1
|
Calipel A, Landreville S, De La Fouchardière A, Mascarelli F, Rivoire M, Penel N, Mouriaux F. Mechanisms of resistance to imatinib mesylate in KIT-positive metastatic uveal melanoma. Clin Exp Metastasis 2014; 31:553-64. [PMID: 24652072 DOI: 10.1007/s10585-014-9649-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 03/03/2014] [Indexed: 02/06/2023]
Abstract
Imatinib mesylate is used in targeted therapy of cancer to inhibit type III tyrosine kinase receptors, such as KIT and platelet-derived growth factor receptors (PDGFRs). Expression of KIT in uveal melanoma (UM) suggests that this receptor may be the target of imatinib mesylate therapy. However, phase II multicenter clinical studies have shown no effect of imatinib mesylate in patients with unresectable liver metastases of UM. We therefore investigated which molecular mechanisms promote imatinib mesylate-resistance in metastatic UM. Expression of KIT, stem cell factor (SCF), PDGFRα and PDGFRβ, was analyzed by RT-PCR, immunostaining, and Western blot in twenty-four samples of UM liver metastases, as well as UM primary tumor and metastatic cell lines. Soluble SCF was quantified in UM cell lines using enzyme-linked immunosorbent assay. Cell viability of UM cell lines treated with imatinib mesylate and grown in SCF-supplemented medium or in microvascular endothelial cells-conditioned medium was studied by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assays. UM liver metastases and cell lines expressed KIT and SCF, but not the PDGFRs. Ninety-five percent of liver metastases expressed KIT at the protein level, but PDGFRs were not detected in these samples. Imatinib mesylate reduced the viability of UM metastatic cell lines in a concentration-dependent manner, but an increased resistance to this drug was observed when cells were incubated in SCF-supplemented or microvascular endothelial cells-conditioned medium. This study provides evidence that tumor microenvironment cytokines such as SCF may promote resistance to imatinib mesylate in metastatic UM.
Collapse
Affiliation(s)
- Armelle Calipel
- CNRS, UMR 6301 ISTCT, CERVOxy. GIP CYCERON, 14074, Caen, France
| | | | | | | | | | | | | |
Collapse
|
2
|
Zhang Y, Yang Y, Chen L, Zhang J. Expression analysis of genes and pathways associated with liver metastases of the uveal melanoma. BMC MEDICAL GENETICS 2014; 15:29. [PMID: 24597767 PMCID: PMC4015751 DOI: 10.1186/1471-2350-15-29] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/12/2014] [Indexed: 12/25/2022]
Abstract
Background Uveal melanoma is an aggressive cancer which has a high percentage metastasizing to the liver, with a worse prognosis. Identification of patients at high risk of metastases may provide information for early detection of metastases and treatment. Methods Expression profiling of ocular tumor tissues from 46 liver metastatic uveal melanoma samples and 45 non-metastatic uveal melanoma samples were got from GEO database. Bioinformatic analyses such as the Gene Oncology and Kyoto Encyclopedia of Genes and Genomes were used to identify genes and pathways specifically associated with liver metastases of the uveal melanoma. Results A total of 1138 probes were differentially expressed in two group samples. All differential gene interactions in the Signal-Net were analyzed. Of them, 768 probes were up-regulated and 370 down-regulated. They mainly participated in 125 GO terms and 16 pathways. Of the genes differentially expressed between two group cancers, HTR2B, CHL1, the ZNF family, YWHAZ and FYN were the most significantly altered. Conclusions Bioinformatics may help excavate and analyze large amounts of data in microarrays by means of rigorous experimental planning, scientific statistical analysis and collection of complete data about liver metastases of uveal melanoma patients. In the present study, a novel differential gene expression pattern was constructed and advanced study will provide new targets for diagnosis and mechanism of uveal melanoma liver metastases.
