1
|
Wang C, Pan YH, Wang Y, Blatt G, Yuan XB. Segregated expressions of autism risk genes Cdh11 and Cdh9 in autism-relevant regions of developing cerebellum. Mol Brain 2019; 12:40. [PMID: 31046797 PMCID: PMC6498582 DOI: 10.1186/s13041-019-0461-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Results of recent genome-wide association studies (GWAS) and whole genome sequencing (WGS) highlighted type II cadherins as risk genes for autism spectrum disorders (ASD). To determine whether these cadherins may be linked to the morphogenesis of ASD-relevant brain regions, in situ hybridization (ISH) experiments were carried out to examine the mRNA expression profiles of two ASD-associated cadherins, Cdh9 and Cdh11, in the developing cerebellum. During the first postnatal week, both Cdh9 and Cdh11 were expressed at high levels in segregated sub-populations of Purkinje cells in the cerebellum, and the expression of both genes was declined as development proceeded. Developmental expression of Cdh11 was largely confined to dorsal lobules (lobules VI/VII) of the vermis as well as the lateral hemisphere area equivalent to the Crus I and Crus II areas in human brains, areas known to mediate high order cognitive functions in adults. Moreover, in lobules VI/VII of the vermis, Cdh9 and Cdh11 were expressed in a complementary pattern with the Cdh11-expressing areas flanked by Cdh9-expressing areas. Interestingly, the high level of Cdh11 expression in the central domain of lobules VI/VII was correlated with a low level of expression of the Purkinje cell marker calbindin, coinciding with a delayed maturation of Purkinje cells in the same area. These findings suggest that these two ASD-associated cadherins may exert distinct but coordinated functions to regulate the wiring of ASD-relevant circuits in the cerebellum.
Collapse
Affiliation(s)
- Chunlei Wang
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yue Wang
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Gene Blatt
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Developmental localization of adhesion and scaffolding proteins at the cone synapse. Gene Expr Patterns 2014; 16:36-50. [PMID: 25176525 DOI: 10.1016/j.gep.2014.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/30/2014] [Accepted: 07/07/2014] [Indexed: 11/22/2022]
Abstract
The cone synapse is a complex signaling hub composed of the cone photoreceptor terminal and the dendrites of bipolar and horizontal cells converging around multiple ribbon synapses. Factors that promote organization of this structure are largely unexplored. In this study we characterize the localization of adhesion and scaffolding proteins that are localized to the cone synapse, including alpha-n-catenin, beta-catenin, gamma-protocadherin, cadherin-8, MAGI2 and CASK. We describe the localization of these proteins during development of the mouse retina and in the adult macaque retina and find that these proteins are concentrated at the cone synapse. The localization of these proteins was then characterized at the cellular and subcellular levels. Alpha-n-catenin, gamma-protocadherin and cadherin-8 were concentrated in the dendrites of bipolar cells that project to the cone synapse but were not detected or stained very dimly in the dendrites of cells projecting to rod synapses. This study adds to our knowledge of cone synapse development by characterizing the developmental localization of these factors and identifies these factors as candidates for functional analysis of cone synapse formation.
Collapse
|
3
|
Clendenon SG, Sarmah S, Shah B, Liu Q, Marrs JA. Zebrafish cadherin-11 participates in retinal differentiation and retinotectal axon projection during visual system development. Dev Dyn 2012; 241:442-54. [PMID: 22247003 DOI: 10.1002/dvdy.23729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2011] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cadherins orchestrate tissue morphogenesis by controlling cell adhesion, migration and differentiation. Various cadherin family members are expressed in the retina and other neural tissues during embryogenesis, regulating development of these tissues. Cadherin-11 (Cdh11) is expressed in mesenchymal, bone, epithelial, neural and other tissues, and this cadherin was shown to control cell migration and differentiation in neural crest, tumor and bone cells. Our previous studies characterized Cdh11 expression and function in zebrafish. RESULTS Here, we report effects of Cdh11 loss-of-function on visual system development using morpholino oligonucleotide knockdown methods. Cdh11 is expressed in the retina and lens during retinal differentiation. Cdh11 loss-of-function produced defects in retinal differentiation and lens development. Cdh11 loss-of-function also reduced retinotectal axon projection and organization, consistent with known Cdh11 function in cell migration. CONCLUSION Cdh11 expression in the developing visual system and Cdh11 loss-of-function phenotype illustrates the critical role for differential cadherin activity in visual system differentiation and organization.
