1
|
Asano K, Nakano T, Tokutake K, Ishii H, Nishizuka T, Iwatsuki K, Onishi T, Kurimoto S, Yamamoto M, Tatebe M, Hirata H. Innervation of Meissner's corpuscles and Merkel -cells by transplantation of embryonic dorsal root ganglion cells after peripheral nerve section in rats. J Tissue Eng Regen Med 2021; 15:586-595. [PMID: 33837671 DOI: 10.1002/term.3196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/26/2021] [Indexed: 11/08/2022]
Abstract
Transplantation of embryonic motor neurons has been shown to improve motor neuron survival and innervation of neuromuscular junctions in peripheral nerves. However, there have been no reports regarding transplantation of sensory neurons and innervation of sensory receptors. Therefore, we hypothesized that the transplantation of embryonic sensory neurons may improve sensory neurons in the skin and innervate Merkel cells and Meissner's corpuscles. We obtained sensory neurons from dorsal root ganglia of 14-day rat embryos. We generated a rat model of Wallerian-degeneration by performing sciatic nerve transection and waiting for one week after. Six months after cell transplantation, we performed histological and electrophysiological examinations in naïve control, surgical control, and cell transplantation groups. The number of nerve fibers in the papillary dermis and epidermal-dermal interface was significantly greater in the cell transplantation than in the surgical control group. The percent of Merkel cells with nerve terminals, as well as the average number of Meissner corpuscles with nerve terminals, were higher in the cell transplantation than in the surgical control group, but differences were not significant between the two groups. Moreover, the amplitude and latency of sensory conduction velocity were evoked in rats of the cell transplantation group. We demonstrated that the transplantation of embryonic dorsal root ganglion cells improved sensory nerve fiber number and innervation of Merkel cells and Meissner's corpuscles in peripheral nerves.
Collapse
Affiliation(s)
- Kenichi Asano
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Tomonori Nakano
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Katsuhiro Tokutake
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hisao Ishii
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Takanobu Nishizuka
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Katsuyuki Iwatsuki
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Tetsuro Onishi
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Shigeru Kurimoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Michiro Yamamoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Masahiro Tatebe
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
2
|
Kelly M, Shah S. Axonal Sprouting and Neuronal Connectivity following Central Nervous System Insult: Implications for Occupational Therapy. Br J Occup Ther 2016. [DOI: 10.1177/030802260206501006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Based on selected contemporary research, this paper presents a critical analysis of central nervous system (CNS) reorganisation following insult and the need for therapists better to understand the processes that constitute reorganisation and their possible contribution to the development of spasticity. In the treatment of the sequelae of CNS lesions, the synaptic reorganisation as a result of losses caused by injury - in the form of axonal sprouting - is illustrated, focusing on neuronal reconnectivity. Critical analysis of laboratory, electron microscopy and other animal and human studies is also conducted to integrate the controversies identified and to highlight the concepts that become relevant for occupational therapists, in order to optimise therapeutic intervention for maximising restitution in patients with CNS insult. The paper further discusses the capacity of the CNS to compensate and the need to utilise occupational therapy interventions, such as imagining, mental rehearsals, constraint-induced therapy, virtual reality, biofeedback and the traditional repetitive tasks, which leads to ensuring and facilitating the emergence of new synapses to perform motor tasks and manual skills and to prevent secondary changes. These external stimulations provided by the therapists are likely to stimulate both the damaged hemisphere cross-innervation and/or collateral sprouting. These scientifically based treatment strategies and neurological rehabilitation programmes would, in turn, contribute to improving the quality of life of people with CNS insult.
Collapse
|
3
|
Liu C, Pyne R, Kim J, Wright NT, Baek S, Chan C. The Impact of Prestretch Induced Surface Anisotropy on Axon Regeneration. Tissue Eng Part C Methods 2015; 22:102-112. [PMID: 26563431 DOI: 10.1089/ten.tec.2015.0328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nerve regeneration after spinal cord injury requires proper axon alignment to bridge the lesion site and myelination to achieve functional recovery. Significant effort has been invested in developing engineering approaches to induce axon alignment with less focus on myelination. Topological features, such as aligned fibers and channels, have been shown to induce axon alignment, but do not enhance axon thickness. We previously demonstrated that surface anisotropy generated through mechanical prestretch induced mesenchymal stem cells to align in the direction of prestretch. In this study, we demonstrate that static prestretch-induced anisotropy promotes dorsal root ganglion (DRG) neurons to extend thicker axon aggregates along the stretched direction and form aligned fascicular-like axon tracts. Moreover, Schwann cells, when cocultured with DRG neurons on the prestretched surface colocalized with the aligned axons and expressed P0 protein, are indicative of myelination of the aligned axons, thereby demonstrating that prestretch-induced surface anisotropy is beneficial in enhancing axon alignment, growth, and myelination.