Collapse
Affiliation(s)
| | | | - Lei Chen
- Department of Ophthalmology, The branch of the first people's hospital of Shanghai, Shanghai 200081, China.
| | | |
Collapse
|
3
|
Gangemi R, Mirisola V, Barisione G, Fabbi M, Brizzolara A, Lanza F, Mosci C, Salvi S, Gualco M, Truini M, Angelini G, Boccardo S, Cilli M, Airoldi I, Queirolo P, Jager MJ, Daga A, Pfeffer U, Ferrini S. Mda-9/syntenin is expressed in uveal melanoma and correlates with metastatic progression. PLoS One 2012; 7:e29989. [PMID: 22267972 PMCID: PMC3258266 DOI: 10.1371/journal.pone.0029989] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 12/09/2011] [Indexed: 11/19/2022] Open
Abstract
Uveal melanoma is an aggressive cancer that metastasizes to the liver in about half of the patients, with a high lethality rate. Identification of patients at high risk of metastases may provide indication for a frequent follow-up for early detection of metastases and treatment. The analysis of the gene expression profiles of primary human uveal melanomas showed high expression of SDCBP gene (encoding for syndecan-binding protein-1 or mda-9/syntenin), which appeared higher in patients with recurrence, whereas expression of syndecans was lower and unrelated to progression. Moreover, we found that high expression of SDCBP gene was related to metastatic progression in two additional independent datasets of uveal melanoma patients. More importantly, immunohistochemistry showed that high expression of mda-9/syntenin protein in primary tumors was significantly related to metastatic recurrence in our cohort of patients. Mda-9/syntenin expression was confirmed by RT-PCR, immunofluorescence and immunohistochemistry in cultured uveal melanoma cells or primary tumors. Interestingly, mda-9/syntenin showed both cytoplasmic and nuclear localization in cell lines and in a fraction of patients, suggesting its possible involvement in nuclear functions. A pseudo-metastatic model of uveal melanoma to the liver was developed in NOD/SCID/IL2Rγ null mice and the study of mda-9/syntenin expression in primary and metastatic lesions revealed higher mda-9/syntenin in metastases. The inhibition of SDCBP expression by siRNA impaired the ability of uveal melanoma cells to migrate in a wound-healing assay. Moreover, silencing of SDCBP in mda-9/syntenin-high uveal melanoma cells inhibited the hepatocyte growth factor (HGF)-triggered invasion of matrigel membranes and inhibited the activation of FAK, AKT and Src. Conversely syntenin overexpression in mda-9/syntenin-low uveal melanoma cells mediated opposite effects. These results suggest that mda-9/syntenin is involved in uveal melanoma progression and that it warrants further investigation as a candidate molecular marker of metastases and a potential therapeutic target.
Collapse
Affiliation(s)
- Rosaria Gangemi
- Immunological Therapy Laboratory, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Valentina Mirisola
- Laboratory of Integrated Molecular Pathology, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Gaia Barisione
- Immunological Therapy Laboratory, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Marina Fabbi
- Immunological Therapy Laboratory, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Antonella Brizzolara
- Immunological Therapy Laboratory, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Francesco Lanza
- Ophthalmic Oncology Center, E.O. Galliera Hospital, Genoa, Italy
| | - Carlo Mosci
- Ophthalmic Oncology Center, E.O. Galliera Hospital, Genoa, Italy
| | - Sandra Salvi
- Department of Pathology, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Marina Gualco
- Department of Pathology, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Mauro Truini
- Department of Pathology, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Giovanna Angelini
- Laboratory of Integrated Molecular Pathology, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Simona Boccardo
- Department of Pathology, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Michele Cilli
- Animal Model Facility, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Irma Airoldi
- AIRC Laboratory of Immunology and Tumors, Department of Experimental and Laboratory Medicine, G. Gaslini Institute, Genova, Italy
| | - Paola Queirolo
- Medical Oncology, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Martine J. Jager
- Departments of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Antonio Daga
- Gene Transfer Laboratory, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| | - Ulrich Pfeffer
- Laboratory of Integrated Molecular Pathology, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
- * E-mail:
| | - Silvano Ferrini
- Immunological Therapy Laboratory, National Cancer Research Institute, University Hospital San Martino, Genoa, Italy
| |
Collapse
|
4
|
Life cycle of human melanocytes is regulated by endothelin-1 and stem cell factor in synergy with cyclic AMP and basic fibroblast growth factor. J Dermatol Sci 2009; 57:123-31. [PMID: 20045284 DOI: 10.1016/j.jdermsci.2009.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/16/2009] [Accepted: 11/25/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND Although the function of human melanocytes is well characterized at cellular and molecular levels, the mechanism of the regulation of the life cycle (proliferation, differentiation, and cell death) of human melanocytes is not fully understood. OBJECTIVE This study aims to clarify what factors are involved in regulating the life cycle of human melanocytes using serum-free culture system. METHODS Human epidermal melanocytes were cultured in a serum-free growth medium supplemented with several kinds of growth factors, cytokines, and hormones and the effects of these factors on the life cycle of melanocytes were investigated in detail. RESULTS Of the factors tested, endothelin-1 (ET-1) stimulated the proliferation of melanoblasts and melanocytes in the presence of cyclic AMP (cAMP)-elevating factor such as dibutyryl cAMP (DBcAMP) and of basic fibroblast growth factor (bFGF). ET-1 also stimulated the proliferation and differentiation of human melanocytes in the presence of DBcAMP. Moreover, stem cell factor (SCF) stimulated the proliferation of melanoblasts and melanocytes synergistically with ET-1. The removal of ET-1 and SCF from the culture medium greatly inhibited the proliferation of melanocytes followed by apoptotic cell death. CONCLUSION These results suggest that the life cycle of human melanocytes is regulated by ET-1 and SCF in synergy with cAMP and bFGF.