Collapse
Affiliation(s)
- Sherry G Clendenon
- Department of Medicine, Indiana University Medical Center, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
4
|
Mouse mutants for the nicotinic acetylcholine receptor ß2 subunit display changes in cell adhesion and neurodegeneration response genes. PLoS One 2011; 6:e18626. [PMID: 21547082 PMCID: PMC3081876 DOI: 10.1371/journal.pone.0018626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 03/08/2011] [Indexed: 11/19/2022] Open
Abstract
Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2) display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC) axons to their dorsal lateral geniculate nuclei (dLGNs). Transcriptomes of LGN tissue from two independently generated Chrnb2−/− mutants and from wildtype mice were obtained at postnatal day 4 (P4), during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling. In particular, mRNA for cadherin 1 (Cdh1), a known axon growth regulator, is reduced to nearly undetectable levels in the LGN of P4 mutant mice and Lypd2 mRNA is similarly suppressed. Similar analysis of retinal tissue shows increased expression of crumbs 1 (Crb1) and chemokine (C-C motif) ligand 21 (Ccl21) mRNAs in Chrnb2−/− mutant animals. Mutations in these genes are associated with retinal neuronal degeneration. The retinas of Chrnb2−/− mutants are normal in appearance, but the increased expression of these genes may also be involved in the abnormal projection patterns of RGC to the LGN. These data may provide the tools to distinguish the interplay between neural activity and molecular expression. Finally, comparison of the transcriptomes of the two different Chrnb2−/− mutant strains reveals the effects of genetic background upon gene expression.
Collapse
|
5
|
Attenuation of cadmium-induced testicular injury in metallothionein-III null mice. Life Sci 2010; 87:545-50. [DOI: 10.1016/j.lfs.2010.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/24/2010] [Accepted: 09/07/2010] [Indexed: 01/11/2023]
|
6
|
Hertel N, Redies C. Absence of layer-specific cadherin expression profiles in the neocortex of the reeler mutant mouse. ACTA ACUST UNITED AC 2010; 21:1105-17. [PMID: 20847152 DOI: 10.1093/cercor/bhq183] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cadherins are a superfamily of Ca(2+)-dependent cell surface glycoproteins that play a morphogenetic role in a wide variety of developmental processes. They provide a code of potentially adhesive cues for layer formation in mammalian cerebral cortex. One of the animal models used for studying corticogenesis is the reeler mouse. Previous investigations showed that radial neuronal migration is impaired in this mutant, possibly resulting in an inversion of cortical layers. However, the extent of this "outside-in" cortical layering remains unclear. In the present study, we investigated the mRNA expression of cadherins (Cdh4, Cdh6, Cdh7, Cdh8, Pcdh8, Pcdh9, Pcdh11, Pcdh17, and Pcdh19) in the cerebral cortex of wild-type (wt) mice and reeler mutants. All cadherins show a layer-specific expression profile in wt mice, but, in reeler cortex, cadherin-expressing cells are distributed widely across the radial dimension. The altered layering in reeler mutants completely disrupts the radial expression of cadherins, which is more patchy, rather than laminar. Regionalized gradient-like expression of cadherins is preserved. Our findings are compatible with a model, in which the ubiquitous dispersion of cadherin-expressing cells results from a dysgenesis of radial glial cells and a misrouting of migrating neuroblasts.
