding protein (IRBP); 2) Multiple attenuated internal reflectance infrared (MAIR-IR) spectroscopy was used to characterize the molecular composition of the retinal surface. MAIR-IR depth penetration was established through ellipsometric measurement of barium-stearate films. Light microscopy, immunohistochemistry and electron microscopy defined the structures probed spectroscopically. Furthermore, the data were correlated to IR spectra of docosahexaenoic acid, hyaluronan, chondroitin-6-sulfate and IRBP, and imaging by IR-microscopy. We found that the retinal critical surface tension is 24 mN/m, similar to isolated insoluble IPM and lower than IRBP. Barium-stearate calibration studies established that the MAIR-IR spectroscopy penetration depth was 0.2 μm. Ultrastructural observations and MAIR-IR studies of isolated outer retina components determined that the pericellular IPM coating the outer retinal surface is primarily responsible for these surface properties. The critical surface tension of detached bovine retina is dictated not by the outer segments, but by a pericellular IPM covering the outer segment tips.
Collapse
Affiliation(s)
- Federico Gonzalez-Fernandez
- Medical Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, United States; Ophthalmology and Pathology, University of Mississippi Medical Center, Jackson, MS, United States; Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States; Pathology & Anatomic Sciences, SUNY, Buffalo, NY, United States.
| | - Mark Fornalik
- Center for Biosurfaces, SUNY, Buffalo, NY, United States
| | | | - Priscilla Gonzalez-Fernandez
- Medical Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, United States; Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States
| | - Dongjin Sung
- Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States
| | - Anne Meyer
- Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States; Center for Biosurfaces, SUNY, Buffalo, NY, United States
| | - Robert Baier
- Ophthalmology, Ross Eye Institute, SUNY, Buffalo, NY, United States; Center for Biosurfaces, SUNY, Buffalo, NY, United States
| |
Collapse
|
6
|
Cho SH, Song JY, Shin J, Kim S. Neonatal disease environment limits the efficacy of retinal transplantation in the LCA8 mouse model. BMC Ophthalmol 2016; 16:193. [PMID: 27809828 PMCID: PMC5095973 DOI: 10.1186/s12886-016-0368-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/20/2016] [Indexed: 11/17/2022] Open
Abstract
Background Mutations of Crb1 gene cause irreversible and incurable visual impairment in humans. This study aims to use an LCA8-like mouse model to identify host-mediated responses that might interfere with survival, retinal integration and differentiation of grafted cells during neonatal cell therapy. Methods Mixed retinal donor cells (1 ~ 2 × 104) isolated from neural retinas of neonatal eGFP transgenic mice were injected into the subretinal space of LCA8-like model neonatal mice. Markers of specific cell types were used to analyze microglial attraction, CSPG induction and retinal cell differentiation. The positions of host retinal cells were traced according to their laminar location during disease progression to look for host cell rearrangements that might inhibit retinal integration of the transplanted cells. Results Transplanted retinal cells showed poor survival and attracted microglial cells, but CSPG was not greatly induced. Retinas of the LCA8 model hosts underwent significant cellular rearrangement, including rosette formation and apical displacement of inner retinal cells. Conclusions Local disease environment, particularly host immune responses to injected cells and formation of a physical barrier caused by apical migration of host retinal cells upon disruption of outer limiting membrane, may impose two major barriers in LCAs cell transplantation therapy.