Collapse
|
5
|
Abstract
Uveal melanoma is the most common primary intraocular malignancy in adults. Overall mortality rate remains high because of the frequent development of metastatic disease, especially hepatic metastasis. While traditional systemic chemotherapies provide only marginal benefit to patients, local treatments for hepatic metastases, such as immunoembolization, have improved patient prognoses. Progress has also been made in identifying potential targets in the pathways involved in apoptosis, proliferation, invasion, metastasis, and angiogenesis of uveal melanoma. Among these pathways, the c-Kit, c-Met, and IGF-1R signal pathways and the PTEN-related PI3K-Akt pathway are the most important targets. Clinical trials using blockades of these pathways in conjunction with strategies to facilitate apoptosis is a direction for future clinical trials. Application of these approaches in the adjuvant setting after primary therapy for high-risk uveal melanoma patients is also a future consideration to improve the clinical outcome of this disease.
Collapse
Affiliation(s)
- Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, 1015 Walnut Street, Suite 1024, Philadelphia, PA 19107, USA. t_sato @mail.jci.tju.edu
| | | | | |
Collapse
|
6
|
O-Mel-Inib: a Cancéro-pôle Nord-Ouest multicenter phase II trial of high-dose imatinib mesylate in metastatic uveal melanoma. Invest New Drugs 2008; 26:561-5. [PMID: 18551246 DOI: 10.1007/s10637-008-9143-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 05/15/2008] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nowadays, there is no consensual and effective treatment in metastatic uveal melanoma (MUM). Numerous preclinical data (for example, 75% of MUM express c-kit) suggest that imatinib mesylate (IM) may be a potential treatment of UMM. METHODS The primary objective of this phase II trial was to determine the non-progression rate at 3 months for patients receiving IM at dose of 400 mg twice per day orally. The study was based on a Simon's optimal design, which allows entry a total of 29 patients, if at least two non-progressions among ten first patients were observed. RESULT Thirteen patients including ten assessable patients were enrolled in 12 months. No objective response and only one stable disease with duration of 5 months were noted. Five and one out of 13 enrolled patients experienced grade 3 and grade 4 toxicities, respectively. The most common severe adverse events were abdominal pain. The overall survival was 10.8 months. CONCLUSIONS Despite promising preclinical data, IM is an inactive single agent in MUM. This phase II clinical trial has been stopped at the first step.
Collapse
|
7
|
Targeted therapy for uveal melanoma. Cancer Treat Rev 2008; 34:247-58. [PMID: 18226859 DOI: 10.1016/j.ctrv.2007.12.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 11/28/2007] [Accepted: 12/02/2007] [Indexed: 11/23/2022]
Abstract
Uveal melanoma is the most common primary intra-ocular malignancy in adults. Overall mortality rate remains high because of the development of metastatic disease, which is highly resistant to systemic therapy. Improved understanding of the molecular pathogenesis of cancers has led to a new generation of therapeutic agents that interfere with a specific pathway critical in tumor development or progression. Although no specific genes have been linked to the pathogenesis of uveal melanoma, which differs from that of cutaneous melanoma, progress has been made in identifying potential targets involved in uveal melanoma apoptosis, proliferation, invasion, metastasis, and angiogenesis. This review focuses on the prospects for improving the systemic therapy of uveal melanoma using molecularly targeted agents that are currently in clinical use as well as agents being tested in clinical trials. Preclinical studies suggest potential benefit of inhibitors of Bcl-2, ubiquitin-proteasome, histone deactylase, mitogen-activated protein kinase and phosphatidylinositol-3-kinase-AKT pathways, and receptor tyrosine kinases. Modifiers of adhesion molecules, matrix metalloproteinase, and angiogenic factors also have demonstrated potential benefit. Clinical trials of some of these approaches have been initiated in patients with metastatic uveal melanoma as well as in the adjuvant setting after primary therapy.
