1
|
Chen C, Wen M, Jin Y. 1DE-MS Profiling for Proteoform-Correlated Proteomic Analysis, by Combining SDS-PAGE, Whole-Gel Slicing, Quantitative LC-MS/MS, and Reconstruction of Gel Distributions of Several Thousands of Proteins. J Proteome Res 2022; 21:2311-2330. [PMID: 36018058 DOI: 10.1021/acs.jproteome.2c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SDS-PAGE has often been used in proteomic analysis, but generally for sample prefractionation although the technique separates proteins by molecular masses (Mws) and the information would contribute to proteoform-level analysis. Here, we report a method that combines SDS-PAGE, whole-gel slicing, and quantitative LC-MS/MS for establishing gel distributions of several thousand proteins in a proteome. A previously obtained data set on rat cerebral cortex with cerebral ischemia-reperfusion injury1 was analyzed, and the gel distributions of 5906 proteins were reconstructed. These distributions, referred to as 1DE-MS profiles, revealed that about 30% of the proteins had more than one proteoform detected in the gels. The profiles were categorized into six types by distribution (narrow, dispersed, or broad) and relative deviations between the abundance-peak apparent Mws and calculated Mws. Only 56% of the proteins showed narrow distributions and matched Mws, while the others had rather complex profiles. Bioinformatic analysis on example profiles showed the resolved proteoforms involved alternative splicing, proteolytic processing, glycosylation and ubiquitination, fragmentation, and probably transmembrane structures. Profile-based differential analysis revealed that many of the disease-caused changes were proteoform dependent. This work provided a proteome-scale view of protein distributions in SDS-PAGE gels, and the method would be useful to obtain proteoform-correlated information for in-depth proteomics.
Collapse
Affiliation(s)
- Changming Chen
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Meiling Wen
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ya Jin
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
2
|
Dehqanizadeh B, Mohammadi ZF, Kalani AHT, Mirghani SJ. Effect of Early Exercise on Inflammatory Parameters and Apoptosis in CA1 Area of the Hippocampus Following Cerebral Ischemia-reperfusion in Rats. Brain Res Bull 2022; 182:102-110. [DOI: 10.1016/j.brainresbull.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/28/2022]
|
3
|
Heat shock protein signaling in brain ischemia and injury. Neurosci Lett 2019; 715:134642. [PMID: 31759081 DOI: 10.1016/j.neulet.2019.134642] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/28/2022]
Abstract
Heat shock proteins (HSPs) are chaperones that catalyze the refolding of denatured proteins. In addition to their ability to prevent protein denaturation and aggregation, the HSPs have also been shown to modulate many signaling pathways. Among HSPs, the inducible 70 kDa HSP (HSP70) has especially been shown to improve neurological outcome in experimental models of brain ischemia and injury. HSP70 can modulate various aspects of the programmed cell death pathways and inflammation. This review will focus on potential mechanisms of the neuroprotective effects of HSP70 in stroke and brain trauma models. We also comment on potential ways in which HSP70 could be translated into clinical therapies.
Collapse
|
4
|
Hsieh MH, Tsai HW, Lin KJ, Wu ZY, Hu HY, Chang Y, Wei HJ, Sung HW. An in situ slow-releasing H2S donor depot with long-term therapeutic effects for treating ischemic diseases. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109954. [DOI: 10.1016/j.msec.2019.109954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/11/2019] [Accepted: 07/05/2019] [Indexed: 01/06/2023]
|
5
|
Attia H, Fadda L, Al-Rasheed N, Al-Rasheed N, Maysarah N. Carnosine and L-arginine attenuate the downregulation of brain monoamines and gamma aminobutyric acid; reverse apoptosis and upregulate the expression of angiogenic factors in a model of hemic hypoxia in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:381-394. [PMID: 31641819 DOI: 10.1007/s00210-019-01738-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of the present study was to investigate the preventive effect of L-arginine (ARG) and carnosine (CAR) on hypoxia-induced neurotoxicity in rats. The impact on neuro-inflammation, apoptosis, angiogenesis, and the brain levels of monoamines and GABA were investigated. METHODS Rats were divided into the following: normal control, hypoxia model induced by sodium nitrite (75 mg/kg s.c), and hypoxic rats pre-treated with CAR (250 mg/kg), ARG (200 mg/kg), and their combination. RESULTS Data revealed that hypoxia induced significant elevation of hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and its receptor reflecting the stimulation of angiogenesis. Hypoxia also resulted in increased inflammatory mediators-including nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). In addition, hypoxia initiates cerebral apoptosis as revealed by increased caspase-3 and BAX with reduced Bcl-2. These changes were associated with reduced brain levels of GABA and monoamines including noradrenaline (NADR), dopamine (DOP), and serotonin (SER). Pre-treatment with ARG and/or CAR significantly mitigated the neural changes induced by hypoxia and attenuated the elevated levels of NF-κB, TNF-α, IL-6, caspase-3, and BAX, while ameliorated the reduced levels of Bcl-2, NADR, DOP, SER, and GABA, with the best improvement observed with the combination. Further elevation of the angiogenic markers was observed indicating their role in boosting oxygen delivery to brain. CONCLUSION CAR, ARG, and, importantly, their combination could effectively protect against hypoxia-induced neurotoxicity, via their angiogenic, anti-inflammatory, and anti-apoptotic properties in addition to reversing the effect on GABA and monoamines.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia. .,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Laila Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia
| | - Nouf Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia
| | - Nawal Al-Rasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box: 2454, Riyadh, 11451, Saudi Arabia
| | - Nadia Maysarah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
6
|
Gessi S, Merighi S, Bencivenni S, Battistello E, Vincenzi F, Setti S, Cadossi M, Borea PA, Cadossi R, Varani K. Pulsed electromagnetic field and relief of hypoxia-induced neuronal cell death: The signaling pathway. J Cell Physiol 2019; 234:15089-15097. [PMID: 30656694 DOI: 10.1002/jcp.28149] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
Low-energy low-frequency pulsed electromagnetic fields (PEMFs) exert several protective effects, such as the regulation of kinases, transcription factors as well as cell viability in both central and peripheral biological systems. However, it is not clear on which bases they affect neuroprotection and the mechanism responsible is yet unknown. In this study, we have characterized in nerve growth factor-differentiated pheochromocytoma PC12 cells injured with hypoxia: (i) the effects of PEMF exposure on cell vitality; (ii) the protective pathways activated by PEMFs to relief neuronal cell death, including adenylyl cyclase, phospholipase C, protein kinase C epsilon and delta, p38, ERK1/2, JNK1/2 mitogen-activated protein kinases, Akt and caspase-3; (iii) the regulation by PEMFs of prosurvival heat-shock proteins of 70 (HSP70), cAMP response element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), and Bcl-2 family proteins. The results obtained in this study show a protective effect of PEMFs that are able to reduce neuronal cell death induced by hypoxia by modulating p38, HSP70, CREB, BDNF, and Bcl-2 family proteins. Specifically, we found a rapid activation (30 min) of p38 kinase cascade, which in turns enrolles HSP70 survival chaperone molecule, resulting in a significant CREB phosphorylation increase (24 hr). In this cascade, later (48 hr), BDNF and the antiapoptotic pathway regulated by the Bcl-2 family of proteins are recruited by PEMFs to enhance neuronal survival. This study paves the way to elucidate the mechanisms triggered by PEMFs to act as a new neuroprotective approach to treat cerebral ischemia by reducing neuronal cell death.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Serena Bencivenni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Katia Varani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,University Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Wen M, Jin Y, Zhang H, Sun X, Kuai Y, Tan W. Proteomic Analysis of Rat Cerebral Cortex in the Subacute to Long-Term Phases of Focal Cerebral Ischemia-Reperfusion Injury. J Proteome Res 2019; 18:3099-3118. [PMID: 31265301 DOI: 10.1021/acs.jproteome.9b00220] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Stroke is a leading cause of mortality and disability, and ischemic stroke accounts for more than 80% of the disease occurrence. Timely reperfusion is essential in the treatment of ischemic stroke, but it is known to cause ischemia-reperfusion (I/R) injury and the relevant studies have mostly focused on the acute phase. Here we reported on a global proteomic analysis to investigate the development of cerebral I/R injury in the subacute and long-term phases. A rat model was used, with 2 h-middle cerebral artery occlusion (MCAO) followed with 1, 7, and 14 days of reperfusion. The proteins of cerebral cortex were analyzed by SDS-PAGE, whole-gel slicing, and quantitative LC-MS/MS. Totally 5621 proteins were identified, among which 568, 755, and 492 proteins were detected to have significant dys-regulation in the model groups with 1, 7, and 14 days of reperfusion, respectively, when compared with the corresponding sham groups (n = 4, fold change ≥1.5 or ≤0.67 and p ≤ 0.05). Bioinformatic analysis on the functions and reperfusion time-dependent dys-regulation profiles of the proteins exhibited changes of structures and biological processes in cytoskeleton, synaptic plasticity, energy metabolism, inflammation, and lysosome from subacute to long-term phases of cerebral I/R injury. Disruption of cytoskeleton and synaptic structures, impairment of energy metabolism processes, and acute inflammation responses were the most significant features in the subacute phase. With the elongation of reperfusion time to the long-term phase, a tendency of recovery was detected on cytoskeleton, while inflammation pathways different from the subacute phase were activated. Also, lysosomal structures and functions might be restored. This is the first work reporting the proteome changes that occurred at different time points from the subacute to long-term phases of cerebral I/R injury and we expect it would provide useful information to improve the understanding of the mechanisms involved in the development of cerebral I/R injury and suggest candidates for treatment.