Collapse
Affiliation(s)
- Seo-Hee Cho
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| | - Ji Yun Song
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Jinyeon Shin
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Seonhee Kim
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| |
Collapse
|
7
|
Mayazur Rahman S, Reichenbach A, Zink M, Mayr SG. Mechanical spectroscopy of retina explants at the protein level employing nanostructured scaffolds. SOFT MATTER 2016; 12:3431-3441. [PMID: 26947970 DOI: 10.1039/c6sm00293e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Development of neuronal tissue, such as folding of the brain, and formation of the fovea centralis in the human retina are intimately connected with the mechanical properties of the underlying cells and the extracellular matrix. In particular for neuronal tissue as complex as the vertebrate retina, mechanical properties are still a matter of debate due to their relation to numerous diseases as well as surgery, where the tension of the retina can result in tissue detachment during cutting. However, measuring the elasticity of adult retina wholemounts is difficult and until now only the mechanical properties at the surface have been characterized with micrometer resolution. Many processes, however, such as pathological changes prone to cause tissue rupture and detachment, respectively, are reflected in variations of retina elasticity at smaller length scales at the protein level. In the present work we demonstrate that freely oscillating cantilevers composed of nanostructured TiO2 scaffolds can be employed to study the frequency-dependent mechanical response of adult mammalian retina explants at the nanoscale. Constituting highly versatile scaffolds with strong tissue attachment for long-term organotypic culture atop, these scaffolds perform damped vibrations as fingerprints of the mechanical tissue properties that are derived using finite element calculations. Since the tissue adheres to the nanostructures via constitutive proteins on the photoreceptor side of the retina, the latter are stretched and compressed during vibration of the underlying scaffold. Probing mechanical response of individual proteins within the tissue, the proposed mechanical spectroscopy approach opens the way for studying tissue mechanics, diseases and the effect of drugs at the protein level.
Collapse
Affiliation(s)
- S Mayazur Rahman
- Soft Matter Physics Division, Institute for Experimental Physics 1, University of Leipzig, Linnéstr. 5, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
8
|
Ishikawa M, Sawada Y, Yoshitomi T. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells. Exp Eye Res 2015; 133:3-18. [DOI: 10.1016/j.exer.2015.02.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 12/21/2022]
|
9
|
Day AJ, Clark SJ, Bishop PN. Understanding the molecular basis of age-related macular degeneration and how the identification of new mechanisms may aid the development of novel therapies. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.11.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Garlipp MA, Gonzalez-Fernandez F. Cone outer segment and Müller microvilli pericellular matrices provide binding domains for interphotoreceptor retinoid-binding protein (IRBP). Exp Eye Res 2013; 113:192-202. [DOI: 10.1016/j.exer.2013.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
11
|
Clark SJ, Keenan TDL, Fielder HL, Collinson LJ, Holley RJ, Merry CLR, van Kuppevelt TH, Day AJ, Bishop PN. Mapping the differential distribution of glycosaminoglycans in the adult human retina, choroid, and sclera. Invest Ophthalmol Vis Sci 2011; 52:6511-21. [PMID: 21746802 DOI: 10.1167/iovs.11-7909] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE. To map the distribution of different classes of glycosaminoglycans (GAGs) in the healthy human retina, choroid, and sclera. METHODS. Frozen tissue sections were made from adult human donor eyes. The GAG chains of proteoglycans (PGs) were detected with antibodies directed against various GAG structures (either directly or after pretreatment with GAG-degrading enzymes); hyaluronan (HA) was detected using biotinylated recombinant G1-domain of human versican. The primary detection reagents were identified with FITC-labeled probes and analyzed by fluorescence microscopy. RESULTS. Heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and HA were present throughout the retina and choroid, but keratan sulfate (KS) was detected only in the sclera. HS labeling was particularly strong in basement membrane-containing structures, the nerve fiber layer (NFL), and retinal pigment epithelium (RPE)-for example, intense staining was seen with an antibody that binds strongly to sequences containing 3-O-sulfation in the internal limiting membrane (ILM) and in the basement membrane of blood vessels. Unsulfated CS was seen throughout the retina, particularly in the ILM and interphotoreceptor matrix (IPM) with 6-O-sulfated CS also prominent in the IPM. There was labeling for DS throughout the retina and choroid, especially in the NFL, ganglion cell layer, and blood vessels. CONCLUSIONS. The detection of GAG chains with specific probes and fluorescence microscopy provides for the first time a detailed analysis of their compartmentalization in the human retina, by both GAG chain type and sulfation pattern. This reference map provides a basis for understanding the functional regulation of GAG-binding proteins in health and disease processes.