Collapse
Affiliation(s)
- Chun Liu
- 1 Department of Chemical Engineering and Materials Science, Michigan State University , East Lansing, Michigan
| | - Ryan Pyne
- 1 Department of Chemical Engineering and Materials Science, Michigan State University , East Lansing, Michigan
| | - Jungsil Kim
- 2 Department of Mechanical Engineering & Materials Science, Washington University , Saint Louis, Missouri
| | - Neil Thomas Wright
- 3 Department of Mechanical Engineering, Michigan State University , East Lansing, Michigan
| | - Seungik Baek
- 3 Department of Mechanical Engineering, Michigan State University , East Lansing, Michigan
| | - Christina Chan
- 1 Department of Chemical Engineering and Materials Science, Michigan State University , East Lansing, Michigan.,4 Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan
| |
Collapse
|
4
|
Bauchet L, Lonjon N, Perrin FE, Gilbert C, Privat A, Fattal C. Strategies for spinal cord repair after injury: a review of the literature and information. Ann Phys Rehabil Med 2011; 52:330-51. [PMID: 19886026 DOI: 10.1016/j.annrmp.2008.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Thanks to the Internet, we can now have access to more information about spinal cord repair. Spinal cord injured (SCI) patients request more information and hospitals offer specific spinal cord repair medical consultations. OBJECTIVE Provide practical and relevant elements to physicians and other healthcare professionals involved in the care of SCI patients in order to provide adequate answers to their questions. METHOD Our literature review was based on English and French publications indexed in PubMed and the main Internet websites dedicated to spinal cord repair. RESULTS A wide array of research possibilities including notions of anatomy, physiology, biology, anatomopathology and spinal cord imaging is available for the global care of the SCI patient. Prevention and repair strategies (regeneration, transplant, stem cells, gene therapy, biomaterials, using sublesional uninjured spinal tissue, electrical stimulation, brain/computer interface, etc.) for the injured spinal cord are under development. It is necessary to detail the studies conducted and define the limits of these new strategies and benchmark them to the realistic medical and rehabilitation care available to these patients. CONCLUSION Research is quickly progressing and clinical trials will be developed in the near future. They will have to answer to strict methodological and ethical guidelines. They will first be designed for a small number of patients. The results will probably be fragmented and progress will be made through different successive steps.
Collapse
Affiliation(s)
- L Bauchet
- Centre mutualiste neurologique Propara, 34195 Montpellier, France.
| | | | | | | | | | | |
Collapse
|
5
|
Akeda K, Hirata H, Matsumoto M, Fukuda A, Tsujii M, Nagakura T, Ogawa S, Yoshida T, Uchida A. Regenerating Axons Emerge Far Proximal to the Coaptation Site in End-to-Side Nerve Coaptation without a Perineurial Window Using a T-Shaped Chamber. Plast Reconstr Surg 2006; 117:1194-203; discussion 1204-5. [PMID: 16582786 DOI: 10.1097/01.prs.0000201460.54187.d7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Considerable controversy exists concerning the mechanism of axonal regeneration in end-to-side neurorrhaphy. The authors studied the mode of axonal regeneration in end-to-side neurorrhaphy without a perineurial window using a rat sciatic nerve model. METHODS Twenty-seven rats were used. A 10-mm segment of peroneal nerve was harvested and coapted to the ipsilateral tibial nerve in end-to-side fashion using a T-shaped silicone chamber to minimize the tibial nerve damaged by surgery. To explain the role of nerve damage on axonal regeneration in end-to-side neurorrhaphy, we also used an isogenic nerve transplantation model in which the peroneal nerve remained intact. The mode of axonal regeneration was studied with electron microscopy, morphometric analysis, immunofluorescence, and immunohistochemistry. RESULTS Both morphometric analysis and immunolabeling of neurofilaments demonstrated that regenerating axons emerge at sites far proximal to the coaptation site, travel within the tibial nerve, traverse the perineurium circumferentially around the coaptation site, and then invade into the peroneal nerve. Electron microscopy and a double-labeled immunofluorescence study with antibodies against neurofilament and tenascin-C confirmed large-scale axonal penetration into the perineurium around the coaptation site. Immunofluorescence with antibody against NG2, a marker of axonal regeneration, prevented the possibility of collateral sprouting at the coaptation site. In addition, an end-to-side neurorrhaphy model with an isogenic peroneal nerve clearly demonstrated that nerve damage is a prerequisite for axonal regeneration through end-to-side neurorrhaphy. CONCLUSIONS The authors could not locate the site of axonal sprouting in end-to-side neurorrhaphy without a perineurial window; however, this study cast doubts on current hypothesis on the mode of axonal regeneration in end-to-side neurorrhaphy.
