1
|
Kong Y, Wang D, Jin X, Liu Y, Xu H. Unveiling the significance of TREM1/2 in hemorrhagic stroke: structure, function, and therapeutic implications. Front Neurol 2024; 15:1334786. [PMID: 38385036 PMCID: PMC10879330 DOI: 10.3389/fneur.2024.1334786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Stroke has long been a major threat to human health worldwide. Hemorrhagic stroke, including intracerebral hemorrhage and subarachnoid hemorrhage, exhibits a high incidence rate and a high mortality and disability rate, imposing a substantial burden on both public health and the economy and society. In recent years, the triggering receptor expressed on myeloid cells (TREM) family has garnered extensive attention in various pathological conditions, including hemorrhagic stroke. This review comprehensively summarizes the structure and function of TREM1/2, as well as their roles and potential mechanisms in hemorrhagic stroke, with the aim of providing guidance for the development of targeted therapeutic strategies in the future.
Collapse
Affiliation(s)
- Yancheng Kong
- Trauma Emergency Center, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Di Wang
- Trauma Emergency Center, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Xu Jin
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Yi Liu
- Trauma Emergency Center, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Hui Xu
- Trauma Emergency Center, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| |
Collapse
|
2
|
Longitudinal Observation of Asymmetric Iron Deposition in an Intracerebral Hemorrhage Model Using Quantitative Susceptibility Mapping. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) is used to obtain quantitative magnetic susceptibility maps of materials from magnitude and phase images acquired by three-dimensional gradient-echo using inverse problem-solving. Few preclinical studies have evaluated the intracerebral hemorrhage (ICH) model and asymmetric iron deposition. We created a rat model of ICH and compared QSM and conventional magnetic resonance imaging (MRI) during the longitudinal evaluation of ICH. Collagenase was injected in the right striatum of 12-week-old Wistar rats. QSM and conventional MRI were performed on days 0, 1, 7, and 28 after surgery using 7-Tesla MRI. Susceptibility, normalized signal value, and area of the hemorrhage site were statistically compared during image analysis. Susceptibility decreased monotonically up to day 7 but increased on day 28. Other imaging methods showed a significant increase in signal from day 0 to day 1 but a decreasing trend after day 1. During the area evaluation, conventional MRI methods showed an increase from day 0 to day 1; however, decreases were observed thereafter. QSM showed a significant increase from day 0 to day 1. The temporal evaluation of ICH by QSM suggested the possibility of detecting of asymmetric iron deposition for normal brain site.
Collapse
|
3
|
Yue X, Liu L, Yan H, Gui Y, Zhao J, Zhang P. Intracerebral Hemorrhage Induced Brain Injury Is Mediated by the Interleukin-12 Receptor in Rats. Neuropsychiatr Dis Treat 2020; 16:891-900. [PMID: 32308392 PMCID: PMC7142330 DOI: 10.2147/ndt.s228773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/11/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND IL-12 inhibition of the endothelial cell functions and angiogenesis is mediated by the cross-talk between the lymphocyte and the endothelial cells, which plays a key role in inhibiting the process of angiogenesis in the eyeballs and in malignant tumors. METHODS We established the intracerebral hemorrhage (ICH) rat model, and IL-12 receptor beta monoclonal antibody was injected into the ICH rats. Western blot, immunofluorescence and RT-qPCR were used to detect the gene expression. Brain water content, EB staining, Garcia test, Beam walking test and wire hanging test were used to assess the injury of brain in ICH rats. RESULTS IL-12 gene was significantly increase in hematoma border tissue of ICH rats, and IL-12 protein mainly localized in monocytes. Anti-IL-12 treatment with IL-12 monoclonal antibodies could not only significantly decrease the brain water content and EB content in brain tissues of ICH rats, but also significantly increase the score of the Garcia, Beam balance and the Wire hanging test in ICH rats. Moreover, anti-IL-12 treatment significantly decrease the expression of pro-inflammatory gene, inflammatory gene, p-JAK2/JAK2 and p-STAT4/STAT4 protein, but significantly increase the expression anti-inflammatory gene and CD31 protein, and M2 macrophage ratio in hematoma border tissues of ICH rats. In vitro, rmIL-12 inhibited the tube formation of brain microvascular endothelial cells (BMVES) in BMVES and bone marrow-derived monocytes (BMDM) co-culture systems, but not work in a separately cultured BMVES system. In addition, Fedratinib not only reduced p-JAK2/JAK2 and p-STAT4/STAT4 protein expression in BMDM after treating with b-FGF and rmIL-12, but also significantly increased the tube formation of BMVES in BMVES and BMDM co-culture systems after treating with b-FGF and rmIL-12. CONCLUSION Blockade of IL-12 receptor attenuated brain injury after ICH in rat by promoting angiogenesis, and the mechanism might be related to blocking IL-12 could inhibit M2 cell activation via the JAK2/STAT4 pathway.
Collapse
Affiliation(s)
- Xuejing Yue
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang453003, Henan, People’s Republic of China
| | - Lixia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang453003, Henan, People’s Republic of China
| | - Haiqing Yan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang453100, People’s Republic of China
| | - Yongkun Gui
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang453100, People’s Republic of China
| | - Jun Zhao
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang453100, People’s Republic of China
| | - Ping Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang453100, People’s Republic of China
| |
Collapse
|
4
|
Singh N, Bansal Y, Bhandari R, Marwaha L, Singh R, Chopra K, Kuhad A. Naringin Reverses Neurobehavioral and Biochemical Alterations in Intracerebroventricular Collagenase-Induced Intracerebral Hemorrhage in Rats. Pharmacology 2017; 100:172-187. [PMID: 28668949 DOI: 10.1159/000453580] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/18/2016] [Indexed: 12/13/2022]
Abstract
Intracerebral hemorrhage (ICH) contributes to 10-15% of all strokes and is a high risk factor for morbidity and mortality as compared to other subtypes of stroke, that is, cerebral ischemia and subarachnoid hemorrhage. Oxidative stress (OS)-induced neuroinflammation and neuronal cell death contribute towards the hallmarks of ICH. Spared antioxidant levels, increased inflammatory cytokines and free radicals in ICH lead to neuronal death and exaggerate the hallmarks of ICH. Intracerebroventricular (ICV) collagenase (COL-induced neuronal cell damage and cognitive deficits form a widely recognized experimental model for ICH. Naringin (NGN), a natural antioxidant bioflavonoid, has shown potent neuroprotective effects in different neurodegenerative diseases. However, its potential is least explored in pathological conditions, such as hemorrhagic stroke. This study is aimed at exploring the protective effects of NGN against ICV-COL induced behavioral, neurological and memory deficits in rats. ICV-ICH was induced by single, unilateral intrastriatal injection of COL (1 IU in 2 µL, ICV) over 10 min. From 2nd day onwards, NGN was administered in three different doses (10, 20, and 40 mg/kg; p.o.). Animals were subjected to a battery of behavioral tests to assess behavioral changes, including neurological scoring tests (cylinder test, spontaneous motility, righting reflex, horizontal bar test, forelimb flexion), actophotometer, rotarod, Randall Selitto and von Frey. Poststroke depression and memory deficits were estimated using forced swim test and Morris water maze test, respectively. Poststroke depression, neurological and cognitive deficits were mitigated dose dependently by NGN administration. NGN administration also attenuated the nitro-OS and restored tumor necrosis factor-α and endogenous antioxidant levels. Our research demonstrates that NGN has a protective effect against ICH-induced neurocognitive deficits, along with mitigation of oxido-nitrosative and inflammatory stress.
Collapse
Affiliation(s)
- Navdeep Singh
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | | | | | | | | | | | | |
Collapse
|
5
|
Lim-Hing K, Rincon F. Secondary Hematoma Expansion and Perihemorrhagic Edema after Intracerebral Hemorrhage: From Bench Work to Practical Aspects. Front Neurol 2017; 8:74. [PMID: 28439253 PMCID: PMC5383656 DOI: 10.3389/fneur.2017.00074] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/20/2017] [Indexed: 01/24/2023] Open
Abstract
Intracerebral hemorrhages (ICH) represent about 10-15% of all strokes per year in the United States alone. Key variables influencing the long-term outcome after ICH are hematoma size and growth. Although death may occur at the time of the hemorrhage, delayed neurologic deterioration frequently occurs with hematoma growth and neuronal injury of the surrounding tissue. Perihematoma edema has also been implicated as a contributing factor for delayed neurologic deterioration after ICH. Cerebral edema results from both blood-brain barrier disruption and local generation of osmotically active substances. Inflammatory cellular mediators, activation of the complement, by-products of coagulation and hemolysis such as thrombin and fibrin, and hemoglobin enter the brain and induce a local and systemic inflammatory reaction. These complex cascades lead to apoptosis or neuronal injury. By identifying the major modulators of cerebral edema after ICH, a therapeutic target to counter degenerative events may be forthcoming.
Collapse
Affiliation(s)
- Krista Lim-Hing
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Fred Rincon
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
You W, Wang Z, Li H, Shen H, Xu X, Jia G, Chen G. Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats. J Neurol Sci 2016; 367:224-31. [PMID: 27423593 DOI: 10.1016/j.jns.2016.06.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Abstract
Here, we aimed to study the role and underlying mechanism of mTOR in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experiment 1, the time course of mTOR activation in the cortex following SAH. Experiment 2, the role of mTOR in SAH-induced EBI. Adult SD rats were divided into four groups: sham group (n=18), SAH+vehicle group (n=18), SAH+rapamycin group (n=18), SAH+AZD8055 group (n=18). Experiment 3, we incubated enriched microglia with OxyHb. Rapamycin and AZD8055 were also used to demonstrate the mTOR's role on microglial polarization in vitro. The phosphorylation levels of mTOR and its substrates were significantly increased and peaked at 24h after SAH. Rapamycin or AZD8055 markedly decreased the phosphorylation levels of mTOR and its substrates and the activation of microglia in vivo, and promoted the microglial polarization from M1 phenotype to M2 phenotype. In addition, administration of rapamycin and AZD8055 following SAH significantly ameliorated EBI, including neuronal apoptosis, neuronal necrosis, brain edema and blood-brain barrier permeability. Our findings suggested that the rapamycin and AZD8055 could attenuate the development of EBI in this SAH model, possibly through inhibiting the activation of microglia by mTOR pathway.