Collapse
|
12
|
Ishikawa M, Fujiwara T, Yoshitomi T. Temperature-dependent ultrastructural changes in the cone interphotoreceptor matrix. Jpn J Ophthalmol 2009; 53:536-40. [DOI: 10.1007/s10384-009-0700-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 03/25/2009] [Indexed: 11/24/2022]
|
13
|
Heat shock proteins as gatekeepers of proteolytic pathways-Implications for age-related macular degeneration (AMD). Ageing Res Rev 2009; 8:128-39. [PMID: 19274853 DOI: 10.1016/j.arr.2009.01.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration (AMD) is the major diagnosis for severe and irreversible central loss of vision in elderly people in the developed countries. The loss of vision involves primarily a progressive degeneration and cell death of postmitotic retinal pigment epithelial cells (RPE), which secondarily evokes adverse effects on photoreceptor cells. The RPE cells are exposed to chronic oxidative stress from three sources: their high levels of oxygen consumption, their exposure to the high levels of lipid peroxidation derived from the photoreceptor outer segments and their exposure to constant light stimuli. Cells increase the expression of heat shock proteins (HSPs) in order to normalize their growth conditions in response to various environmental stress factors, e.g. oxidative stress. The HSPs function as molecular chaperones by preventing the accumulation of cellular cytotoxic protein aggregates and assisting in correct folding of both nascent and misfolded proteins. Increased HSPs levels are observed in the retina of AMD patients, evidence of stressed tissue. A hallmark of RPE cell aging is lysosomal lipofuscin accumulation reflecting a weakened capacity to degrade proteins in lysosomes. The presence of lipofuscin increases the misfolding of intracellular proteins, which evokes additional stress in the RPE cells. If the capacity of HSPs to repair protein damages is overwhelmed, then the proteins are mainly cleared in proteasomes or in lysosomes. In this review, we discuss the role of heat shock proteins, proteasomes, and lysosomes and autophagic processes in RPE cell proteolysis and how these might be involved in development of AMD. In addition to classical lysosomal proteolysis, we focus on the increasing evidence that, HSPs, proteasomes and autophagy regulate protein turnover in the RPE cells and thus have important roles in AMD disease.
Collapse
|
14
|
Zhao J, Yoneda M, Takeyama M, Miyaishi O, Inoue Y, Kataoka T, Ohno-Jinno A, Isogai Z, Kimata K, Iwaki M, Zako M. Characterization of a motif for specific binding to hyaluronan in chicken SPACR. J Neurochem 2008; 106:1117-24. [DOI: 10.1111/j.1471-4159.2008.05468.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Vugler A, Lawrence J, Walsh J, Carr A, Gias C, Semo M, Ahmado A, da Cruz L, Andrews P, Coffey P. Embryonic stem cells and retinal repair. Mech Dev 2007; 124:807-29. [PMID: 17881192 DOI: 10.1016/j.mod.2007.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 12/11/2022]
Abstract
In this review we examine the potential of embryonic stem cells (ESCs) for use in the treatment of retinal diseases involving photoreceptors and retinal pigment epithelium (RPE). We outline the ontogenesis of target retinal cell types (RPE, rods and cones) and discuss how an understanding of developmental processes can inform our manipulation of ESCs in vitro. Due to their potential for cellular therapy, special emphasis is placed upon the derivation and culture of human embryonic stem cells (HESCs) and their differentiation towards a retinal phenotype. In terms of achieving this goal, we suggest that much of the success to date reflects permissive in vitro environments provided by established protocols for HESC derivation, propagation and neural differentiation. In addition, we summarise key factors that may be important for enhancing efficiency of retinal cell-type derivation from HESCs. The retina is an amenable component of the central nervous system (CNS) and as such, diseases of this structure provide a realistic target for the application of HESC-derived cellular therapy to the CNS. In order to further this goal, the second component of our review focuses on the cellular and molecular cues within retinal environments that may influence the survival and behaviour of transplanted cells. Our analysis considers both the potential barriers to transplant integration in the retina itself together with the remodelling in host visual centres that is known to accompany retinal dystrophy.
