1
|
Amaral AU, Wajner M. Pathophysiology of maple syrup urine disease: Focus on the neurotoxic role of the accumulated branched-chain amino acids and branched-chain α-keto acids. Neurochem Int 2022; 157:105360. [DOI: 10.1016/j.neuint.2022.105360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
|
2
|
Serum Markers of Neurodegeneration in Maple Syrup Urine Disease. Mol Neurobiol 2016; 54:5709-5719. [PMID: 27660262 DOI: 10.1007/s12035-016-0116-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Maple syrup urine disease (MSUD) is an inherited disorder caused by deficient activity of the branched-chain α-keto acid dehydrogenase complex involved in the degradation pathway of branched-chain amino acids (BCAAs) and their respective α-keto-acids. Patients affected by MSUD present severe neurological symptoms and brain abnormalities, whose pathophysiology is poorly known. However, preclinical studies have suggested alterations in markers involved with neurodegeneration. Because there are no studies in the literature that report the neurodegenerative markers in MSUD patients, the present study evaluated neurodegenerative markers (brain-derived neurotrophic factor (BDNF), cathepsin D, neural cell adhesion molecule (NCAM), plasminogen activator inhibitor-1 total (PAI-1 (total)), platelet-derived growth factor AA (PDGF-AA), PDGF-AB/BB) in plasma from 10 MSUD patients during dietary treatment. Our results showed a significant decrease in BDNF and PDGF-AA levels in MSUD patients. On the other hand, NCAM and cathepsin D levels were significantly greater in MSUD patients compared to the control group, while no significant changes were observed in the levels of PAI-1 (total) and PDGF-AB/BB between the control and MSUD groups. Our data show that MSUD patients present alterations in proteins involved in the neurodegenerative process. Thus, the present findings corroborate previous studies that demonstrated that neurotrophic factors and lysosomal proteases may contribute, along with other mechanisms, to the intellectual deficit and neurodegeneration observed in MSUD.
Collapse
|
3
|
Cathepsin D plays a crucial role in the trimethyltin-induced hippocampal neurodegeneration process. Neuroscience 2011; 174:160-70. [DOI: 10.1016/j.neuroscience.2010.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/21/2010] [Accepted: 11/11/2010] [Indexed: 11/20/2022]
|
4
|
Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines. J Comput Aided Mol Des 2008; 22:629-45. [PMID: 18338229 PMCID: PMC2516532 DOI: 10.1007/s10822-008-9194-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 02/05/2008] [Indexed: 11/18/2022]
Abstract
Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions.
Collapse
|
5
|
Arif M, Chikuma T, Ahmed MM, Yoshida S, Kato T. Suppressive effect of clozapine but not haloperidol on the increases of neuropeptide-degrading enzymes and glial cells in MK-801-treated rat brain regions. Neurosci Res 2006; 57:248-58. [PMID: 17141345 DOI: 10.1016/j.neures.2006.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/24/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022]
Abstract
MK-801, a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, produces neurotoxicity in adult rodent brain, and causes schizophrenia-like psychosis and cognitive dysfunction. Since neuropeptides and neuropeptide-degrading enzymes play important roles in cognitive function, we examined whether or not MK-801-induced schizophrenia-like psychosis is co-related with the changes of these enzymes in rat brain regions. In the present study, we investigated the effect of systemic treatment with MK-801 (0.5mg/kg) on neuropeptide-degrading enzymes, prolyl oligopeptidase (POP) and thimet oligopeptidase (EP 24.15), and glial marker proteins GFAP and CD11b in rat brain regions. The levels of POP and EP 24.15 activities increased significantly three days after treatment with MK-801 in the posterior cingulate/retrosplenial cortices (PC/RSC). Since atypical neuroleptic clozapine but not typical neuroleptic haloperidol prevents the MK-801-induced schizophrenia-like symptoms, we further examined the pretreated effects of the neuroleptics. Clozapine, but not haloperidol, significantly attenuated MK-801-induced changes in the levels of the neuropeptide-degrading enzymes. Immunohistochemical studies on GFAP and CD11b showed the increase in the PC/RSC of MK-801-treated rat brain and the pretreatment with clozapine suppressed these changes. Double immunostain experiments of EP 24.15 and GFAP antibodies demonstrated some co-localization of the neuropeptidase with astrocytes. The present findings suggest that change of neuropeptidases in the brain is in part correlated with changes of glial cells, and may play an important role in the control of schizophrenia-like psychotic disorders.