Collapse
Affiliation(s)
- Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Genlai Jia
- Department of Neurosurgery, The People's Hospital of Rugao, Jiangsu, Rugao 226500, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China.
| |
Collapse
|
7
|
Zhuo F, Qiu G, Xu J, Yang M, Wang K, Liu H, Huang J, Lu W, Liu Q, Xu S, Huang S, Sun S. Both endoplasmic reticulum and mitochondrial pathways are involved in oligodendrocyte apoptosis induced by capsular hemorrhage. Mol Cell Neurosci 2016; 72:64-71. [PMID: 26808219 DOI: 10.1016/j.mcn.2016.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 12/23/2015] [Accepted: 01/21/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The white matter injury caused by intracerebral hemorrhage (ICH) includes demyelination and axonal injury. Oligodendrocyte apoptosis is reported to be involved in triggering demyelination. Experimental observations indicate that both endoplasmic reticulum and mitochondrial pathways could mediate cell apoptosis. The purpose of this study was to investigate the demyelination and the possible mechanisms in an autologous blood-injected rat model of internal capsule hemorrhage. METHODS Transmission electron microscope was applied to examine the pathological changes of myelinated nerve fibers in internal capsule. Western blotting was used to detect the myelin basic protein (MBP) which was an important component of myelin sheath. Double immunofluorescence and Western blotting were used to determine the apoptosis and apoptotic pathways. The levels of caspase-12 (a representative protein of endoplasmic reticulum stress) and cytochrome c (an apoptosis factor released from mitochondria) were assessed in this study. RESULTS Demyelination occurred on day 1, 3, and 7 after ICH onset. Myelin sheaths of internal capsule nerve fibers were swollen and broken down in ICH groups. MBP expression showed a downregulation after ICH with its minimum value occurred on day 7 post-ICH. Besides, neuron and oligodendrocyte apoptosis were observed at different time intervals post-ICH accompanied with an upregulated caspase-12 expression and enhanced cytochrome c release. CONCLUSIONS These results suggested that oligodendrocyte and neuron apoptosis may contribute to the demyelination induced by internal capsule hemorrhage and oligodendrocyte apoptosis is positively mediated through both endoplasmic reticulum and mitochondrial pathways.
Collapse
Affiliation(s)
- Fei Zhuo
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - GuoPing Qiu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jin Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - KeJian Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Juan Huang
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - WeiTian Lu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - ShiYe Xu
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - SiQin Huang
- Traditional Chinese Medical College, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - ShanQuan Sun
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
8
|
Leclerc JL, Ahmad AS, Singh N, Soshnik-Schierling L, Greene E, Dang A, Doré S. Intracerebral hemorrhage outcomes following selective blockade or stimulation of the PGE2 EP1 receptor. BMC Neurosci 2015; 16:48. [PMID: 26232001 PMCID: PMC4521449 DOI: 10.1186/s12868-015-0182-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/13/2015] [Indexed: 01/18/2023] Open
Abstract
Background Inflammation following intracerebral hemorrhage (ICH) significantly contributes to secondary brain damage and poor outcomes. Prostaglandin E2 (PGE2) is known to modulate neuroinflammatory responses and is upregulated in response to brain injury as a result of changes in inducible cyclooxygenase 2 (COX-2) and the membrane-bound type of PGE synthase. Inhibition of COX-2 activity has been reported to attenuate ICH-induced brain injury; however, the clinical utility of such drugs is limited due to the potential for severe side effects. Therefore, it is now important to search for downstream targets capable of preferentially modulating PGE2 signaling, and the four E prostanoid receptors, EP1-4, which are the main targets of PGE2, remain a viable therapeutic option. We have previously shown that EP1 receptor deletion aggravates ICH-induced brain injury and impairs functional recovery, thus the current study aimed to elaborate on these results by including a pharmacologic approach targeting the EP1 receptor. Results Chronic post-treatment with the selective EP1 receptor antagonist, SC-51089, increased lesion volume by 30.1 ± 14.5% (p < 0.05) and treatment with the EP1 agonist, 17-pt-PGE2, improved neuromuscular functional recovery on grip strength (p < 0.01) and hanging wire (p < 0.05) behavioral testing. To begin identifying the mechanisms involved in EP1-mediated neuroprotection after ICH, histology was performed to assess ferric iron content, neuroinflammation, leukocyte transendothelial migratory potential, and peripheral neutrophil and immunoglobulin infiltration. Following ICH, mice treated with the antagonist displayed increased ferric iron (p < 0.05) and cortical microgliosis (p < 0.05), whereas treatment with the agonist decreased cortical (p < 0.01) and striatal (p < 0.001) astrogliosis, leukocyte transendothelial migratory potential (p < 0.01), neutrophil infiltration (p < 0.05), and blood brain barrier breakdown (p < 0.05). Conclusions In agreement with our previous results, selective antagonism of the EP1 receptor aggravated ICH-induced brain injury. Furthermore, EP1 receptor agonism improved anatomical outcomes and functional recovery. Thus, the present data continues to reinforce a putative role for EP1 as a new and more selective therapeutic target for the treatment of ICH that could reduce the side effects associated with COX-2 inhibition while still exploiting the beneficial effects.
Collapse
Affiliation(s)
- Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA. .,Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| | - Abdullah S Ahmad
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
| | - Nilendra Singh
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
| | | | - Ellis Greene
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
| | - Alex Dang
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA. .,Department of Neuroscience, University of Florida, Gainesville, FL, USA. .,Departments of Neurology, Psychiatry, Psychology and Pharmaceutics, University of Florida, Gainesville, FL, USA. .,University of Florida College of Medicine, 1275 Center Drive, Gainesville, FL, 32610-0159, USA.
| |
Collapse
|
9
|
Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci 2014; 8:388. [PMID: 25477782 PMCID: PMC4238323 DOI: 10.3389/fncel.2014.00388] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a particularly severe type of stroke for which no specific treatment has been established yet. Although preclinical models of ICH have substantial methodological limitations, important insight into the pathophysiology has been gained. Mounting evidence suggests an important contribution of inflammatory mechanisms to brain damage and potential repair. Neuroinflammation evoked by intracerebral blood involves the activation of resident microglia, the infiltration of systemic immune cells and the production of cytokines, chemokines, extracellular proteases and reactive oxygen species (ROS). Previous studies focused on innate immunity including microglia, monocytes and granulocytes. More recently, the role of adaptive immune cells has received increasing attention. Little is currently known about the interactions among different immune cell populations in the setting of ICH. Nevertheless, immunomodulatory strategies are already being explored in ICH. To improve the chances of translation from preclinical models to patients, a better characterization of the neuroinflammation in patients is desirable.
Collapse
Affiliation(s)
- Eva Mracsko
- Department of Neurology, University Heidelberg Heidelberg, Germany
| | - Roland Veltkamp
- Department of Neurology, University Heidelberg Heidelberg, Germany ; Division of Brain Sciences, Imperial College London, UK
| |
Collapse
|
10
|
Keep RF, Zhou N, Xiang J, Andjelkovic AV, Hua Y, Xi G. Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 2014; 11:18. [PMID: 25120903 PMCID: PMC4130123 DOI: 10.1186/2045-8118-11-18] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/07/2014] [Indexed: 12/11/2022] Open
Abstract
This article reviews current knowledge of the mechanisms underlying the initial hemorrhage and secondary blood-brain barrier (BBB) dysfunction in primary spontaneous intracerebral hemorrhage (ICH) in adults. Multiple etiologies are associated with ICH, for example, hypertension, Alzheimer's disease, vascular malformations and coagulopathies (genetic or drug-induced). After the initial bleed, there can be continued bleeding over the first 24 hours, so-called hematoma expansion, which is associated with adverse outcomes. A number of clinical trials are focused on trying to limit such expansion. Significant progress has been made on the causes of BBB dysfunction after ICH at the molecular and cell signaling level. Blood components (e.g. thrombin, hemoglobin, iron) and the inflammatory response to those components play a large role in ICH-induced BBB dysfunction. There are current clinical trials of minimally invasive hematoma removal and iron chelation which may limit such dysfunction. Understanding the mechanisms underlying the initial hemorrhage and secondary BBB dysfunction in ICH is vital for developing methods to prevent and treat this devastating form of stroke.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA ; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Ningna Zhou
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA ; Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jianming Xiang
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
11
|
Aronowski J, Hall CE. New Horizons for Primary Intracerebral Hemorrhage Treatment: Experience From Preclinical Studies. Neurol Res 2013; 27:268-79. [PMID: 15845210 DOI: 10.1179/016164105x25225] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intracerebral hemorrhage (ICH) remains a major medical problem, for which there is no effective treatment. However, extensive experimental and clinical research carried out in recent years has brought to light new exciting ideas for novel potential treatments. First, it was well documented that the management of hypertension helps to prevent new and recurrent ICH. Also, development of new guidelines for management of hypertension after the onset of the ICH may help in more effective ICH treatment. Existing contemporary data collected from preclinical studies indicates that ICH-induced inflammation represents a key factor leading to secondary brain damage, suggesting that some anti-inflammatory approaches can be used to treat hemorrhagic stroke. In this article, beyond discussing implications related to hypertension, we will summarize important (but not all) new discoveries connecting the role of inflammation to ICH pathology. Selected aspects of inflammatory response including the role of cytokines, transcription factor nuclear factor-kB, microglia activation, astrogliosis, and complement activation will be introduced. We will also discuss the role for reactive oxygen species and metalloproteinases in ICH pathogenesis and introduce basic knowledge on the nature of ICH-induced cell death including apoptosis. Potential targets for intervention and translation will be discussed.