Collapse
Affiliation(s)
- Anthony Vugler
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V9EL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Inoue Y, Yoneda M, Zhao J, Miyaishi O, Ohno-Jinno A, Kataoka T, Isogai Z, Kimata K, Iwaki M, Zako M. Molecular Cloning and Characterization of Chick SPACRCAN. J Biol Chem 2006; 281:10381-8. [PMID: 16469746 DOI: 10.1074/jbc.m508161200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MY-174, a monoclonal antibody that reacts with specific sialylated O-linked glycoconjugates of chick SPACR (sialoprotein associated with cones and rods), also recognizes another molecule of 300 kDa. Here, we verified that this 300-kDa molecule is chick SPACRCAN (sialoproteoglycan associated with cones and rods), another member of a novel interphotoreceptor matrix molecule family. Screening for chick SPACRCAN was carried out by plaque hybridization using a probe for chick SPACR. Specific polyclonal antibodies raised against chick SPACRCAN were used for the following experiments. To determine whether the 300-kDa molecule detected by MY-174 was identical to 300-kDa chick SPACRCAN, the migrations of these bands were examined after various glycosidase digestions. Furthermore, the expression levels were measured during retinal development and compared with those of chick SPACR. The results demonstrated that the 300-kDa molecule recognized by MY-174 was chick SPACRCAN, and we further identified it as a proteoglycan with chondroitin sulfate chains. SPACRCAN had heavily sialylated N- and O-linked glycoconjugates, and its MY-174 antigenicity was abolished by O-glycanase treatment after neuraminidase treatment, as observed for chick SPACR. During retinal development, the mRNA and core protein expression levels, MY-174 antigenicity, and hyaluronan binding ability of SPACRCAN peaked around embryonic day 17 and then gradually decreased, whereas the corresponding expression levels of SPACR simply increased, but not its hyaluronan binding ability. The MY-174 reactivity of SPACRCAN in the adult retina was decreased compared with that in the newborn retina, whereas that of SPACR was increased. The decreased hyaluronan binding of SPACR was induced by an inhibitory effect of the excess of sialic acids in the adult stage. Thus, with similar core protein structures and specific sialylated glycoconjugates but distinct chondroitin sulfate chains, SPACRCAN and SPACR may have separate roles in the retina due to their differing expression profiles during development.
Collapse
Affiliation(s)
- Yoko Inoue
- Department of Ophthalmology, Aichi Medical University, Nagakute-cho, Aichi-gun, Aichi-ken 480-1195, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bonilha VL, Rayborn ME, Shadrach K, Lundwall A, Malm J, Bhattacharya SK, Crabb JW, Hollyfield JG. Characterization of semenogelin proteins in the human retina. Exp Eye Res 2006; 83:120-7. [PMID: 16545373 DOI: 10.1016/j.exer.2005.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 11/11/2005] [Accepted: 11/15/2005] [Indexed: 10/24/2022]
Abstract
Semenogelin I and II are the major proteins present in semen coagulum. In the present study, semenogelin I and II were detected in human RPE lysates by proteomic analysis. We further analyzed the expression of these proteins in the retinal cells in vivo and in vitro. Western blots detected semenogelin I and II in both RPE and neural retina while the vitreous contained only SgII. Cryo and paraffin sections of human retina were processed for both immunofluorescence and DAB reaction with an antibody that recognizes both forms of semenogelin proteins. Retina and RPE total lysates were evaluated for the presence of these proteins and in a human RPE cell line (D407). Both proteins were detected by western blot in human RPE and in D407 cell lysates. Immunoreactivity was detected in the ganglion cell and photoreceptor layer of the retina. Our data support the expression of semenogelin I and II in the human retina in several different compartments. Further studies towards addressing the function of these proteins in the retina are in progress.
Collapse
Affiliation(s)
- Vera L Bonilha
- Department of Ophthalmic Research, The Cole Eye Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Located between vessels of the choriocapillaris and light-sensitive outer segments of the photoreceptors, the retinal pigment epithelium (RPE) closely interacts with photoreceptors in the maintenance of visual function. Increasing knowledge of the multiple functions performed by the RPE improved the understanding of many diseases leading to blindness. This review summarizes the current knowledge of RPE functions and describes how failure of these functions causes loss of visual function. Mutations in genes that are expressed in the RPE can lead to photoreceptor degeneration. On the other hand, mutations in genes expressed in photoreceptors can lead to degenerations of the RPE. Thus both tissues can be regarded as a functional unit where both interacting partners depend on each other.