Collapse
Affiliation(s)
- Nicole Hertel
- Institute of Anatomy I, University of Jena School of Medicine, Jena University Hospital, D-07743 Jena, Germany
| | | |
Collapse
|
7
|
Oblander SA, Brady-Kalnay SM. Distinct PTPmu-associated signaling molecules differentially regulate neurite outgrowth on E-, N-, and R-cadherin. Mol Cell Neurosci 2010; 44:78-93. [PMID: 20197094 DOI: 10.1016/j.mcn.2010.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/26/2010] [Accepted: 02/17/2010] [Indexed: 12/16/2022] Open
Abstract
Classical cadherins play distinct roles in axon growth and guidance in the visual system, however, the signaling pathways they activate remain unclear. Growth cones on each cadherin substrate have a unique morphology suggesting that distinct signals are activated by neurite outgrowth on E-, N-, and R-cadherin. We previously demonstrated that receptor protein tyrosine phosphatase-mu (PTPmu) is required for E- and N-cadherin-dependent neurite outgrowth. In this manuscript, we demonstrate that PTPmu regulates R-cadherin-mediated neurite outgrowth. Furthermore, we evaluated whether known PTPmu-associated signaling proteins, Rac1, Cdc42, IQGAP1 and PKCdelta, regulate neurite outgrowth mediated by these cadherins. While Rac1 activity is required for neurite outgrowth on all three cadherins Cdc42/IQGAP1 are required only for N- and R-cadherin-mediated neurite outgrowth. In addition, we determined that PKC activity is required for E- and R-cadherin-mediated, but not N-cadherin-mediated neurite outgrowth. In summary, distinct PTPmicro-associated signaling proteins are required to promote neurite outgrowth on cadherins.
Collapse
Affiliation(s)
- Samantha A Oblander
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
8
|
Expression of classic cadherins and delta-protocadherins in the developing ferret retina. BMC Neurosci 2009; 10:153. [PMID: 20028529 PMCID: PMC2811116 DOI: 10.1186/1471-2202-10-153] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 12/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cadherins are a superfamily of calcium-dependent adhesion molecules that play multiple roles in morphogenesis, including proliferation, migration, differentiation and cell-cell recognition. The subgroups of classic cadherins and delta-protocadherins are involved in processes of neural development, such as neurite outgrowth, pathfinding, target recognition, synaptogenesis as well as synaptic plasticity. We mapped the expression of 7 classic cadherins (CDH4, CDH6, CDH7, CDH8, CDH11, CDH14, CDH20) and 8 delta-protocadherins (PCDH1, PCDH7, PCDH8, PCDH9, PCDH10, PCDH11, PCDH17, PCDH18) at representative stages of retinal development and in the mature retina of the ferret by in situ hybridization. RESULTS All cadherins investigated by us are expressed differentially by restricted populations of retinal cells during specific periods of the ferret retinogenesis. For example, during embryonic development, some cadherins are exclusively expressed in the outer, proliferative zone of the neuroblast layer, whereas other cadherins mark the prospective ganglion cell layer or cells in the prospective inner nuclear layer. These expression patterns anticipate histogenetic changes that become visible in Nissl or nuclear stainings at later stages. In parallel to the ongoing development of retinal circuits, cadherin expression becomes restricted to specific subpopulations of retinal cell types, especially of ganglion cells, which express most of the investigated cadherins until adulthood. A comparison to previous results in chicken and mouse reveals overall conserved expression patterns of some cadherins but also species differences. CONCLUSIONS The spatiotemporally restricted expression patterns of 7 classic cadherins and 8 delta-protocadherins indicate that cadherins provide a combinatorial adhesive code that specifies developing retinal cell populations and intraretinal as well as retinofugal neural circuits in the developing ferret retina.
Collapse
|
9
|
Differential gene expression in the developing human macula: microarray analysis using rare tissue samples. J Ocul Biol Dis Infor 2009; 2:176-189. [PMID: 20157359 PMCID: PMC2816828 DOI: 10.1007/s12177-009-9039-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 10/23/2009] [Indexed: 12/19/2022] Open
Abstract
The macula is a unique and important region in the primate retina that achieves high resolution and color vision in the central visual field. We recently reported data obtained from microarray analysis of gene expression in the macula of the human fetal retina (Kozulin et al., Mol Vis 15:45–59, 1). In this paper, we describe the preliminary analyses undertaken to visualize differences and verify comparability of the replicates used in that study, report the differential expression of other gene families obtained from the analysis, and show the reproducibility of our findings in several gene families by quantitative real-time PCR.