Collapse
Affiliation(s)
- Jaroslaw Aronowski
- Stroke Program, Department of Neurology, University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | |
Collapse
|
12
|
Neuroprotective Treatment With FK506 Reduces Hippocampal Damage and Prevents Learning and Memory Deficits After Transient Global Ischemia in Rat. ARCHIVES OF NEUROSCIENCE 2013. [DOI: 10.5812/archneurosci.9163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, Bistran-Hall AJ, Ullman NL, Vespa P, Martin NA, Awad I, Zuccarello M, Hanley DF. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke 2013; 44:627-34. [PMID: 23391763 PMCID: PMC4124642 DOI: 10.1161/strokeaha.111.000411] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Perihematomal edema (PHE) can worsen outcomes after intracerebral hemorrhage (ICH). Reports suggest that blood degradation products lead to PHE. We hypothesized that hematoma evacuation will reduce PHE volume and that treatment with recombinant tissue-type plasminogen activator (rt-PA) will not exacerbate it. METHODS Minimally invasive surgery and rt-PA in ICH evacuation (MISTIE) phase II tested safety and efficacy of hematoma evacuation after ICH. We conducted a semiautomated, computerized volumetric analysis on computed tomography to assess impact of hematoma removal on PHE and effects of rt-PA on PHE. Volumetric analyses were performed on baseline stability and end of treatment scans. RESULTS Seventy-nine surgical and 39 medical patients from minimally invasive surgery and rt-PA in ICH evacuation phase II (MISTIE II) were analyzed. Mean hematoma volume at end of treatment was 19.6±14.5 cm(3) for the surgical cohort and 40.7±13.9 cm(3) for the medical cohort (P<0.001). Edema volume at end of treatment was lower for the surgical cohort: 27.7±13.3 cm(3) than medical cohort: 41.7±14.6 cm(3) (P<0.001). Graded effect of clot removal on PHE was observed when patients with >65%, 20% to 65%, and <20% ICH removed were analyzed (P<0.001). Positive correlation between PHE reduction and percent of ICH removed was identified (ρ=0.658; P<0.001). In the surgical cohort, 69 patients underwent surgical aspiration and rt-PA, whereas 10 underwent surgical aspiration only. Both cohorts achieved similar clot reduction: surgical aspiration and rt-PA, 18.9±14.5 cm(3); and surgical aspiration only, 24.5±14.0 cm(3) (P=0.26). Edema at end of treatment in surgical aspiration and rt-PA was 28.1±13.8 cm(3) and 24.4±8.6 cm(3) in surgical aspiration only (P=0.41). CONCLUSIONS Hematoma evacuation is associated with significant reduction in PHE. Furthermore, PHE does not seem to be exacerbated by rt-PA, making such neurotoxic effects unlikely when the drug is delivered to intracranial clot.
Collapse
Affiliation(s)
- W. Andrew Mould
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| | - J. Ricardo Carhuapoma
- Departments of Neurology, Neurosurgery and Anesthesiology/Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD
| | - John Muschelli
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Karen Lane
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Timothy C Morgan
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Nichol A McBee
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Amanda J Bistran-Hall
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Natalie L Ullman
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Paul Vespa
- Departments of Neurology and Neurosurgery, UCLA School of Medicine, Los Angeles, CA
| | - Neil A Martin
- Departments of Neurology and Neurosurgery, UCLA School of Medicine, Los Angeles, CA
| | - Issam Awad
- Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Mario Zuccarello
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH
| | - Daniel F. Hanley
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| |
Collapse
|
14
|
Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O, Hartman R, Ostrowski R, Manaenko A, Tang J, Zhang JH. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol 2012; 241:45-55. [PMID: 23261767 DOI: 10.1016/j.expneurol.2012.12.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/06/2012] [Accepted: 12/13/2012] [Indexed: 12/24/2022]
Abstract
T-lymphocytes promote cerebral inflammation, thus aggravating neuronal injury after stroke. Fingolimod, a sphingosine 1-phosphate receptor analog, prevents the egress of lymphocytes from primary and secondary lymphoid organs. Based on these findings, we hypothesized fingolimod treatment would reduce the number of T-lymphocytes migrating into the brain, thereby ameliorating cerebral inflammation following experimental intracerebral hemorrhage (ICH). We investigated the effects of fingolimod in two well-established murine models of ICH, implementing intrastriatal infusions of either bacterial collagenase (cICH) or autologous blood (bICH). Furthermore, we tested the long term neurological improvements by Fingolimod in a collagenase-induced rat model of ICH. Fingolimod, in contrast to vehicle administration alone, improved neurological functions and reduced brain edema at 24 and 72 h following experimental ICH in CD-1 mice (n=103; p<0.05). Significantly fewer lymphocytes were found in blood and brain samples of treated animals when compared to the vehicle group (p<0.05). Moreover, fingolimod treatment significantly reduced the expression of intercellular adhesion molecule-1 (ICAM-1), interferon-γ (INF-γ), and interleukin-17 (IL-17) in the mouse brain at 72 h post-cICH (p<0.05 compared to vehicle). Long-term neurocognitive performance and histopathological analysis were evaluated in Sprague-Dawley rats between 8 and 10 weeks post-cICH (n=28). Treated rats showed reduced spatial and motor learning deficits, along with significantly reduced brain atrophy and neuronal cell loss within the basal ganglia (p<0.05 compared to vehicle). We conclude that fingolimod treatment ameliorated cerebral inflammation, at least to some extent, by reducing the availability and subsequent brain infiltration of T-lymphocytes, which improved the short and long-term sequelae after experimental ICH in rodents.
Collapse
Affiliation(s)
- William B Rolland
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chemokines and their receptors in intracerebral hemorrhage. Transl Stroke Res 2012; 3:70-9. [PMID: 24323863 DOI: 10.1007/s12975-012-0155-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/11/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating clinical event which results in a high rate of disability and death. At present, no effective treatment is available for ICH. Accumulating evidence suggests that inflammatory responses contribute significantly to the ICH-induced secondary brain outcomes. During ICH, inflammatory cells accumulate at the ICH site attracted by gradients of chemokines. This review summarizes recent progress in ICH studies and the chemoattractants that act during the injury and focuses on and introduces the basic biology of the chemokine monocyte chemoattractant protein-1 (MCP1) and its role in the progression of ICH. Better understanding of MCP1 signaling cascade and the compensation after its inhibition could shed light on the development of effective treatments for ICH.
Collapse
|
16
|
Yao Y, Tsirka SE. The CCL2-CCR2 system affects the progression and clearance of intracerebral hemorrhage. Glia 2012; 60:908-18. [PMID: 22419223 DOI: 10.1002/glia.22323] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/10/2012] [Accepted: 02/16/2012] [Indexed: 01/14/2023]
Abstract
Intracerebral hemorrhage (ICH) has been associated with inflammation and apoptosis. The CCL2-CCR2 chemotactic system is one of the major signaling pathways that induce inflammation and apoptosis. However, its role on ICH has not been investigated. We subjected wild-type, CCL2(-/-) , and CCR2(-/-) mice to collagenase-induced ICH, and assessed histological and behavioral outcomes. Lack of CCL2 or CCR2 decreased the hematoma volume early after collagenase-induced ICH but delayed its recovery. The hematoma size was accompanied by brain edema, neuronal death, and neurological scores. Although microglia activation/migration was attenuated in CCL2(-/-) or CCR2(-/-) mice 1 day after injury, more microglia were present at later time points, suggesting that alternative signaling pathways had been activated to recruit them. On the contrary, leukocyte and neutrophil infiltration were decreased in these mice, suggesting a tighter/recovered blood-brain barrier. In addition, we also found that FL- and K104Stop-CCL2 were able to restore the changes found in CCL2(-/-) mice, but K104A-CCL2 failed to do so. These results suggest that plasmin-mediated truncation of CCL2 may be an indispensable step to fully activate the chemokine in vivo. The data also indicate that CCL2-CCR2 signaling pathway may be a molecular target for the treatment of ICH.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacological Sciences, Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
17
|
Chiu CD, Chen TY, Chin LT, Shen CC, Huo J, Ma SY, Chen HM, Chu CH. Investigation of the effect of hyperglycemia on intracerebral hemorrhage by proteomic approaches. Proteomics 2011; 12:113-23. [DOI: 10.1002/pmic.201100256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/18/2011] [Accepted: 10/25/2011] [Indexed: 12/20/2022]
|
18
|
Hernandez-Guillamon M, Solé M, Delgado P, García-Bonilla L, Giralt D, Boada C, Penalba A, García S, Flores A, Ribó M, Alvarez-Sabin J, Ortega-Aznar A, Unzeta M, Montaner J. VAP-1/SSAO plasma activity and brain expression in human hemorrhagic stroke. Cerebrovasc Dis 2011; 33:55-63. [PMID: 22133888 DOI: 10.1159/000333370] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 08/26/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vascular adhesion protein-1 (VAP-1) is a cell surface and circulating enzyme that belongs to the semicarbazide-sensitive amine oxidase (SSAO) family, which oxidatively deaminates primary amines and is implicated in leukocyte extravasation. Our aim was to investigate the alteration of soluble VAP-1/SSAO activity in plasma samples after acute intracerebral hemorrhage (ICH) and its presence in human ICH brain tissue. METHODS VAP-1/SSAO activity was determined in plasma of 66 ICH patients and 58 healthy controls. In addition, we assessed the expression of VAP-1/SSAO in postmortem brain tissue from hemorrhagic stroke patients by Western blot and immunohistochemistry. RESULTS We observed significantly higher levels of plasma VAP-1/SSAO activity in patients with ICH compared to matched elderly controls (p = 0.001). Plasma VAP-1/SSAO activity <2.7 pmol/min·mg and baseline ICH volume <17 ml were independent predictors of neurological improvement after 48 h (OR 6.8, 95% CI 1.14-41.67, p = 0.035, and OR 10.64, 95% CI 1.1-100, p = 0.041, respectively), after adjustment for baseline stroke severity. We also found that membrane-bound VAP-1/SSAO levels were lower in the perihematoma region than in the corresponding contralateral brain areas of patients deceased due to ICH (p = 0.024). CONCLUSIONS Our data demonstrate that plasma VAP-1/SSAO activity is increased in ICH and predicts neurological outcome, suggesting a possible contribution of the soluble protein in secondary brain damage. Furthermore, anti-VAP-1/SSAO strategies might be a promising approach to prevent neurological worsening following ICH.