Collapse
Affiliation(s)
- Mohammad Arif
- Laboratory of Natural Information Science/Molecular Recognition, Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Yokohama, Japan
| | | | | | | | | |
Collapse
|
6
|
Arif M, Ahmed MM, Kumabe Y, Hoshino H, Chikuma T, Kato T. Clozapine but not haloperidol suppresses the changes in the levels of neuropeptides in MK-801-treated rat brain regions. Neurochem Int 2006; 49:304-11. [PMID: 16567023 DOI: 10.1016/j.neuint.2006.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 12/26/2005] [Accepted: 01/16/2006] [Indexed: 11/21/2022]
Abstract
Noncompetitive NMDA receptor antagonist (+)MK-801 is known to induce neurotoxicity and schizophrenia-like symptomatology where atypical neuroleptic clozapine is effective in contrast to typical neuroleptic, haloperidol. Although neuropeptides are implicated in memory and cognition, their roles in schizophrenia are not well understood. In the present study, we therefore examined the possible roles of neuropeptides, cholecystokinin (CCK) and somatostatin (SS) in the posterior cingulate/retrosplenial cortices (PC/RSC), frontal cortex, and hippocampus of a MK-801-induced schizophrenia-like model rat brain. This study further investigated the pretreated effect of atypical versus typical neuroleptics on the peptidergic system. SS mRNA and peptide levels significantly decreased in the PC/RSC and hippocampus but not in the frontal cortex 3 days after 0.5 mg/kg MK-801 treatment whereas CCK mRNA and peptide levels significantly decreased in all of the brain regions examined. Pretreatment with clozapine but not haloperidol completely recovered the changes in both mRNA and peptide levels of SS and CCK in those brain regions. These data suggest that peptidergic system in the brain presumably plays an important role in the control of negative schizophrenia.
Collapse
Affiliation(s)
- Mohammad Arif
- Laboratory of Natural Information Science, Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Yokohama 236-0027, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Knapska E, Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 2005; 74:183-211. [PMID: 15556287 DOI: 10.1016/j.pneurobio.2004.05.007] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Accepted: 05/26/2004] [Indexed: 11/25/2022]
Abstract
Zif268 is a transcription regulatory protein, the product of an immediate early gene. Zif268 was originally described as inducible in cell cultures; however, it was later shown to be activated by a variety of stimuli, including ongoing synaptic activity in the adult brain. Recently, mice with experimentally mutated zif268 gene have been obtained and employed in neurobiological research. In this review we present a critical overview of Zif268 expression patterns in the naive brain and following neuronal stimulation as well as functional data with Zif268 mutants. In conclusion, we suggest that Zif268 expression and function should be considered in a context of neuronal activity that is tightly linked to neuronal plasticity.
Collapse
Affiliation(s)
- Ewelina Knapska
- Department of Neurophysiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | |
Collapse
|
8
|
Ahmed MM, Yamamoto M, Chikuma T, Rahman MK, Kato T. Dose-dependent effect of MK-801 on the levels of neuropeptides processing enzymes in rat brain regions. Neurosci Res 2003; 47:177-89. [PMID: 14512142 DOI: 10.1016/s0168-0102(03)00197-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The appropriate levels of neuropeptides and their processing enzyme activities are required to continue a normal cell life, and the dysfunction of these peptides and enzymes are responsible for many neuronal abnormalities. Systemic administration of (+) MK-801 (dizocilpine maleate), a noncompetitive N-methyl-[D]-aspartate (NMDA) receptor antagonist, causes both neuroprotective and neurotoxic activities depending on doses and conditions. In the present study, we investigated the dose dependent effect of (+) MK-801 on prolyl endopeptidase (PEP), endopeptidase EC 24.15 (EP 24.15) and beta-D-glucuronidase activities as well as the protein levels of EP 24.15 and neuron specific enolase (NSE) in the posterior cingulate/retrosplenial cortices (PC/RSC), hippocampus, frontal cortex and striatum of female rats 3 days after the treatment. The activity of PEP was significantly increased compared with controls (saline) in the PC/RSC at 1.0 and 5.0 mg/kg doses, and in the frontal cortex at 5.0 mg/kg dose. beta-D-Glucuronidase activity was dose-dependently increased in all brain regions examined. The activity of EP 24.15 was unchanged in all regions after the treatment, whereas the Western blot analysis for EP 24.15 showed the increased protein level in the PC/RSC. These results suggest that a low dose treatment with MK-801 causes neurotoxicity in the PC/RSC and hippocampus, and the high dose treatment causes neurotoxicity in all the brain regions examined.
Collapse
Affiliation(s)
- Md Mahiuddin Ahmed
- Laboratory of Natural Information Science, Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | | | | | | | | |
Collapse
|
9
|
Inducible cAMP early repressor, an endogenous antagonist of cAMP responsive element-binding protein, evokes neuronal apoptosis in vitro. J Neurosci 2003. [PMID: 12805292 DOI: 10.1523/jneurosci.23-11-04519.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Active CREB (cAMP responsive element-binding protein) transcription factor is crucial for neuronal survival. Several members of the CREM/ICER (cAMP responsive element modulator/inducible cAMP early repressor) protein family may act as endogenous CREB antagonists. However, their involvement in a process of programmed cell death remains unexplored. Here we report that ICER may play such a role in neuronal apoptosis because it is upregulated in apoptotic neurons in vitro, and overexpression of ICER, delivered in adenoviral vector, evokes programmed cell death of three different kinds of cultured neurons, namely those derived from hippocampal dentate gyrus, cerebral cortex, and superior cervical ganglion. Reporter gene assay with a promoter containing a CREB-responsive sequence revealed a decrease in both basal and induced CRE-dependent gene expression in neurons overexpressing ICER. Finally, the level of expression of the anti-apoptotic protein Bcl-2, a well known CREB target, was markedly diminished in ICER-treated neurons. We suggest that the naturally occurring CREB functional antagonist ICER may have a specific function in programmed cell death of neurons, probably by silencing the expression of anti-apoptotic genes.