Collapse
|
10
|
Oblander SA, Ensslen-Craig SE, Longo FM, Brady-Kalnay SM. E-cadherin promotes retinal ganglion cell neurite outgrowth in a protein tyrosine phosphatase-mu-dependent manner. Mol Cell Neurosci 2007; 34:481-92. [PMID: 17276081 PMCID: PMC1853338 DOI: 10.1016/j.mcn.2006.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/01/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022] Open
Abstract
During development of the visual system, retinal ganglion cells (RGCs) require cell-cell adhesion molecules and extracellular matrix proteins for axon growth. In this study, we demonstrate that the classical cadherin, E-cadherin, is expressed in RGCs from E6 to E12 and promotes neurite outgrowth from all regions of the chick retina at E6, E8 and E10. E-cadherin is also expressed in the optic tectum. E-cadherin adhesion blocking antibodies specifically inhibit neurite outgrowth on an E-cadherin substrate. The receptor-type protein tyrosine phosphatase, PTPmu, associates with E-cadherin. In this manuscript, we demonstrate that antisense-mediated down-regulation of PTPmu, overexpression of catalytically inactive PTPmu and perturbation of endogenous PTPmu using a specific PTPmu inhibitor peptide results in a substantial reduction in neurite outgrowth on E-cadherin. Taken together, these findings demonstrate that E-cadherin is an important adhesion molecule for chick RGC neurite outgrowth and suggest that PTPmu expression and catalytic activity are required for outgrowth on an E-cadherin substrate.
Collapse
Affiliation(s)
| | | | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Susann M. Brady-Kalnay
- *Corresponding Author: Susann M. Brady-Kalnay, Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4960, Phone: 216-368-0330, Fax: 216-368-3055, E-mail:
| |
Collapse
|
11
|
Williams MJ, Lowrie MB, Bennett JP, Firth JA, Clark P. Cadherin-10 is a novel blood-brain barrier adhesion molecule in human and mouse. Brain Res 2005; 1058:62-72. [PMID: 16181616 DOI: 10.1016/j.brainres.2005.07.078] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/27/2005] [Accepted: 07/27/2005] [Indexed: 11/30/2022]
Abstract
Maintenance of the specialised environment of the central nervous system requires barriers provided by the endothelium of brain microvessels (the blood-brain barrier (BBB)) or the epithelium lining the ventricles (CSF-brain barrier) or the choroid plexus (blood-CSF barrier). Inter-endothelial junctions are more extensive in the BBB than in other tissues, with elaborate tight junctions. However, few differences in the molecular composition of these junctions have been described. Here, we show, in both human and mouse brain, that the type II classical cadherin, cadherin-10, is expressed in BBB and retinal endothelia, but not in the leaky microvessels of brain circumventricular organs (CVO), or in those of non-CNS tissues. This expression pattern is distinct from, and reciprocal to, VE-cadherin, which is reduced or absent in tight cortical microvessels, but present in leaky CVO vessels. In CVO, the barrier function is switched from the microvasculature to the adjacent ventricular epithelium, which we also find to express cadherin-10. In the vessels of gliobastoma multiforme tumours, where BBB is lost, cadherin-10 is not detected. This demonstration of a distinctive expression pattern of cadherin-10 suggests that it has a pivotal role in the development and maintenance of brain barriers.
Collapse
Affiliation(s)
- Matthew J Williams
- Division of Biomedical Sciences, Imperial College London, South Kensington, London, UK
| | | | | | | | | |
Collapse
|
12
|
Tanabe K, Takeichi M, Nakagawa S. Identification of a nonchordate-type classic cadherin in vertebrates: Chicken Hz-cadherin is expressed in horizontal cells of the neural retina and contains a nonchordate-specific domain complex. Dev Dyn 2004; 229:899-906. [PMID: 15042713 DOI: 10.1002/dvdy.10493] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Classic cadherins mediate calcium-dependent cell-cell adhesion in a variety of animals, but there are marked differences in their domain structures between chordate and nonchordate animals. The extracellular domain of chordate-type classic cadherins (type I and type II classic cadherins) consists of five tandem repeats of conserved sequences called EC domains, whereas that of nonchordate-type classic cadherins (designated as type III classic cadherin) contains a variable number of EC domains, followed by a characteristic domain complex made of laminin-A globular domains and EGF-like repeats. In the present study, we identified a novel vertebrate type III cadherin showing high sequence similarity to Drosophila N-cadherin, and named this molecule chicken Hz-cadherin (cHz-cadherin), because of the distinct expression in horizontal cells of the neural retina. cHz-cadherin functioned as an adhesion molecule when introduced into cultured cells. Database search revealed one cHz-cadherin homologue in zebrafish and two in puffer fish, but none in other vertebrate species examined. These observations indicate that type III classic cadherins have been conserved in vertebrate species, being expressed by limited cells types, but lost in particular phylogenic groups of the vertebrates.