Collapse
Affiliation(s)
- Mar Hernandez-Guillamon
- Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fain ET, Mannion M, Pope E, Young DW, Laxer RM, Cron RQ. Brain cavernomas associated with en coup de sabre linear scleroderma: Two case reports. Pediatr Rheumatol Online J 2011; 9:18. [PMID: 21801349 PMCID: PMC3162908 DOI: 10.1186/1546-0096-9-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/29/2011] [Indexed: 01/17/2023] Open
Abstract
Linear scleroderma is a form of localized scleroderma that primarily affects the pediatric population. When it occurs on the scalp or forehead, it is termed "en coup de sabre". In the en coup de sabre subtype, many extracutaneous associations, mostly neurological, have been described. A patient with linear scleroderma en coup de sabre was noted to have ipsilateral brain cavernomas by magnetic resonance imaging. Using a worldwide pediatric rheumatology electronic list-serve, another patient with the same 2 conditions was identified. These two patients are reported in this study. Consideration of neuroimaging studies to disclose abnormal findings in patients with linear scleroderma en coup de sabre is important for potentially preventing and treating neurological manifestations associated with this condition.
Collapse
Affiliation(s)
- Emily T Fain
- Department of Pediatrics, Division of Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Melissa Mannion
- Department of Pediatrics, Division of Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elena Pope
- Section of Dermatolgy, Division of Paediatric Medicine, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Daniel W Young
- Department of Radiology, Children's Hospital of Alabama, Birmingham, AL, USA
| | - Ronald M Laxer
- Division of Rheumatology, Departments of Paediatrics and Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Randy Q Cron
- Department of Pediatrics, Division of Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
20
|
Frantzias J, Sena ES, Macleod MR, Al-Shahi Salman R. Treatment of intracerebral hemorrhage in animal models: meta-analysis. Ann Neurol 2011; 69:389-99. [PMID: 21387381 DOI: 10.1002/ana.22243] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Interventions that improve functional outcome after acute intracerebral hemorrhage (ICH) in animals might benefit humans. Therefore, we systematically reviewed the literature to find studies of nonsurgical treatments tested in animal models of ICH. METHODS In July 2009 we searched Ovid Medline (from 1950), Embase (from 1980), and ISI Web of Knowledge (from 1969) for controlled animal studies of nonsurgical interventions given after the induction of ICH that reported neurobehavioral outcome. We assessed study quality and performed meta-analysis using a weighted mean difference random effects model. RESULTS Of 13,343 publications, 88 controlled studies described the effects of 64 different medical interventions (given a median of 2 hours after ICH induction) on 38 different neurobehavioral scales in 2,616 treated or control animals (median 14 rodents per study). Twenty-seven (31%) studies randomized treatment allocation, and 7 (8%) reported allocation concealment; these studies had significantly smaller effect sizes than those without these attributes (p < 0.001). Of 64 interventions stem cells, calcium channel blockers, anti-inflammatory drugs, iron chelators, and estrogens improved both structural outcomes and neurobehavioral scores in >1 study. Meta-regression revealed that together, structural outcome and the intervention used accounted for 65% of the observed heterogeneity in neurobehavioral score (p < 0.001, adjusted r(2) = 0.65). INTERPRETATION Further animal studies of the interventions that we found to improve both functional and structural outcomes in animals, using better experimental designs, could target efforts to translate effective treatments for ICH in animals into randomized controlled trials in humans.
Collapse
Affiliation(s)
- Joseph Frantzias
- Division of Clinical Neurosciences, Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
21
|
Lekic T, Manaenko A, Rolland W, Fathali N, Peterson M, Tang J, Zhang JH. Protective effect of hydrogen gas therapy after germinal matrix hemorrhage in neonatal rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:237-41. [PMID: 21725762 DOI: 10.1007/978-3-7091-0693-8_40] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Germinal matrix hemorrhage (GMH) is a neurological disease of very low birth weight premature infants leading to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. Hydrogen (H2) is a potent antioxidant shown to selectively reverse cytotoxic oxygen-radical injury in the brain. This study investigated the therapeutic effect of hydrogen gas after neonatal GMH injury. METHODS Neonatal rats underwent stereotaxic infusion of clostridial collagenase into the right germinal matrix brain region. Cognitive function was assessed at 3 weeks, and then sensorimotor function, cerebral, cardiac and splenic growths were measured 1 week thereafter. RESULTS Hydrogen gas inhalation markedly suppressed mental retardation and cerebral palsy outcomes in rats at the juvenile developmental stage. The administration of H2 gas, early after neonatal GMH, also normalized the brain atrophy, splenomegaly and cardiac hypertrophy 1 month after injury. CONCLUSION This study supports the role of cytotoxic oxygen-radical injury in early neonatal GMH. Hydrogen gas inhalation is an effective strategy to help protect the infant brain from the post-hemorrhagic consequences of brain atrophy, mental retardation and cerebral palsy. Further studies are necessary to determine the mechanistic basis of these protective effects.
Collapse
Affiliation(s)
- Tim Lekic
- Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Manaenko A, Chen H, Zhang JH, Tang J. Comparison of different preclinical models of intracerebral hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:9-14. [PMID: 21725724 DOI: 10.1007/978-3-7091-0693-8_2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intracerebral hemorrhage (ICH) is the most devastating type of stroke. It is characterized by spontaneous bleeding in brain parenchyma and is associated with a high rate of morbidity and mortality. Presently, there is neither an effective therapy to increase survival after intracerebral hemorrhage nor a treatment to improve the quality of life for survivors. A reproducible animal model of spontaneous ICH mimicking the development of acute and delayed brain injury after ICH is an invaluable tool for improving our understanding of the underlying mechanisms of ICH-induced brain injury and evaluating potential therapeutic interventions. A number of models have been developed. While different species have been studied, rodents have become the most popular and widely utilized animals used in ICH research. The most often used methods for experimental induction of ICH are injection of bacterial collagenase and direct injection of blood into the brain parenchyma. The "balloon" method has also been used to mimic ICH for study. In this summary, we intend to provide a comparative overview of the technical methods, aspects, and pathologic findings of these types of ICH models. We will also focus on the similarities and differences among these rodent models, achievements in technical aspects of the ICH model, and discuss important aspects in selecting relevant models for study.
Collapse
Affiliation(s)
- Anatol Manaenko
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Risley Hall, Room 219, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
23
|
Rolland WB, Manaenko A, Lekic T, Hasegawa Y, Ostrowski R, Tang J, Zhang JH. FTY720 is neuroprotective and improves functional outcomes after intracerebral hemorrhage in mice. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:213-7. [PMID: 21725758 DOI: 10.1007/978-3-7091-0693-8_36] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracerebral hemorrhage (ICH) accounts for 20% of all strokes and is the most devastating form across all stroke types. Lymphocytes have been shown to potentiate cerebral inflammation and brain injury after stroke. FTY720 (Fingolimod) is an immune-modulating drug that prevents the egress of peripheral lymphocytes from peripheral stores. We hypothesized that FTY720 would reduce peripheral circulating lymphocytes, resulting in reduced brain injury and improved functional outcomes. CD-1 mice were anesthetized and then injected with collagenase into the right basal ganglia. Animals were divided into three groups: sham, ICH+Vehicle, and ICH+FTY720, by the intra-peritoneal route at 1 h after ICH induction. Brain water content was measured at 24 and 72 h. Neurobehavioral tests included corner test, forelimb use asymmetry, paw placement, wire-hang test, beam balance test, and a Neuroscore. FTY720 significantly reduced brain edema and improved neurological function at all time points tested. Lymphocyte modulation with FTY720 is an effective neuroprotective strategy to reduce brain injury and promote functional recovery after ICH.
Collapse
Affiliation(s)
- William B Rolland
- Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Lekic T, Manaenko A, Rolland W, Virbel K, Hartman R, Tang J, Zhang JH. Neuroprotection by melatonin after germinal matrix hemorrhage in neonatal rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:201-6. [PMID: 21725756 DOI: 10.1007/978-3-7091-0693-8_34] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND Germinal matrix hemorrhage (GMH) is a devastating neurological disorder of very low birth weight premature infants that leads to post-hemorrhagic hydrocephalus, cerebral palsy, and mental retardation. Melatonin is a potent antioxidant known to reverse free-radical mediated injury in the brain. This study investigated the effect of melatonin treatment after GMH injury. METHODS Clostridial collagenase was infused into the right germinal matrix region of neonatal rats with stereotaxic technique. Cognitive function, sensorimotor ability, cerebral, cardiac and splenic growths were measured in juvenile animals. RESULTS Systemic melatonin treatment ameliorated cognitive and sensorimotor dysfunction at the juvenile developmental stage. This hormone also normalized brain atrophy, splenomegaly, and cardiac hypertrophy consequences at 1 month after injury. CONCLUSION This study supports the role of free radicals in acute neonatal hemorrhagic brain injury. Melatonin is an effective antioxidant that can protect the infant's brain from the post-hemorrhagic consequences of mental retardation and cerebral palsy. Further mechanistic studies are warranted to determine the mechanisms behind these neuroprotective effects.