Collapse
|
8
|
Pardo M, Dwek RA, Zitzmann N. Proteomics in uveal melanoma research: opportunities and challenges in biomarker discovery. Expert Rev Proteomics 2007; 4:273-86. [PMID: 17425462 DOI: 10.1586/14789450.4.2.273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Uveal melanoma (UM) is the most frequent primary intraocular tumor in adult humans. Despite the significant advances in diagnosis and treatment of UM in the last decades, the prognosis of UM sufferers is still poor. Metastatic liver disease is the leading cause of death in UM and can develop after a long disease-free interval, suggesting the presence of occult micrometastasis. Proteomics technology has opened new opportunities for elucidating the molecular mechanism of complex diseases, such as cancer. This article will review the recent developments in biomarker discovery for UM research by proteomics. In the last few years, the first UM proteomics-based analyses have been launched, yielding promising results. An update on recent developments on this field is presented.
Collapse
Affiliation(s)
- María Pardo
- Universidad de Santiago de Compostela, Laboratorio de Endocrinología Molecular, Departamento de Medicina, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain.
| | | | | |
Collapse
|
9
|
Calipel A, Mouriaux F, Glotin AL, Malecaze F, Faussat AM, Mascarelli F. Extracellular signal-regulated kinase-dependent proliferation is mediated through the protein kinase A/B-Raf pathway in human uveal melanoma cells. J Biol Chem 2006; 281:9238-50. [PMID: 16452469 DOI: 10.1074/jbc.m600228200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutated B-Raf-mediated constitutive activation of ERK1/2 is involved in about 66% of cutaneous melanoma. By contrast, activating mutations in B-RAF are rare in ocular melanoma. This study aimed to determine the role of wild-type B-Raf ((WT)B-Raf) in uveal melanoma cell growth. We used cell lines derived from primary tumors of uveal melanoma to assess the role of (WT)B-Raf in cell proliferation and to characterize its upstream regulators and downstream effectors. Melanoma cell lines expressing (WT)B-Raf and (WT)Ras grew with similar proliferation rates, showed constitutive activation of ERK1/2, and had similar levels of B-Raf expression and B-Raf kinase activity as melanoma cell lines expressing the activating V600E mutation ((V600E)B-Raf). They were equally as sensitive to pharmacological inhibition of MEK1/2 for cell proliferation and transformation as (V600E)B-Raf cells. siRNA-mediated depletion of Raf-1 did not affect either ERK1/2 activation, whereas siRNA-mediated depletion of B-Raf reduced cell proliferation by up to 65% through the inhibition of ERK1/2 activation, irrespective of the mutational status of B-Raf. Pharmacological inhibition of cAMP-dependent protein kinase (PKA) and siRNA-mediated depletion of PKA greatly reduced B-Raf activity, ERK1/2 activation, and cell proliferation in (WT)B-Raf cells, whereas it did not affect (V600E)B-Raf cells, demonstrating a key role of PKA in mediating (WT)B-Raf/ERK signaling for uveal melanoma cell growth. Moreover, inactivation or depletion of PKA did not affect Rap-1 activity, and Rap-1 depletion did not affect either B-Raf activity or ERK1/2 activation. This ruled out a role for Rap1 in the PKA-mediated B-Raf/ERK activation in (WT)B-Raf cells. Finally, we demonstrated the importance of cyclin D1 in mediating PKA/(WT)B-Raf signaling for cell proliferation. Altogether, our results suggest that the PKA/B-Raf pathway is a potential target for therapeutic strategies against (WT)B-Raf-expressing uveal melanoma.
Collapse
Affiliation(s)
- Armelle Calipel
- INSERM U598 and IFR58, Institut Biomédical des Cordeliers, Paris 75006, France
| | | | | | | | | | | |
Collapse
|
10
|
Mouriaux F, Saule S, Desjardins L, Mascarelli F. Les mélanocytes choroïdiens normaux et malins : de la cellule à la clinique. J Fr Ophtalmol 2005; 28:781-93. [PMID: 16208231 DOI: 10.1016/s0181-5512(05)80996-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular and cellular basis of human choroidal malignant melanoma progression has remained largely unknown. However, choroidal melanoma is the most important primary intraocular tumor in adults. Developmentally, choroidal melanocytes are of neural crest origin similar to cutaneous melanocytes. However, there are some significant differences between cutaneous and uveal melanocytes that have yet to be fully assessed. The purpose of this study is to describe choroidal melanocytes. We will describe the significant differences between cutaneous and uveal melanocytes as well as the congenital and acquired diseases of uveal melanocytes. We will then describe the cellular and molecular mechanisms involved in melanoma progression.