Collapse
Affiliation(s)
- Koji Tanabe
- RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | |
Collapse
|
13
|
Liu Q, Londraville RL, Azodi E, Babb SG, Chiappini-Williamson C, Marrs JA, Raymond PA. Up-regulation of cadherin-2 and cadherin-4 in regenerating visual structures of adult zebrafish. Exp Neurol 2002; 177:396-406. [PMID: 12429186 DOI: 10.1006/exnr.2002.8008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cadherins are homophilic cell adhesion molecules that control development of a variety of tissues and maintenance of adult structures. In this study, we examined expression of zebrafish cadherin-2 (Cdh2, N-cadherin) and cadherin-4 (Cdh4, R-cadherin) in the visual system of adult zebrafish after eye or optic nerve lesions using immunocytochemistry and immunoblotting. Both Cdh2 and Cdh4 immunoreactivities were specifically up-regulated in regenerating retina and/or the optic pathway. Furthermore, temporal expression patterns of these two cadherins were distinct during the regeneration of the injured tissues. Cadherins have been shown to regulate axonal outgrowth in the developing nervous system, but this is the first report, to our knowledge, of increased cadherin expression associated with axonal regeneration in the vertebrate central nervous system. Our results suggest that both Cdh2 and Cdh4 may be important for regeneration of injured retinal ganglion cell axons.
Collapse
Affiliation(s)
- Q Liu
- Department of Biology, University of Akron, Akron, Ohio 44325-3908, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In this review, we summarize the main stages of structural and functional development of retinal ganglion cells (RGCs). We first consider the various mechanisms that are involved in restructuring of dendritic trees. To date, many mechanisms have been implicated including target-dependent factors, interactions from neighboring RGCs, and afferent signaling. We also review recent evidence showing how rapidly such dendritic remodeling might occur, along with the intracellular signaling pathways underlying these rearrangements. Concurrent with such structural changes, the functional responses of RGCs also alter during maturation, from sub-threshold firing to reliable spiking patterns. Here we consider the development of intrinsic membrane properties and how they might contribute to the spontaneous firing patterns observed before the onset of vision. We then review the mechanisms by which this spontaneous activity becomes correlated across neighboring RGCs to form waves of activity. Finally, the relative importance of spontaneous versus light-evoked activity is discussed in relation to the emergence of mature receptive field properties.
Collapse
Affiliation(s)
- E Sernagor
- Department of Neurobiology, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|
15
|
Abstract
The central nervous system (CNS) is divided into diverse embryological and functional compartments. The early embryonic CNS consists of a series of transverse subdivisions (neuromeres) and longitudinal domains. These embryonic subdivisions represent histogenetic fields in which neurons are born and aggregate in distinct cell groups (brain nuclei and layers). Different subsets of these aggregates become selectively connected by nerve fiber tracts and, finally, by synapses, thus forming the neural circuits of the functional systems in the CNS. Recent work has shown that 30 or more members of the cadherin family of morphoregulatory molecules are differentially expressed in the developing and mature brain at almost all stages of development. In a regionally specific fashion, most cadherins studied to date are expressed by the embryonic subdivisions of the early embryonic brain, by developing brain nuclei, cortical layers and regions, and by fiber tracts, neural circuits and synapses. Each cadherin shows a unique expression pattern that is distinct from that of other cadherins. Experimental evidence suggests that cadherins contribute to CNS regionalization, morphogenesis and fiber tract formation, possibly by conferring preferentially homotypic adhesiveness (or other types of interactions) between the diverse structural elements of the CNS. Cadherin-mediated adhesive specificity may thus provide a molecular code for early embryonic CNS regionalization as well as for the development and maintenance of functional structures in the CNS, from embryonic subdivisions to brain nuclei, cortical layers and neural circuits, down to the level of individual synapses.