Collapse
Affiliation(s)
- Tim Lekic
- Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 2010; 92:463-77. [PMID: 20713126 DOI: 10.1016/j.pneurobio.2010.08.001] [Citation(s) in RCA: 470] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/24/2010] [Accepted: 08/09/2010] [Indexed: 12/15/2022]
Abstract
Intracerebral hemorrhage (ICH) is one of the most lethal stroke subtypes. Despite the high morbidity and mortality associated with ICH, its pathophysiology has not been investigated as well as that of ischemic stroke. Available evidence from preclinical and clinical studies suggests that inflammatory mechanisms are involved in the progression of ICH-induced secondary brain injury. For example, in preclinical ICH models, microglial activation has been shown to occur within 1h, much earlier than neutrophil infiltration. Recent advances in our understanding of neuroinflammatory pathways have revealed several new molecular targets, and related therapeutic strategies have been tested in preclinical ICH models. This review summarizes recent progress made in preclinical models of ICH, surveys preclinical and clinical studies of inflammatory cells (leukocytes, macrophages, microglia, and astrocytes) and inflammatory mediators (matrix metalloproteinases, nuclear factor erythroid 2-related factor 2, heme oxygenase, and iron), and highlights the emerging areas of therapeutic promise.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Traylor Building 809, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Lekic T, Hartman R, Rojas H, Manaenko A, Chen W, Ayer R, Tang J, Zhang JH. Protective effect of melatonin upon neuropathology, striatal function, and memory ability after intracerebral hemorrhage in rats. J Neurotrauma 2010; 27:627-37. [PMID: 20350200 DOI: 10.1089/neu.2009.1163] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Since free radicals play a role in the mechanisms of brain injury after hemorrhagic stroke, the effect of melatonin (a potent antioxidant and free-radical scavenger) on outcomes was investigated after intracerebral hemorrhage (ICH) in rats. ICH was induced by clostridial collagenase infusion into the right caudate putamen, and several time points and doses of melatonin were studied. Brain edema and neurological function at 24 h were unchanged in comparison with vehicle-treated groups, in spite of oxidative stress reductions. Repeated treatment with the lower dose of melatonin (5 mg/kg) given at 1 h and every 24 h thereafter for 3 days after ICH, led to normalization of striatal function and memory ability over the course of 8 weeks, and less brain atrophy 2 weeks later. These results suggest that melatonin is safe for use after ICH, reduces oxidative stress, provides brain protection, and could be used for future investigations of free radical mechanisms after cerebral hemorrhage.
Collapse
Affiliation(s)
- Tim Lekic
- Department of Physiology and Pharmacology, Loma Linda University Medical Center, Loma Linda, California 92354, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rojas H, Lekic T, Chen W, Jadhav V, Titova E, Martin RD, Tang J, Zhang J. The antioxidant effects of melatonin after intracerebral hemorrhage in rats. CEREBRAL HEMORRHAGE 2009; 105:19-21. [DOI: 10.1007/978-3-211-09469-3_4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Cannon JR, Xi G, Keep RF. Recent research on changes in genomic regulation and protein expression in intracerebral haemorrhage. Int J Stroke 2009; 2:265-9. [PMID: 18705926 DOI: 10.1111/j.1747-4949.2007.00160.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracerebral haemorrhage (ICH) is a devastating form of stroke that accounts for roughly 10% of all strokes and the effects on those that survive are often debilitating. To date, no suitable therapy exists. Recent work has examined alterations in gene and protein expression after ICH. The focus of this review is to outline the current knowledge of changes in genetic and protein expression after ICH and how those changes may affect the course of brain injury. Both animal and human data are reviewed.
Collapse
Affiliation(s)
- Jason R Cannon
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
29
|
Auriat AM, Colbourne F. Delayed rehabilitation lessens brain injury and improves recovery after intracerebral hemorrhage in rats. Brain Res 2008; 1251:262-8. [PMID: 19059222 DOI: 10.1016/j.brainres.2008.11.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 11/20/2022]
Abstract
Rehabilitation improves recovery after intracerebral hemorrhage (ICH) in rats. In some cases, brain damage is attenuated. In this study, we tested whether environmental enrichment (EE) combined with skilled reach training improves recovery and lessens brain injury after ICH in rats. Collagenase was injected stereotaxically to produce a moderate-sized striatal ICH. One week after ICH rats were either placed into a rehabilitation (REHAB) or control (CONT) condition. The REHAB rats received 15 h of EE and four 15-minute reach-training sessions daily over 5 days a week for 2 weeks. The CONT rats stayed in standard group cages. Skilled reaching (staircase test), walking (horizontal ladder) and forelimb use bias (cylinder test) were assessed at 4 and 6 weeks after ICH. Lesion volume, corpus callosum volume and cortical thickness were calculated 46 days after ICH. The REHAB treatment reduced lesion volume by 28% (p=0.019) without affecting the corpus callosum volume (p=0.405) or cortical thickness (p=0.300), thus indicating that protection was due to lessening striatal injury. As well, REHAB significantly improved skilled reaching ability in the staircase apparatus at 4 (p=0.002) and 6 weeks (p<0.001) post-ICH. Transient benefit was obtained in the ladder test at 4 weeks (p=0.021). Unexpectedly, REHAB treatment lessened spontaneous use of the contralateral-to-ICH limb at 4 (p=0.045) and 6 weeks (p=0.041). In summary, the combination of EE and reach training significantly attenuates lesion volume (striatal injury) while improving skilled reaching and walking ability. These findings encourage the use of early rehabilitation therapies in patients suffering from basal ganglia hemorrhaging.
Collapse
Affiliation(s)
- Angela M Auriat
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, Canada T6G 2E9
| | | |
Collapse
|
30
|
James ML, Warner DS, Laskowitz DT. Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care 2008; 9:139-52. [PMID: 18058257 DOI: 10.1007/s12028-007-9030-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating and relatively common disease affecting as many as 50,000 people annually in the United States alone. ICH remains associated with poor outcome, and approximately 40-50% of afflicted patients will die within 30 days. In reports from the NIH and AHA, the importance of developing clinically relevant models of ICH that will extend our understanding of the pathophysiology of the disease and target new therapeutic approaches was emphasized. Traditionally, preclinical ICH research has most commonly utilized two paradigms: clostridial collagenase-induced hemorrhage and autologous blood injection. In this article, the use of various species is examined in the context of the different model types for ICH, and a mechanistic approach is considered in evaluating the numerous breakthroughs in our current fund of knowledge. Each of the model types has its inherent strengths and weaknesses and has the potential to further our understanding of the pathophysiology and treatment of ICH. In particular, transgenic rodent models may be helpful in addressing genetic influences on recovery from ICH.
Collapse
Affiliation(s)
- Michael Lucas James
- Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC 27710, USA.
| | | | | |
Collapse
|
31
|
Peeling J, Yan H, Buist R, Sitar DS, Corbett D. Protective effect of minocycline treatment on striatal ischemia. J Stroke Cerebrovasc Dis 2008; 15:101-5. [PMID: 17904060 DOI: 10.1016/j.jstrokecerebrovasdis.2006.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 03/01/2006] [Accepted: 03/03/2006] [Indexed: 12/22/2022] Open
Abstract
Minocycline reduces infarct volume measured up to 1 week after focal cerebral ischemia, but it has not been shown that this results in lasting improvement in functional outcome. This study examined behavioral outcome in rats out to 3 weeks after focal ischemia induced by injection of the vasoconstrictor endothelin (ET)-1 (400 pmol in 1 microL of saline) into the striatum. Magnetic resonance imaging confirmed reduced blood flow after administration of ET-1, and was used to determine lesion volumes at 1 and 21 days postischemia. In control rats, intraperitoneal injection of minocycline resulted in plasma levels of 6.6 +/- 2.7 microg mL(-1) between 1 and 8 hours after administration. Based on these results, intraperitoneal minocycline treatment was started either 1 hour before or 3 hours after ET-1 administration, and was repeated daily for 5 days. Outcome, assessed using a composite behavioral deficit score (days 2, 4, 7, 14, and 21) and a test of asymmetric forelimb use (days 7 and 21), was significantly better in both groups of rats treated with minocycline, and the improvement was maintained for the 3-week study period. No differences were found in infarct volumes between groups.
Collapse
Affiliation(s)
- James Peeling
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
32
|
MacLellan CL, Silasi G, Poon CC, Edmundson CL, Buist R, Peeling J, Colbourne F. Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab 2008; 28:516-25. [PMID: 17726491 DOI: 10.1038/sj.jcbfm.9600548] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many therapies have shown promise in preclinical stroke studies, but few benefit patients. A greater understanding of stroke pathophysiology is needed to successfully develop therapies, and this depends on appropriate animal models. The collagenase and blood infusion models of intracerebral hemorrhage (ICH) are widely used; yet, investigators often prefer using one model for a variety of reasons. Thus, we directly compared these to highlight advantages and limitations of each as well as the assessment approach. An ICH was created by infusing blood or bacterial collagenase into the rats' striatum. We matched initial hematoma volume in each model (Experiment 1) and assessed the time course of bleeding (Experiment 2). Functional deficits and the progression of injury were tracked over 6 weeks using behavior, magnetic resonance imaging, and histology (Experiment 3). Despite similar initial hematoma volumes, collagenase-induced ICH resulted in a greater blood-brain barrier breakdown and more damage to the striatum, substantia nigra, white matter, and cortex. Magnetic resonance imaging revealed faster hematoma resolution in the blood model, and little increase in the volume of tissue lost from 1 to 6 weeks. In contrast, tissue loss continued over 4 weeks in the collagenase model. Finally, functional deficits recovered more quickly and completely in the blood model. This study highlights key differences between these models and that neither closely replicates the human condition. Thus, both should be used whenever possible taking into account the significant differences between these models and their limitations. Furthermore, this work illustrates significant weaknesses with several outcome measures.