Collapse
Affiliation(s)
- Olaf Strauss
- Bereich Experimentelle Ophthalmologie, Klinik und Poliklinik fuer Augenheilkunde, Universitaetsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
19
|
Erlich RB, Werneck CC, Mourão PAS, Linden R. Major glycosaminoglycan species in the developing retina: synthesis, tissue distribution and effects upon cell death. Exp Eye Res 2003; 77:157-65. [PMID: 12873445 DOI: 10.1016/s0014-4835(03)00129-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Retinal explants maintained in culture medium retain their histotypic structure and develop similarly to the in vivo condition. Extracellular matrix components, particularly the glycosaminoglycans which are not routinely present in dissociated cell cultures are involved in various cellular events. In this work we characterized and determined the localization of sulfated glycosaminoglycans in the extracellular matrix of rat retinal explants at various stages of normal postnatal development and tested whether disruption of the tissue glycosaminoglycan composition may impose either trophic or toxic effects upon distinct retinal cell populations. Our data show that chondroitin sulfate and heparan sulfate glycosaminoglycan chains are synthesized in different proportions during postnatal retinal development. A peak of synthesis of chondroitin sulfates is evident at around P14. Immunohistochemistry showed chondroitin 6-sulfate in the plexiform layers during the earlier stages while later, intense immunoreactivity was found in the outer retina. Heparan sulfate was found in the neuroblastic layer (NBL) at P1, in both nuclear layers from P5 onwards and in the ganglion cell layer (GCL) at all stages. In contrast to chondroitin 6-sulfate, immunoreactivity to heparan sulfate was absent from the outer retina at both P14 and P21. Treatment with heparitinase modulated the rates of cell death in both the GCL and the NBL in P1 retinal explants. Taken together our data show that among the major sulfated glycosaminoglycans, the developing rat retina synthesizes only heparan sulfate and chondroitin sulfates in a spatiotemporally regulated manner, with a peak of chondroitin sulfates at P14, possibly related to photoreceptor differentiation. In addition, our data suggest a role for heparan sulfate as a modulator of sensitivity to cell death in the retina.
Collapse
|
20
|
Bevitt DJ, Mohamed J, Catterall JB, Li Z, Arris CE, Hiscott P, Sheridan C, Langton KP, Barker MD, Clarke MP, McKie N. Expression of ADAMTS metalloproteinases in the retinal pigment epithelium derived cell line ARPE-19: transcriptional regulation by TNFalpha. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1626:83-91. [PMID: 12697333 DOI: 10.1016/s0167-4781(03)00047-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ADAMTS (A Disintegrin-like And Metalloprotease domain with ThromboSpondin type I motifs) are multidomain proteins with demonstrated metalloproteinase functionality and have potential roles in embryonic development, angiogenesis and cartilage degradation. We present here investigations of ADAMTS expression in an ocular cell type, ARPE-19, with a view to implicating them in retinal matrix turnover. Expression analysis was undertaken using a combination of reverse transcription polymerase chain reaction (RT-PCR) and Northern blotting experiments, which together detected the expression of mRNAs for several ADAMTS proteins, all of which have active site motifs characteristic of matrix metalloproteases (MMPs). These included ADAMTS1, ADAMTS2, ADAMTS3, ADAMTS5, ADAMTS6, ADAMTS7 and ADAMTS9. The expression of mRNA isoforms for ADAMTS7 and ADAMTS9 were also detected. Following stimulation with TNFalpha, ADAMTS1, ADAMTS6 and both ADAMTS9 transcripts expressed in ARPE-19 cells showed a potent upregulation. The expression of ADAMTS genes in ARPE-19 cells and the transcriptional stimulation of some family members by TNFalpha may implicate them in inflammatory eye disease and the compromise of retinal matrix structure, which is evident in age-related macular degeneration (ARMD) and other retinal pathologies.