Collapse
Affiliation(s)
- F Mouriaux
- Service d'Ophtalmologie, CHU Côte de Nacre, Caen.
| | | | | | | |
Collapse
|
11
|
Lefevre G, Glotin AL, Calipel A, Mouriaux F, Tran T, Kherrouche Z, Maurage CA, Auclair C, Mascarelli F. Roles of stem cell factor/c-Kit and effects of Glivec/STI571 in human uveal melanoma cell tumorigenesis. J Biol Chem 2004; 279:31769-79. [PMID: 15145934 DOI: 10.1074/jbc.m403907200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The B-Raf(V599E)-mediated constitutive activation of ERK1/2 is involved in establishing the transformed phenotype of some uveal melanoma cells (Calipel, A., Lefevre, G., Pouponnot, C., Mouriaux, F., Eychene, A., and Mascarelli, F. (2003) J. Biol. Chem. 278, 42409-42418). We have shown that stem cell factor (SCF) is involved in the proliferation of normal uveal melanocytes and that c-Kit is expressed in 75% of primary uveal melanomas. This suggests that the acquisition of autonomous growth during melanoma progression may involve the SCF/c-Kit axis. We used six human uveal melanoma tumor-derived cell lines and normal uveal melanocytes to characterize the SCF/c-Kit system and to assess its specific role in transformation. We investigated the possible roles of activating mutations in c-KIT, the overexpression of this gene, and ligand-dependent c-Kit overactivation in uveal melanoma cell tumorigenesis. Four cell lines (92.1, SP6.5, Mel270, and TP31) expressed both SCF and c-Kit, and none harbored the c-KIT mutations in exons 9, 11, 13, and 17 that have been shown to induce SCF-independent c-Kit activation. Melanoma cell proliferation was strongly inhibited by small interfering RNA-mediated depletion of c-Kit in these cells, despite the presence of (V599E)B-Raf in SP6.5 and TP31 cells. We characterized the signaling pathways involved in SCF/c-Kit-mediated cell growth and survival in normal and tumoral melanocytes and found that constitutive ERK1/2 activation played a key role in both the SCF/c-Kit autocrine loop and the gain of function of (V599E)B-Raf for melanoma cell proliferation and transformation. We also provide the first evidence that Glivec/STI571, a c-Kit tyrosine kinase inhibitor, could be used to treat uveal melanomas.
Collapse
Affiliation(s)
- Gaëlle Lefevre
- INSERM U598, Institut Biomédical des Cordeliers, 75006 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mouriaux F, Kherrouche Z, Maurage CA, Demailly FX, Labalette P, Saule S. Expression of the c-kit receptor in choroidal melanomas. Melanoma Res 2003; 13:161-6. [PMID: 12690299 DOI: 10.1097/00008390-200304000-00008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The KIT gene encodes c-kit, a transmembrane receptor that has tyrosine kinase activity and plays a role in haematopoiesis, gametogenesis and melanogenesis. The c-kit protein is found in normal cutaneous and choroidal melanocytes, and there is evidence that expression is lost in melanoma. Expression of c-kit was analysed in 57 paraffin-embedded sections of choroidal melanoma specimens and three choroidal melanoma cell lines using immunochemistry and Western blotting. Of the tumour specimens, 75% stained positively for c-kit with a membrane pattern of reactivity. Of the six patients who underwent proton beam therapy before enucleation, five tumours exhibited no c-kit immunoreactivity and the other tumour demonstrated weak staining. Of the three melanoma cell lines used, c-kit expression was observed in only one. No correlations between c-kit positivity and parameters such as cell type, largest macroscopic tumour dimension, scleral invasion or pigmentation were observed. In contrast, a significant positive association was found between c-kit staining and mitotic activity (P = 0.02). However, c-kit expression did not significantly influence survival when evaluated by univariate analysis. In conclusion, c-kit is expressed in most choroidal melanoma tumours. Further analysis should provide new insights into the mechanisms underlying the molecular and cellular changes in choroidal melanomas.
Collapse
|