Collapse
Affiliation(s)
- Crystal L MacLellan
- Department of Psychology and Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
The effects of selective brain hypothermia on intracerebral hemorrhage in rats. Exp Neurol 2007; 208:277-84. [DOI: 10.1016/j.expneurol.2007.08.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 08/23/2007] [Accepted: 08/28/2007] [Indexed: 11/20/2022]
|
34
|
van Marle G, Antony J, Ostermann H, Dunham C, Hunt T, Halliday W, Maingat F, Urbanowski MD, Hobman T, Peeling J, Power C. West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. J Virol 2007; 81:10933-49. [PMID: 17670819 PMCID: PMC2045515 DOI: 10.1128/jvi.02422-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
West Nile virus (WNV) infection causes neurological disease at all levels of the neural axis, accompanied by neuroinflammation and neuronal loss, although the underlying mechanisms remain uncertain. Given the substantial activation of neuroinflammatory pathways observed in WNV infection, we hypothesized that WNV-mediated neuroinflammation and cell death occurred through WNV infection of both glia and neurons, which was driven in part by WNV capsid protein expression. Analysis of autopsied neural tissues from humans with WNV encephalomyelitis (WNVE) revealed WNV infection of both neurons and glia. Upregulation of proinflammatory genes, CXCL10, interleukin-1beta, and indolamine-2',3'-deoxygenase with concurrent suppression of the protective astrocyte-specific endoplasmic reticulum stress sensor gene, OASIS (for old astrocyte specifically induced substance), was evident in WNVE patients compared to non-WNVE controls. These findings were supported by increased ex vivo expression of these proinflammatory genes in glia infected by WNV-NY99. WNV infection caused endoplasmic reticulum stress gene induction and apoptosis in neurons but did not affect glial viability. WNV-infected astrocytic cells secreted cytotoxic factors, which caused neuronal apoptosis. The expression of the WNV-NY99 capsid protein in neurons and glia by a Sindbis virus-derived vector (SINrep5-WNVc) caused neuronal death and the release of neurotoxic factors by infected astrocytes, coupled with proinflammatory gene induction and suppression of OASIS. Striatal implantation of SINrep5-WNV(C) induced neuroinflammation in rats, together with the induction of CXCL10 and diminished OASIS expression, compared to controls. Moreover, magnetic resonance neuroimaging showed edema and tissue injury in the vicinity of the SINrep5-WNVc implantation site compared to controls, which was complemented by neurobehavioral abnormalities in the SINrep5-WNVc-implanted animals. These studies underscore the important interactions between the WNV capsid protein and neuroinflammation in the pathogenesis of WNV-induced neurological disorders.
Collapse
Affiliation(s)
- Guido van Marle
- Departments of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Belayev L, Obenaus A, Zhao W, Saul I, Busto R, Wu C, Vigdorchik A, Lin B, Ginsberg MD. Experimental intracerebral hematoma in the rat: Characterization by sequential magnetic resonance imaging, behavior, and histopathology. Effect of albumin therapy. Brain Res 2007; 1157:146-55. [PMID: 17543290 DOI: 10.1016/j.brainres.2007.04.077] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 04/19/2007] [Accepted: 04/20/2007] [Indexed: 11/30/2022]
Abstract
We characterized acute intracerebral hemorrhage (ICH) in the rat by sequential magnetic resonance imaging (MRI) and correlated MRI findings with neurobehavior and histopathology. In addition, we investigated whether albumin treatment would reduce ICH-induced brain injury. ICH was produced in rats by a double-injection method in which 45 microl of fresh arterial blood was injected into the right striatum. Susceptibility-weighted (SWI) and T2-weighted (T2WI) MRI was carried out on a 4.7T magnet at 0-1 h, 6 h, 24 h, 72 h, and 7 days after ICH. Animals were treated with either 25% human albumin, 1.25 g/kg, or saline vehicle i.v. at 90 min after ICH. Neurological status was evaluated before ICH and after treatment (at 4 h, 24 h, 48 h, 72 h, and 7 days). Brains were then perfusion-fixed, re-imaged on an 11.7T magnet, and studied by histopathology and immunochemistry. MRI revealed a consistent hematoma involving the striatum and overlying corpus callosum, with significant volume changes over time. Lesion volumes computed from T2WI images and by histopathology agreed closely with one another and were highly correlated (p=0.002). SWI lesion volumes were also highly correlated to histological volumes (p<0.001) but overestimated histological hematoma volume by approximately 5-fold. Albumin treatment significantly improved neurological scores compared to saline at 72 h (3.8+/-0.6 vs. 1.5+/-0.7) and 7 days (3.8+/-0.4 vs. 1.3+/-0.5, respectively, p<0.05), but did not affect histological or MRI lesion volumes. Taken together, sequential MRI plus histopathology provides a comprehensive characterization of experimental ICH. Albumin treatment improves neurological deficit after ICH but does not affect MRI or histological hematoma size.
Collapse
Affiliation(s)
- Ludmila Belayev
- Cerebral Vascular Disease Research Center, Department of Neurology, University of Miami School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jung KH, Chu K, Lee ST, Kim SJ, Song EC, Kim EH, Park DK, Sinn DI, Kim JM, Kim M, Roh JK. Blockade of AT1 Receptor Reduces Apoptosis, Inflammation, and Oxidative Stress in Normotensive Rats with Intracerebral Hemorrhage. J Pharmacol Exp Ther 2007; 322:1051-8. [PMID: 17538008 DOI: 10.1124/jpet.107.120097] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiotensin II exerts its central nervous system effects primarily via its receptors AT1 and AT2, and it participates in the pathogenesis of ischemia via AT1. The selective AT1 receptor blocker (ARB) is used in the hypertension treatment, and it exerts a variety of pleiotropic effects, including antioxidative, antiapoptotic, and anti-inflammatory effects. In this study, we investigated the therapeutic effect of the ARB telmisartan in experimental intracerebral hemorrhage (ICH) in normotensive rats. ICH was induced via the collagenase infusion or autologous blood injection. Either telmisartan at 30 mg/kg/dose or phosphate-buffered saline was orally administered 2 h after ICH induction. We evaluated hemorrhage volume, brain water content, and functional recovery, and we performed the histological analysis for terminal deoxynucleotidyl transferase dUTP nick-end labeling, leukocyte infiltration, and microglia activation. A variety of intracellular signals, in terms of oxidative stress, apoptotic molecules, and inflammatory mediators, were also measured. Telmisartan reduced hemorrhage volume, brain edema, and inflammatory or apoptotic cells in the perihematomal area. Telmisartan was noted to induce the expression of endothelial nitric-oxide synthase and peroxisome proliferator-activated receptor gamma and decrease oxidative stress, apoptotic signal, tumor necrosis factor-alpha, and cyclooxygenase-2 expression. The telmisartan-treated rats exhibited less pronounced neurological deficits and recovered better. Thus, telmisartan seems to offer neural protection, including antiapoptosis, anti-inflammatory, and antioxidant benefits in the intracerebral hemorrhage rat model.
Collapse
Affiliation(s)
- Keun-Hwa Jung
- Stroke and Neural Stem Cell Laboratory, Department of Neurology, Clinical Research Institute, Seoul National University Hospital, 28, Yongon-Dong, Chongro-Gu, Seoul, 110-744, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Intracerebral hemorrhage (ICH) is a devastating clinical event without effective therapies. Increasing evidence suggests that inflammatory mechanisms are involved in the progression of ICH-induced brain injury. Inflammation is mediated by cellular components, such as leukocytes and microglia, and molecular components, including prostaglandins, chemokines, cytokines, extracellular proteases, and reactive oxygen species. Better understanding of the role of the ICH-induced inflammatory response and its potential for modulation might have profound implications for patient treatment. In this review, a summary of the available literature on the inflammatory responses after ICH is presented along with discussion of some of the emerging opportunities for potential therapeutic strategies. In the near future, additional strategies that target inflammation could offer exciting new promise in the therapeutic approach to ICH.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
38
|
Sinn DI, Lee ST, Chu K, Jung KH, Kim EH, Kim JM, Park DK, Song EC, Kim BS, Yoon SS, Kim M, Roh JK. Proteasomal inhibition in intracerebral hemorrhage: Neuroprotective and anti-inflammatory effects of bortezomib. Neurosci Res 2007; 58:12-8. [PMID: 17328981 DOI: 10.1016/j.neures.2007.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 12/14/2006] [Accepted: 01/09/2007] [Indexed: 11/21/2022]
Abstract
Inflammation is an important pathophysiologic mechanism of injury induced by intracerebral hemorrhage (ICH). The ubiquitin-proteasome system (UPS) regulates the inflammatory responses via the up-regulation of several pro-inflammatory molecules. In this study, we determined that a potent proteasome inhibitor, bortezomib, exerted therapeutic effects in experimental model of ICH. Either bortezomib (0.05, 0.2, 0.5, 1mg/kg) or vehicle was intravenously administered 2h after ICH induction. The high doses of bortezomib caused high mortality rates. Bortezomib at 0.2 mg/kg reduced the early hematoma growth and alleviated hematoma volume and brain edema at 3 days after ICH, compared with the ICH-vehicle group. The numbers of myeloperoxidase(+) neutrophils, Ox42(+) microglia, and TUNEL(+) cells in the perihematomal regions were decreased by bortezomib. Bortezomib induced significant decrements of mRNA expression of TNF-alpha and IL-6. The production of iNOS and COX2 was also reduced significantly by bortezomib. We concluded that the early treatment with bortezomib induced a reduction in the early hematoma growth and mitigated the development of brain edema, coupled with a marked inhibitory effect on inflammation in ICH.
Collapse
Affiliation(s)
- Dong-In Sinn
- Stroke & Neural Stem Cell Laboratory in Clinical Research Institute, Department of Neurology, Seoul National University Hospital, Program in Neuroscience, Neuroscience Research Institute of SNUMRC, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ardizzone TD, Zhan X, Ander BP, Sharp FR. SRC kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage. Stroke 2007; 38:1621-5. [PMID: 17395859 DOI: 10.1161/strokeaha.106.478966] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The mechanisms by which intracerebral hemorrhages produce changes of blood flow and metabolism, cell death, and behavioral abnormalities are complex. In this study, we begin to test the hypothesis that intracerebral hemorrhage activates Src kinases that phosphorylate other molecules to produce cell injury and behavioral deficits after intracerebral hemorrhage (ICH). METHODS ICH was produced in adult Sprague Dawley rats by direct injection of autologous blood (50 microL) into striatum. Src kinase activity, glucose hypermetabolic areas around the ICH, TUNEL-stained cells, and apomorphine-induced rotational behaviors were assessed in animals with ICH pretreated with the Src kinase inhibitor, PP1, or with vehicle. RESULTS PP1 (3 mg/kg) blocked increases of Src kinase activity (5-fold) at 3 hours after ICH. PP1 also blocked the areas of glucose hypermetabolism and decreased the numbers of TUNEL-stained cells surrounding the ICH at 24 hours. Finally, apomorphine-induced (1 mg/kg) rotation at 24 hours after ICH was markedly attenuated by previous treatment with PP1 (3 mg/kg intraperitoneal). CONCLUSIONS PP1 decreases Src kinase activation, glucose metabolic activation, cell death, and behavioral abnormalities after ICH in striatum of adult rats. It is hypothesized that intracerebral hemorrhage, possibly via thrombin activation of protease-activated receptors, activates Src that phosphorylates NMDA receptors, matrix metalloproteinases, and other proteins that mediate injury after ICH.