Collapse
Affiliation(s)
- C Redies
- Institute of Anatomy, University of Essen Medical School, Hufelandstrasse 55, Germany.
| |
Collapse
|
16
|
Patel A, McFarlane S. Overexpression of FGF-2 alters cell fate specification in the developing retina of Xenopus laevis. Dev Biol 2000; 222:170-80. [PMID: 10885755 DOI: 10.1006/dbio.2000.9695] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The developing vertebrate retina produces appropriate ratios of seven phenotypically and functionally distinct cell types. Retinal progenitors remain multipotent up until the last cell division, favoring the idea that extrinsic cues direct cell fate. We demonstrated previously that fibroblast growth factor (FGF) receptors are necessary for transduction of signals in the developing Xenopus retina that bias cell fate decisions (S. McFarlane et al., 1998, Development 125, 3967-3975). However, the precise identity of the signal remains unknown. To test whether an FGF signal is sufficient to influence cell fate choices in the developing retina, FGF-2 was overexpressed in Xenopus retinal precursors by injecting, at the embryonic 16-cell stage, a cDNA plasmid encoding FGF-2 into cells fated to form the retina. We found that FGF-2 overexpression in retinal precursors altered the relative numbers of transgene-expressing retinal ganglion cells (RGC) and Müller glia; RGCs were increased by 35% and Müller glia decreased by 50%. In contrast, the proportion of retinal precursors that became photoreceptors was unchanged. Within the photoreceptor population, however, we found a twofold increase in rod photoreceptors at the expense of cone photoreceptors. These data are consistent with an endogenous FGF signal influencing cell fate decisions in the developing vertebrate retina.
Collapse
Affiliation(s)
- A Patel
- Genes and Development Research Group, University of Calgary, Alberta, Canada
| | | |
Collapse
|
17
|
Johnson KJ, Patel SR, Boekelheide K. Multiple cadherin superfamily members with unique expression profiles are produced in rat testis. Endocrinology 2000; 141:675-83. [PMID: 10650949 DOI: 10.1210/endo.141.2.7334] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adhesion between germ and Sertoli cells is thought to be crucial for spermatogenesis. Cadherin superfamily proteins, including classic cadherins and protocadherins, are important mediators of cell-cell adhesion. Using a degenerate PCR cloning strategy, we surveyed the expression of cadherin superfamily members in rat testis. Similar to brain, testis expressed a large number of cadherin superfamily members: 7 classic cadherins of both types I and II, 14 protocadherins, 2 protocadherin-related cadherins, and 1 cadherin-related receptorlike protein. All three protocadherin families (alpha, beta, and gamma) were found in testis. Using a semiquantitative RT-PCR assay, messenger RNA expression was determined for each cadherin superfamily member during a postnatal developmental time-course and following ablation of specific testis cell types by ethanedimethanesulfonate, methoxyacetic acid, and 2,5-hexanedione. Diverse expression patterns were observed among the cadherins, suggesting that cadherin expression is cell type-specific in testis. The large number and variety of cadherin superfamily members found in testis supports a critical function for cadherin-mediated cell-cell adhesion in spermatogenesis.
Collapse
Affiliation(s)
- K J Johnson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
18
|
Faulkner-Jones BE, Godinho LN, Reese BE, Pasquini GF, Ruefli A, Tan SS. Cloning and expression of mouse Cadherin-7, a type-II cadherin isolated from the developing eye. Mol Cell Neurosci 1999; 14:1-16. [PMID: 10433813 DOI: 10.1006/mcne.1999.0764] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We report the molecular cloning of Cadherin-7 from the embryonic mouse eye. The deduced amino acid sequence shows it to be a type-II cadherin similar to Xenopus F-cadherin and chick Cadherin-7. The mouse Cadherin-7 gene maps to chromosome 1, outside the conserved linkage group of cadherin genes on chromosome 8. Cadherin-7 is expressed throughout the entire period of neural development and mRNA levels are developmentally regulated in both the embryonic and the postnatal central nervous system (CNS). In adult mice, Cadherin-7 expression is restricted to the CNS, with highest levels in the retina. In the developing eye, Cadherin-7 mRNA is found only in the neural retina. It is expressed by all retinal neuroblasts from E11 onward, but becomes progressively restricted to neurons in the inner neuroblast and developing ganglion cell layers (GCL). In the adult retina it is confined to subpopulations of cells in the GCL and to amacrine cells in the inner part of the inner nuclear layer. This expression pattern suggests a role for Cadherin-7 in mouse retinal development, particularly in the formation and maintenance of the GCL.
Collapse
Affiliation(s)
- B E Faulkner-Jones
- Department of Anatomy and Cell Biology, The Howard Florey Institute, Parkville, Victoria, 3052, Australia
| | | | | | | | | | | |
Collapse
|