Collapse
Affiliation(s)
- Debra J Bevitt
- Department of Rheumatology, University of Newcastle Medical School, Framlington Place, NE2 4HH, Newcastle, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen Q, Lee JW, Nishiyama K, Shadrach KG, Rayborn ME, Hollyfield JG. SPACRCAN in the interphotoreceptor matrix of the mouse retina: molecular, developmental and promoter analysis. Exp Eye Res 2003; 76:1-14. [PMID: 12589770 DOI: 10.1016/s0014-4835(02)00273-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SPACRCAN is a novel proteoglycan present in the interphotoreceptor matrix (IPM) of the rat and human retina that resists aqueous extraction through its binding to hyaluronan. The purpose of this study was: to clone mouse Spacrcan; to characterize the promoter elements; to define the deduced amino acid sequence; to establish the time of Spacrcan expression during retinal development; and to determine the time of appearance and distribution of SPACRCAN protein. Spacrcan cDNA clone was obtained through PCR amplification of a mouse retina cDNA library, and RT-PCR amplification and 5'RACE of mouse retina RNA. The deduced polypeptide sequence of mouse SPACRCAN contains a signal peptide at the N-terminal, seven N-link glycosylation sites, numerous potential O-linked glycosylation sites in a central mucin-like domain, two glycosaminoglycan attachment sites, five potential hyaluronan-binding motifs, two epidermal growth factor-like domains, and a hydrophobic stretch of 23 amino acids near the C-terminal. Comparison of the genomic structure of mouse and human SPACRCAN showed significant structure conservation. Analysis of the promoter region revealed several important putative regulatory elements including a Ret-1/PCE-1 element, an 11 base motif for Crx binding, six copies of PIRE, a Ret-4 element, three copies of AP-1, a CRE element, and five copies of GATA3. Northern blot analysis and immunohistochemistry were used to determine the tissue specificity of Spacrcan mRNA and to localize SPACRCAN in developing retina. Spacrcan mRNA is expressed in both retina and pineal gland and was detectable as early as embryonic day 15. The protein is first detectable in the IPM at postnatal day 8 where it increases in concert with the extension of photoreceptor inner and outer segments from the outer retinal surface. The presence of several unique regulatory elements in the promoter region and characteristic molecular features shared with the orthologue in human and rat suggest an important functional role of SPACRCAN in the IPM. The time of appearance of the SPACRCAN protein during retinal development suggests that this matrix protein may establish the extracellular microenvironment into which photoreceptor outer segments are elaborated.
Collapse
Affiliation(s)
- Qiuyun Chen
- Cole Eye Institute (i31), The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
In this article, we summarize the roles of proteoglycans in retinal tissue. Chondroitin sulfate and heparan sulfate proteoglycans are the major constituents in proteoglycans expressed in retinal tissue. Soluble heparan sulfate proteoglycans are found in the extracellular matrices of the basement membrane, such as the inner limiting membrane and Bruch's membrane, whereas heparan sulfate proteoglycans with their membrane-binding domain are localized primarily in the neurites of retinal neuronal cells, indicating their role as receptors for cytokines. The distribution of chondroitin sulfate proteoglycans is classified into two regions: nerve fiber-rich layers such as the optic nerve, inner plexiform layer and outer plexiform layer, and the interphotoreceptor matrix (IPM). The expression in the nerve fiber-rich layers of several chondroitin sulfate proteoglycans, such as neurocan and phosphacan, is restricted in the nervous tissues, and is upregulated as retinal development proceeds, then decreases after maturation of the retina. In vitro data suggest that these proteoglycans regulate axon guidance and synapse formation during the development of nervous tissue. In contrast, in adult vertebrate retina, the IPM is a rich source of chondroitin sulfate proteoglycans. Histologic data from animals with experimental retinitis pigmentosa, and the existence of the hyaluronan-binding domain in their core proteins, indicate that these proteoglycans contribute to the structural link between the neural retina and retinal pigment epithelium via the interaction with hyaluronan, which is also abundant in the IPM. Furthermore, several chondroitin sulfate proteoglycans in the nerve fiber-rich layers contain the hyaluronan-binding domain, so it is likely that the interaction of proteoglycans with hyaluronan plays an important role in neural network formation in the central nervous system.