Collapse
Affiliation(s)
- Timothy D Ardizzone
- Medical Investigation of Neurodevelopmental Diseases Institute and Department of Neurology, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
40
|
Tejima E, Zhao BQ, Tsuji K, Rosell A, van Leyen K, Gonzalez RG, Montaner J, Wang X, Lo EH. Astrocytic induction of matrix metalloproteinase-9 and edema in brain hemorrhage. J Cereb Blood Flow Metab 2007; 27:460-8. [PMID: 16788715 DOI: 10.1038/sj.jcbfm.9600354] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We tested the hypothesis that astrocytic matrix metalloproteinase-9 (MMP-9) mediates hemorrhagic brain edema. In a clinical case of hemorrhagic stroke, MMP-9 co-localized with astrocytes and neurons in peri-hematoma areas. In a mouse model where blood was injected into striatum, MMP-9 was colocalized with astrocytes surrounding the hemorrhagic lesion. Because MMP-9 is present in blood as well as brain, we compared four groups of wild type (WT) and MMP-9 knockout (KO) mice: WT blood injected into WT brain, KO blood into KO brain, WT blood into KO brain, and KO blood into WT brain. Gel zymography showed that MMP-9 was elevated in WT hemorrhagic brain tissue but absent from KO hemorrhagic brain tissue. Edematous water content was elevated when WT blood was injected into WT brain. However, edema was ameliorated when MMP-9 was absent in either blood or brain or both. To further assess the mechanisms involved in astrocytic induction of MMP-9, we next examined primary mouse astrocyte cultures. Exposure to hemoglobin rapidly upregulated MMP-9 in conditioned media within 1 to 24 h. Hemoglobin-induced MMP-9 was reduced by the free radical scavenger U83836E. Taken together, these data suggest that although there are large amounts of MMP-9 in blood, hemoglobin-induced oxidative stress can trigger MMP-9 in astrocytes and these parenchymal sources of matrix degradation may also be an important factor in the pathogenesis of hemorrhagic brain edema.
Collapse
Affiliation(s)
- Emiri Tejima
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wasserman JK, Schlichter LC. Neuron death and inflammation in a rat model of intracerebral hemorrhage: Effects of delayed minocycline treatment. Brain Res 2007; 1136:208-18. [PMID: 17223087 DOI: 10.1016/j.brainres.2006.12.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/07/2006] [Accepted: 12/09/2006] [Indexed: 10/23/2022]
Abstract
After intracerebral hemorrhage (ICH), blood entry is followed by neuron death and an inflammatory response, but development of pharmacological therapies has been hampered by an inadequate understanding of the spatial and temporal relationship between neuron death and inflammation. Using a rat model of ICH, we first investigated these relationships at 6 h, and 1, 3 and 7 days. At the edge of the hematoma, no degenerating neurons were observed at 6 h; however, dying neurons were present between 1 and 3 days, with peak neuron death occurring at 1 day. This is apparently the first report of ongoing neuron death at the edge of the hematoma during a time window that is appropriate for human therapy. Neuron death was limited to the edge of the hematoma, with no degenerating neurons in the striatum surrounding the hematoma, despite robust and prolonged microglia activation. Importantly, neuron loss at the edge of the hematoma was spatially and temporally associated with accumulation and activation of microglia/macrophages. We then tested the hypothesis that treatment with the tetracycline derivative, minocycline, after the hematoma had reached a maximal size, will reduce inflammation and neuron damage. Minocycline injection (45 mg/kg i.v. at 6 h, and i.p. at 24, 48 and 72 h) failed to reduce neuron loss outside the hematoma or striatal tissue loss (assessed at 7 days), despite reducing the number of neutrophils and activated microglia/macrophages. Thus, minocycline does not appear to target the mechanisms responsible for cell death in this model of ICH.
Collapse
Affiliation(s)
- Jason K Wasserman
- Toronto Western Research Institute, University Health Network, Canada
| | | |
Collapse
|
42
|
Alessandri B, Nishioka T, Heimann A, Bullock RM, Kempski O. Caspase-dependent cell death involved in brain damage after acute subdural hematoma in rats. Brain Res 2006; 1111:196-202. [PMID: 16890922 DOI: 10.1016/j.brainres.2006.06.105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 06/25/2006] [Accepted: 06/27/2006] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury is associated with acute subdural hematoma (ASDH) that worsens outcome. Although early removal of blood can reduce mortality, patients still die or remain disabled after surgery and additional treatments are needed. The blood mass and extravasated blood induce pathomechanisms such as high intracranial pressure (ICP), ischemia, apoptosis and inflammation which lead to acute as well as delayed cell death. Only little is known about the basis of delayed cell death in this type of injury. Thus, the purpose of the study was to investigate to which extent caspase-dependent intracellular processes are involved in the lesion development after ASDH in rats. A volume of 300microL blood was infused into the subdural space under monitoring of ICP and tissue oxygen concentration. To asses delayed cell death mechanisms, DNA fragmentation was measured 1, 2, 4 and 7 days after ASDH by TUNEL staining, and the effect of the pan-caspase inhibitor zVADfmk on lesion volume was assessed 7 days post-ASDH. A peak of TUNEL-positive cells was found in the injured cortex at day 2 after blood infusion (53.4+/-11.6 cells/mm(2)). zVADfmk (160ng), applied by intracerebroventricular injection before ASDH, reduced lesion volume significantly by more than 50% (vehicle: 23.79+/-7.62mm(3); zVADfmk: 9.06+/-4.08). The data show for the first time that apoptotic processes are evident following ASDH and that caspase-dependent mechanisms play a crucial role in the lesion development caused by the blood effect on brain tissue.
Collapse
Affiliation(s)
- B Alessandri
- Institute for Neurosurgical Pathophysiology, University of Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany.
| | | | | | | | | |
Collapse
|
43
|
Lee ST, Chu K, Sinn DI, Jung KH, Kim EH, Kim SJ, Kim JM, Ko SY, Kim M, Roh JK. Erythropoietin reduces perihematomal inflammation and cell death with eNOS and STAT3 activations in experimental intracerebral hemorrhage. J Neurochem 2006; 96:1728-39. [PMID: 16539688 DOI: 10.1111/j.1471-4159.2006.03697.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Erythropoietin (EPO), a pleiotropic cytokine involved in erythropoiesis, is tissue-protective in ischemic, traumatic, toxic and inflammatory injuries. In this study, we investigated the effect of EPO in experimental intracerebral hemorrhage (ICH). Two hours after inducing ICH via the stereotaxic infusion of collagenase, recombinant human EPO (500 or 5000 IU/kg, ICH + EPO group) or PBS (ICH + vehicle group) was administered intraperitoneally, then once daily afterwards for 1 or 3 days. ICH + EPO showed the better functional recovery in both rotarod and modified limb placing tests. The brain water content was decreased in ICH + EPO dose-dependently, as compared with ICH + vehicle. The effect of EPO on the brain water content was inhibited by N(omega)-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 10 mg/kg). Mean hemorrhage volume was also decreased in ICH + EPO. EPO reduced the numbers of TUNEL +, myeloperoxidase + or OX-42 + cells in the perihematomal area. In addition, EPO reduced the mRNA level of TNF-alpha, Fas and Fas-L, as well as the activities of caspase-8, 9 and 3. EPO treatment showed up-regulations of endothelial nitric oxide synthase (eNOS) and p-eNOS, pAkt, pSTAT3 and pERK levels. These data suggests that EPO treatment in ICH induces better functional recovery with reducing perihematomal inflammation and apoptosis, coupled with activations of eNOS, STAT3 and ERK.
Collapse
Affiliation(s)
- Soon-Tae Lee
- Stroke and Neural Stem Cell Laboratory in Clinical Research Institute, Stem Cell Research Center, Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mihara K, Aoki T, Moriguchi A, Maeda M, Furuichi Y, Matsuoka N, Mutoh S. Prohemorrhagic and bleeding time activities of recombinant tissue plasminogen activator, heparin, aspirin, and a glycoprotein IIb/IIIa antagonist. J Neurotrauma 2006; 22:1362-73. [PMID: 16305324 DOI: 10.1089/neu.2005.22.1362] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most serious side effect of antithrombotic agents, especially in cases of cerebrovascular disease. In the present study, we compared the exacerbation of ICH and prolongation of bleeding time (BT) in guinea pigs with recombinant tissue plasminogen activator (rt-PA), heparin, aspirin, and FK419, a novel nonpeptide platelet glycoprotein (GP) IIb/IIIa receptor antagonist. ICH was induced by injection of bacterial collagenase into the caudate nucleus; BT was measured with a Simplate R device. Neither heparin nor aspirin prolonged BT. In contrast, rt-PA at the highest dose used in the study did prolong BT, and FK419 caused a dose-dependent prolongation of BT. Moreover, rt-PA and heparin increased the degree of ICH in a dose-dependent manner, leading to death in more than half of the animals treated with higher doses of these drugs. These findings show that the prohemorrhagic mechanisms underlying the prolongation of BT differ from those in collagenase-induced ICH, and that the risk of an agent with antithrombotic effects potentiating hemorrhage in the collagenase-induced model of ICH more closely parallels that in stroke patients than does the effect of the agent on BT. The findings also suggest that antiplatelet agents, including FK419, may be safer than thrombolytic or anticoagulant agents for use in patients at risk for ICH, such as those with stroke or cerebral aneurysm.