Collapse
Affiliation(s)
- Koji Akeda
- Department of Orthopedic Surgery, Mie University Faculty of Medicine, Tsu City, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Pfister BJ, Iwata A, Taylor AG, Wolf JA, Meaney DF, Smith DH. Development of transplantable nervous tissue constructs comprised of stretch-grown axons. J Neurosci Methods 2005; 153:95-103. [PMID: 16337007 DOI: 10.1016/j.jneumeth.2005.10.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 09/21/2005] [Accepted: 10/13/2005] [Indexed: 11/20/2022]
Abstract
Pursuing a new approach to nervous system repair, fasciculated axon tracts grown in vitro were developed into nervous tissue constructs designed to span peripheral nerve or spinal cord lesions. We optimized the newfound process of extreme axon stretch growth to maximize the number and length of axon tracts, reach an unprecedented axon growth-rate of 1cm/day, and create 5cm long axon tracts in 8 days to serve as the core component of a living nervous tissue construct. Immunocytochemical analysis confirmed that elongating fibers were axons, and that all major cytoskeletal constituents were present across the stretch-growth regions. We formed a transplantable nervous tissue construct by encasing the elongated cells in an 80% collagen hydrogel, removing them from culture, and inserting them into a synthetic conduit. Alternatively, we induced axon stretch growth directly on a surgical membrane that could be removed from the elongation device, and formed into a cylindrical construct suitable for transplant. The ability to rapidly create living nervous tissue constructs that recapitulates the uniaxial orientations of the original nerve offers an unexplored and potentially complimentary direction in nerve repair. Ideally, bridging nerve damage with living axon tracts may serve to establish or promote new functional connections.
Collapse
Affiliation(s)
- Bryan J Pfister
- Department of Neurosurgery, Center for Brain Injury Repair, University of Pennsylvania, 3320 Smith Walk, 105 Hayden Hall, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Leis AA, Lancon JA, Stokic DS. Retrograde regeneration following neurotmesis of the ulnar nerve. Muscle Nerve 2003; 28:512-4. [PMID: 14506726 DOI: 10.1002/mus.10444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A 41-year-old woman experienced a gunshot wound to the forearm with neurotmesis of the ulnar nerve. Surgery 9 months later revealed a neuroma-in-continuity in the midforearm. Intraoperative nerve stimulation failed to elicit direct nerve responses or motor responses from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles. However, neurotonic discharges in response to mechanical irritation of the neuroma were recorded in the FDI, but not the ADM. Surprisingly, after resecting the ulnar nerve distal to the neuroma, neurotonic discharges were still elicited in the FDI following perturbation of the neuroma. Moreover, neurotonic discharges were elicited during ulnar nerve resection 2 cm proximal to the neuroma. No anastomoses or anomalous branches were noted. The findings suggest that regenerating fibers did not reach the FDI through the distal nerve segment. Rather, we speculate that nerve fibers regenerating at random, or impeded by scar tissue, contacted the proximal nerve portion, at which point growth became polarized in a retrograde direction. Retrograde regeneration may have proceeded to a branch point in the forearm (possibly an undetected anomalous branch or fibrous adhesion), where growth of regenerating fibers extended outward into surrounding damaged tissue planes before redirecting distally to reach the FDI.
Collapse
Affiliation(s)
- A Arturo Leis
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, 1350 East Woodrow Wilson Drive, Suite 2, Jackson, Mississippi 39216, USA.
| | | | | |
Collapse
|