Collapse
Affiliation(s)
- Masaru Inatani
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
23
|
Foletta VC, Nishiyama K, Rayborn ME, Shadrach KG, Young WS, Hollyfield JG. SPACRCAN in the developing retina and pineal gland of the rat: spatial and temporal pattern of gene expression and protein synthesis. J Comp Neurol 2001; 435:354-63. [PMID: 11406817 DOI: 10.1002/cne.1035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SPACRCAN is a hyaluronan-binding proteoglycan that is present in the pineal gland and interphotoreceptor matrix of the retina. Here, we evaluate the pattern of SPACRCAN gene expression and protein appearance during retinal and pineal gland development in the rat. In situ hybridization histochemistry with SPACRCAN riboprobes indicates that hybridization signals are first evident in the retina over developing photoreceptor cells at embryonic day 16 (E16) and in the pineal gland at E21. Immunocytochemistry using a SPACRCAN antibody shows localization of SPACRCAN protein in the developing interphotoreceptor matrix by Postnatal day 5 (P5) and in the pineal gland by P6. These studies suggest that SPACRCAN mRNA expression may occur substantially earlier than the time when SPACRCAN protein is detectable in both the retina and the pineal gland. The period of retinal histogenesis when SPACRCAN is detected first is coincident with the time photoreceptors begin to extend from the outer retinal surface, suggesting that SPACRCAN may participate in the maturation and maintenance of the light-sensitive photoreceptor outer segment.
Collapse
Affiliation(s)
- V C Foletta
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
24
|
Hollyfield JG, Rayborn ME, Nishiyama K, Shadrach KG, Miyagi M, Crabb JW, Rodriguez IR. Interphotoreceptor matrix in the fovea and peripheral retina of the primate Macaca mulatta: distribution and glycoforms of SPACR and SPACRCAN. Exp Eye Res 2001; 72:49-61. [PMID: 11133182 DOI: 10.1006/exer.2000.0922] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SPACR and SPACRCAN localization in the interphotoreceptor matrix (IPM) of the fovea and peripheral retina of Macaca mulatta was established with antibodies to these core proteins and the chondroitin sulfate epitopes and lectin binding properties of these molecules were defined. The IPM of both rods and cones labeled with anti-SPACR, anti-SPACRCAN, anti-Delta Di6S antibodies and wheat germ agglutinin (WGA). Whereas anti-SPACR and anti-SPACRCAN antibodies labeled rod and cone matrix compartments with similar intensity, the Delta Di6S chondroitin antibody labeling was more intense around cones than rods. Peanut lectin (PNA) labeling was present only around cones. No IPM labeling was observed with Delta Di0S-chondroitin or Delta Di4S-chondroitin antibodies. Western blots of undigested IPM extracts showed anti-SPACR immunoreactivity at 150 kDa, colocalizing with the position of WGA and PNA binding. In Western blots of the chondroitinase ABC digested sample and samples double digested with chondroitinase ABC and AC II, anti-SPACR immunoreactivity, WGA and PNA labeling intensity were virtually identical to that in the undigested sample, with prominent staining of the 150 kDa SPACR band. In contrast, anti-SPACRCAN immunoreactivity was not present in the undigested sample, but was evident in both the chondroitinase ABC and double digested samples as a broad band at approximately 230 kDa. Delta Di6S, Delta Di4S, WGA and PNA labeling colocalized with the anti-SPACRCAN immunoreactivity in the chondroitinase ABC digested sample. These findings indicate that SPACR and SPACRCAN are present around cones in the fovea and both rods and cones in the peripheral retina, but that the specific glycoforms of these molecules are different depending on whether present in the cone or rod associated IPM.