Collapse
Affiliation(s)
- Kayoko Mihara
- Medicinal Biology Research Laboratories, Astellas Pharma, Inc., Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
After intracerebral hemorrhage (ICH), many changes of gene transcription occur that may be important because they will contribute to understanding mechanisms of injury and recovery. Therefore, gene expression was assessed using Affymetrix microarrays in the striatum and the overlying cortex at 24 h after intracranial infusions of blood into the striatum of adult rats. Intracerebral hemorrhage regulated 369 of 8,740 transcripts as compared with saline-injected controls, with 104 regulated genes shared by the striatum and cortex. There were 108 upregulated and 126 downregulated genes in striatum, and 170 upregulated and 69 downregulated genes in the cortex. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) confirmed upregulation of IL-1-beta, Lipcortin 1 (annexin) and metallothionein 1,2, and downregulation of potassium voltage-gated channel, shaker-related subfamily, beta member 2 (Kcnab2). Of the functional groups of genes modulated by ICH, many metabolism and signal-transduction-related genes decreased in striatum but increased in adjacent cortex. In contrast, most enzyme, cytokine, chemokine, and immune response genes were upregulated in both striatum and in the cortex after ICH, likely in response to foreign proteins from the blood. A number of these genes may contribute to brain edema and cellular apoptosis caused by ICH. In addition, downregulation of growth factor pathways and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway could also contribute to perihematoma cell death/apoptosis. Intracerebral hemorrhage-related downregulation of GABA-related genes and potassium channels might contribute to perihematoma cellular excitability and increased risk of post-ICH seizures. These genomic responses to ICH potentially provide new therapeutic targets for treatment.
Collapse
Affiliation(s)
- Aigang Lu
- MIND Institute and Department of Neurology, University of California at Davis, Sacramento, California 95817, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Nilupul Perera M, Ma HK, Arakawa S, Howells DW, Markus R, Rowe CC, Donnan GA. Inflammation following stroke. J Clin Neurosci 2006; 13:1-8. [PMID: 16410192 DOI: 10.1016/j.jocn.2005.07.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 07/16/2005] [Indexed: 01/18/2023]
Abstract
Stroke is one of the leading causes of mortality and morbidity. The stroke process triggers an inflammatory reaction that may last up to several months. Suppression of inflammation using a variety of drugs reduces infarct volume and improves clinical outcomes in animal models of stroke. This benefit occurs even with the initiation of therapy after 3 hours of onset of stroke, beyond the therapeutic window for thrombolysis with tPA. The use of neuroprotectants to suppress inflammation may widen the therapeutic time window for tPA while lessening its side-effects. Suppression of inflammation may also improve outcomes in animal models of haemorrhagic stroke. To date, clinical trials with anti-inflammatory agents in acute ischaemic stroke have failed to improve clinical outcomes. However, because of the potential for broader applicability across all aspects of stroke, a better understanding of anti-inflammatory mechanisms is important.
Collapse
Affiliation(s)
- M Nilupul Perera
- National Stroke Research Institute, Austin Health, University of Melbourne, Level 1, Neurosciences Building, 300 Waterdale Road, Heidelberg Heights, Victoria 3081, Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Millerot E, Prigent-Tessier AS, Bertrand NM, Faure PJC, Mossiat CM, Giroud ME, Beley AG, Marie C. Serum ferritin in stroke: a marker of increased body iron stores or stroke severity? J Cereb Blood Flow Metab 2005; 25:1386-93. [PMID: 15902198 DOI: 10.1038/sj.jcbfm.9600140] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To evaluate the effect of body iron stores on the vulnerability of the brain to ischemia, a focal permanent brain ischemia was induced by photothrombotic occlusion of cortical vessels in rats with or without chronic treatment with iron dextran (25 mg iron/kg, every other day for 20 days, intraperitoneally). Iron dextran induced systemic iron overload as evidenced by high ferritin (Ft) ( x 5) and total iron levels ( x 3) in serum as well as increased Ft expression in the liver and heart. Conversely, neither serum free iron levels nor Ft expression in the brain were changed by iron dextran. Finally, infarct volume was not modified by iron dextran. In addition, induction of ischemia in rats treated with FeCl(3) (560 microg iron/kg, intravenously) as a means of increasing serum free iron levels during the ischemic period did not enlarge infarct volume. We then explored the effect of brain ischemia itself on serum Ft by measuring serum Ft before and after induction of brain ischemic insults with different neurologic outcomes in rats (brain embolization with microspheres, photothrombotic occlusion of cortical vessels, four-vessel occlusion). Serum Ft levels were found higher at day 1 after ischemia than before ischemia only in rats subjected to the most severe insult (brain embolization). In conclusion, our study showed that increased body iron stores do not increase the vulnerability of the brain to ischemia and that brain ischemia, if severe, results in the elevation of serum Ft levels.
Collapse
Affiliation(s)
- Emilie Millerot
- Laboratoire de Pharmacodynamie et Physiologie Pharmaceutique, Faculté de Pharmacie, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
MacLellan CL, Colbourne F. Mild to moderate hyperthermia does not worsen outcome after severe intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 2005; 25:1020-9. [PMID: 15744245 DOI: 10.1038/sj.jcbfm.9600099] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyperthermia worsens outcome in clinical and experimental studies of ischemic stroke. Thus, we tested whether hyperthermia aggravates intracerebral hemorrhage (ICH) in rats. A striatal hemorrhage was produced via an infusion of bacterial collagenase. In a preliminary experiment, we compared brain and core temperatures (via telemetry) during heating (infrared lamp). The brain temperature rise exceeded that produced by enforced core hyperthermia, which was used subsequently. In these experiments up to three hyperthermia conditions (versus normothermia) were tested including: hyperthermia (>38.5 degrees C) over the first (HYP-1) or second 24 h period (HYP-2) after ICH and 3 h of 40 degrees C hyperthermia starting 12 h after ICH (HYP-3). The HYP-1, HYP-2, and HYP-3 treatments did not affect functional deficits (e.g., spontaneous forelimb use, skilled reaching) or the volume of injury at 30 days. Furthermore, the HYP-1 treatment did not aggravate injury or deficits at 7 days. Bleeding and inflammation, which contribute to pathology, were not significantly altered by HYP-1 and HYP-3 treatments. Bleeding was assessed at 1 day, and macrophages and neutrophils were counted at 2 and 4 days. Accordingly, hyperthermia, under the present conditions, did not worsen outcome after striatal ICH.
Collapse
|
49
|
Park HK, Chu K, Lee ST, Jung KH, Kim EH, Lee KB, Song YM, Jeong SW, Kim M, Roh JK. Granulocyte colony-stimulating factor induces sensorimotor recovery in intracerebral hemorrhage. Brain Res 2005; 1041:125-31. [PMID: 15829221 DOI: 10.1016/j.brainres.2004.11.067] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 11/09/2004] [Accepted: 11/16/2004] [Indexed: 01/13/2023]
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been used in the treatment of neutropenia in hematologic disorders. The neuroprotective and anti-inflammatory effects of G-CSF were reported in various neurological disease models. In this study, we examined whether G-CSF induces functional recovery after intracerebral hemorrhage (ICH). ICH was induced using collagenase injection in adult rats. Either G-CSF (50 microg/kg, i.p.) or saline was given from 2 h after ICH and every 24 h for 3 days. 72 h after ICH induction, the rats were sacrificed for histological analysis and measurement of brain edema. Behavioral tests were performed before and 1, 7, 14, 21, 28, and 35 days after ICH. We also measured the blood-brain barrier (BBB) permeability using Evans blue dye injection method. G-CSF-treated rats recovered better on rotarod and limb placing tests, starting from 14 days throughout 5 weeks after ICH. The brain water content and BBB permeability of G-CSF-treated group decreased in the lesioned hemispheres compared with those of ICH-only group. In G-CSF-treated group, the number of TUNEL+, myeloperoxidase+, and OX42+ cells was smaller than that of ICH-only group in the periphery of hematoma. These findings suggest that G-CSF induces long-term sensorimotor recovery after ICH with reduction of brain edema, inflammation, and perihematomal cell death.
Collapse
Affiliation(s)
- Hee-Kwon Park
- Department of Neurology, Stroke and Neural Stem Cell Laboratory, Clinical Research Institute, Seoul National University Hospital, 28, Yongon-Dong, Chongro-Gu, Seoul, 110-744, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshop. Stroke 2005; 36:e23-41. [PMID: 15692109 DOI: 10.1161/01.str.0000155685.77775.4c] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Spontaneous intracerebral hemorrhage (ICH) is one of the most lethal stroke types. In December 2003, a National Institute of Neurological Disorders and Stroke (NINDS) workshop was convened to develop a consensus for ICH research priorities. The focus was clinical research aimed at acute ICH in patients. METHODS Workshop participants were divided into 6 groups: (1) current state of ICH research; (2) basic science; and (3) imaging, (4) medical, (5) surgical, and (6) clinical methodology. Each group formulated research priorities before the workshop. At the workshop, these were discussed and refined. RESULTS Recent progress in management of hemorrhage growth, intraventricular hemorrhage, and limitations in the benefit of open craniotomy were noted. The workshop identified the importance of developing animal models to reflect human ICH, as well as the phenomena of rebleeding. More human ICH pathology is needed. Real-time, high-field magnets and 3-dimensional imaging, as well as high-resolution tissue probes, are ICH imaging priorities. Trials of acute blood pressure-lowering in ICH and coagulopathy reversal are medical priorities. The exact role of edema in human ICH pathology and its treatment requires intensive study. Trials of minimally invasive surgical techniques including mechanical and chemical surgical adjuncts are critically important. The methodologic challenges include establishing research networks and a multi-specialty approach. Waiver of consent issues and standardizing care in trials are important issues. Encouragement of young investigators from varied backgrounds to enter the ICH research field is critical. CONCLUSIONS Increasing ICH research is crucial. A collaborative approach is likely to yield therapies for this devastating form of brain injury.
Collapse
|