Collapse
|
10
|
Zagulska-Szymczak S, Filipkowski RK, Kaczmarek L. Kainate-induced genes in the hippocampus: lessons from expression patterns. Neurochem Int 2001; 38:485-501. [PMID: 11248397 DOI: 10.1016/s0197-0186(00)00101-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kainate, the analog of the excitatory amino acid L-glutamate, upon binding to non-NMDA glutamate receptors, causes depolarization of neurons followed by severe status epilepticus, neurodegeneration, plasticity and gliosis. These events are best observed in hippocampus, the limbic structure implicated in learning and long-term memory formation. Neurons in all hippocampal structures undergo hyper-activation, however, whereas the cells in the CA subfields degenerate within 2--3 days following the application of kainate, the granule cells of the dentate gyrus are resistant to any form of neurodegeneration and even initiate new synaptic contacts. These physiological and histological changes are modulated by short-term and long-term alterations in gene expression. Perhaps close examination of the changing spatio-temporal patterns of mRNAs of various genes may help in generating a clearer picture of the molecular events leading to complex cognitive functions.
Collapse
Affiliation(s)
- S Zagulska-Szymczak
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
11
|
Zajaczkowski W, Hetman M, Nikolaev E, Quack G, Danysz W, Kaczmarek L. Behavioural evaluation of long-term neurotoxic effects of NMDA receptor antagonists. Neurotox Res 2000; 1:299-310. [PMID: 12835097 DOI: 10.1007/bf03033259] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High doses of NMDA antagonists e.g. (+)MK-801 evoke neurodegeneration in retrosplenial cortex in rodents. To assess functional consequences of such treatment, three paradigms of two-way active avoidance learning (with visual or auditory conditioned stimuli) and additionally a spatial learning paradigm - radial maze - were used. Female rats were treated i.p. with 5 mg/kg of (+)MK-801. Recumbence, severe hypothermia and loss of body weight were observed for 3-7 days. Despite that, there were no statistically significant differences in performance of avoidance reaction between saline and (+)MK-801 treated animals trained 10-40 days after the drug administration. However, in the radial maze test (+)MK-801 impaired reference (but not working) memory in the experiment that started 8 days after the treatment. Similar effect was observed on reversal learning. The clinically used NMDA receptor antagonist memantine at the doses of 20 and 40 mg/kg had also no such long term negative effect on working memory during training (even positive effect was seen at 20 mg/kg) but at 40 mg/kg impaired learning on the first day of reversal. This indicates that (+)MK-801 neurotoxicity in the retrosplenial cortex is connected with subtle alterations in the learning performance that may be seen in some tests only. Moreover, memantine doses greatly exceeding therapeutically relevant range produce minimal functional alteration. An additional experiment revealed that the same dose of memantine results in two fold higher serum levels of the antagonist in female than male rats. Hence, considering that profiling studies are done in male rats, a safety factor of over 16 fold can be calculated for memantine.
Collapse
Affiliation(s)
- W Zajaczkowski
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
The different types of striatal neuron show a range of vulnerabilities to a variety of insults. This can be clearly seen in Huntington's disease where a well mapped pattern of pathological events occurs. Medium spiny projection (MSP) neurons are the first striatal cells to be affected as the disease progresses whilst interneurons, in particular the NADPH diaphorase positive ones, are spared even in the late stages of the disease. The MSP neurons themselves are also differentially affected. The death of MSP neurons in the patch compartment of the striatum precedes that in the matrix compartment and the MSP neurons of the dorsomedial caudate nucleus degenerate before those in the ventral lateral putamen. The enkephalin positive striatopallidal MSP neurons are also more vulnerable than the substance P/dynorphin MSP neurons. We review the potential causes of this selective vulnerability of striatopallidal neurons and discuss the roles of endogenous glutamate, nitric oxide and calcium binding proteins. It is concluded that MSP neurons in general are especially susceptible to disruptions of cellular respiration due to the enormous amount of energy they expend on maintaining unusually high transmembrane potentials. We go on to consider a subpopulation of enkephalinergic striatopallidal neurons in the rat which are particularly vulnerable. This subpopulation of neurons readily undergo apoptosis in response to experimental manipulations which affect dopamine and/or corticosteroid levels. We speculate that the cellular mechanisms underlying this cell death may also operate in degenerative disorders such as Huntington's disease thereby imposing an additional level of selectivity on the pattern of degeneration. The possible contribution of the selective death of striatopallidal neurons to a number of clinically important psychiatric conditions including obsessive compulsive disorders and Tourette's syndrome is also discussed.
Collapse
Affiliation(s)
- I J Mitchell
- School of Psychology, University of Birmingham, UK
| | | | | |
Collapse
|