Collapse
Affiliation(s)
- J G Hollyfield
- Cole Eye Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Lee JW, Chen Q, Rayborn ME, Shadrach KG, Crabb JW, Rodriguez IR, Hollyfield JG. SPACR in the interphotoreceptor matrix of the mouse retina: molecular, biochemical and immunohistochemical characterization. Exp Eye Res 2000; 71:341-52. [PMID: 10995555 DOI: 10.1006/exer.2000.0888] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse SPACR cDNA was cloned by screening a mouse retina cDNA library using a PCR probe derived from human SPACR cDNA. Mouse SPACR cDNA comprises 3675 bp containing an open reading frame coding for 742 amino acids. Multitissue Northern blot analysis and in situ hybridization studies indicate that SPACR expression is restricted to retinal photoreceptors. The SPACR core protein was identified with Western blotting following SDS-PAGE with a SPACR C-terminal peptide polyclonal antibody and a chondroitin-6-sulfate Deltadisaccharide monoclonal antibody. The 150 kD immunopositive band was isolated, digested with trypsin and the peptides analysed by MALDI mass spectroscopy. Peptide mass mapping confirmed the identity of the 150 kD immunopositive band to be mouse SPACR core protein. Alignment comparisons of the deduced amino acid sequence of mouse and human SPACR show 64% homology. Like SPACR in the human interphotoreceptor matrix, the mouse orthologue contains a large central mucin-like domain flanked by consensus sites for N-linked oligosaccharide attachment, one EGF-like domain and four hyaluronan-binding motifs. Unlike human SPACR, which contains no conventional consensus sites for glycosaminoglycan attachment, mouse SPACR contains three. Recent biochemical studies of human and mouse SPACR protein indicate that this novel interphotoreceptor matrix molecule is a glycoprotein in human and a proteoglycan in the mouse. The presence of consensus sites for glycosaminoglycan attachment in the deduced sequence of mouse SPACR and the absence of these sites in human SPACR provide molecular verification of our biochemical results, suggesting that differences in post-translational modifications of SPACR may be important in SPACR function in foveate and non-foveate retinas.
Collapse
Affiliation(s)
- J W Lee
- Cole Eye Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Acharya S, Foletta VC, Lee JW, Rayborn ME, Rodriguez IR, Young WS, Hollyfield JG. SPACRCAN, a novel human interphotoreceptor matrix hyaluronan-binding proteoglycan synthesized by photoreceptors and pinealocytes. J Biol Chem 2000; 275:6945-55. [PMID: 10702256 DOI: 10.1074/jbc.275.10.6945] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interphotoreceptor matrix is a unique extracellular complex occupying the interface between photoreceptors and the retinal pigment epithelium in the fundus of the eye. Because of the putative supportive role in photoreceptor maintenance, it is likely that constituent molecules play key roles in photoreceptor function and may be targets for inherited retinal disease. In this study we identify and characterize SPACRCAN, a novel chondroitin proteoglycan in this matrix. SPACRCAN was cloned from a human retinal cDNA library and the gene localized to chromosome 3q11.2. Analysis of SPACRCAN mRNA and protein revealed that SPACRCAN is expressed exclusively by photoreceptors and pinealocytes. SPACRCAN synthesized by photoreceptors is localized to the interphotoreceptor matrix where it surrounds both rods and cones. The functional protein contains 1160 amino acids with a large central mucin domain, three consensus sites for glycosaminoglycan attachment, two epidermal growth factor-like repeats, a putative hyaluronan-binding motif, and a potential transmembrane domain near the C-terminal. Lectin and Western blotting indicate an M(r) around 400,000 before and 230,000 after chondroitinase ABC digestion. Removal of N- and O-linked oligosaccharides reduces the M(r) to approximately 160,000, suggesting that approximately 60% of the mass of SPACRCAN is carbohydrate. Finally, we demonstrate that SPACRCAN binds hyaluronan and propose that associations between SPACRCAN and hyaluronan may be involved in organization of the insoluble interphotoreceptor matrix, particularly as SPACRCAN is the major proteoglycan present in this matrix.
Collapse
Affiliation(s)
- S Acharya
- Cole Eye Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|