Collapse
Affiliation(s)
- Meiling Wen
- School of Biology and Biological Engineering , South China University of Technology , Guangzhou 510006 , P. R. China
| | - Ya Jin
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Yihe Kuai
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| |
Collapse
|
8
|
Chan JYH, Chan SHH. Differential impacts of brain stem oxidative stress and nitrosative stress on sympathetic vasomotor tone. Pharmacol Ther 2019; 201:120-136. [PMID: 31153955 DOI: 10.1016/j.pharmthera.2019.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Based on work-done in the rostral ventrolateral medulla (RVLM), this review presents four lessons learnt from studying the differential impacts of oxidative stress and nitrosative stress on sympathetic vasomotor tone and their clinical and therapeutic implications. The first lesson is that an increase in sympathetic vasomotor tone because of augmented oxidative stress in the RVLM is responsible for the generation of neurogenic hypertension. On the other hand, a shift from oxidative stress to nitrosative stress in the RVLM underpins the succession of increase to decrease in sympathetic vasomotor tone during the progression towards brain stem death. The second lesson is that, by having different cellular sources, regulatory mechanisms on synthesis and degradation, kinetics of chemical reactions, and downstream signaling pathways, reactive oxygen species and reactive nitrogen species should not be regarded as a singular moiety. The third lesson is that well-defined differential roles of oxidative stress and nitrosative stress with distinct regulatory mechanisms in the RVLM during neurogenic hypertension and brain stem death clearly denote that they are not interchangeable phenomena with unified cellular actions. Special attention must be paid to their beneficial or detrimental roles under a specific disease or a particular time-window of that disease. The fourth lesson is that, to be successful, future antioxidant therapies against neurogenic hypertension must take into consideration the much more complicated picture than that presented in this review on the generation, maintenance, regulation or modulation of the sympathetic vasomotor tone. The identification that the progression towards brain stem death entails a shift from oxidative stress to nitrosative stress in the RVLM may open a new vista for therapeutic intervention to slow down this transition.
Collapse
Affiliation(s)
- Julie Y H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
9
|
Terashi T, Otsuka S, Takada S, Nakanishi K, Ueda K, Sumizono M, Kikuchi K, Sakakima H. Neuroprotective effects of different frequency preconditioning exercise on neuronal apoptosis after focal brain ischemia in rats. Neurol Res 2019; 41:510-518. [PMID: 30822224 DOI: 10.1080/01616412.2019.1580458] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Preconditioning exercise can exert neuroprotective effects after stroke; however, the effects of exercise intensity, frequency, duration are unknown. We investigated the neuroprotective effect of different frequency preconditioning exercise on neuronal apoptosis after cerebral ischemia in rats. METHODS Rats were divided into the following five groups: 5 times a week of exercise (5/w-Ex) group, 3 times a week of exercise (3/w-Ex) group, once a week of exercise (1/w-Ex) group, no exercise (No-Ex) group, and intact control (control) group. Rats were made to run on a treadmill for 30 min per day at a speed of 25 m/min for 3 weeks. After the running program, the rats were subjected to 60-min left middle cerebral artery occlusion. Two days after ischemia, the cerebral infarct volume, neurological and motor function, Bcl-2-associated X protein (Bax)/B-cell lymphoma 2 (Bcl-2) ratio, expression of caspase-3, and TUNEL positive cells were examined in the cerebral cortex surrounding the ischemic zone. RESULTS The 3/w-Ex and 5/w-Ex groups showed significantly reduced infarct volumes compared with the No-Ex group, but the 1/w-Ex group did not. In addition, the 3/w-Ex and 5/w-Ex groups had improved neurological scores and sensorimotor function compared with the No-Ex group. The Bax/Bcl-2 ratio, expression of caspase-3, and TUNEL-positive cells significantly decreased in the penumbra area in the 3/w-Ex or 5/w-Ex groups compared with the No-Ex group. DISCUSSION Our findings suggested that three times or more per week of high-intensity preconditioning exercise exert neuroprotective effects through the downregulation of the Bax/Bcl-2 ratio and caspase-3 activation after stroke. ABBREVIATIONS TUNEL: terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick and labeling; MCAO:middle cerebral artery occlusion; BAX:Bcl-2-associated X protein; Bcl-2: B-cell lymphoma 2; TTC: 2,3,5-triphenyltetrazorlium chloride.
Collapse
Affiliation(s)
- Takuto Terashi
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| | - Shotaro Otsuka
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| | - Seiya Takada
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| | - Kazuki Nakanishi
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| | - Koki Ueda
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| | - Megumi Sumizono
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| | - Kiyoshi Kikuchi
- b Division of Brain Science, Department of Physiology , Kurume University School of Medicine , Kurume , Japan
| | - Harutoshi Sakakima
- a Course of Physical Therapy, School of Health Sciences, Faculty of Medicine , Kagoshima University , Kagoshima , Japan
| |
Collapse
|
10
|
Porto RR, de Oliveira Alvares L. Role of HSP70 in Plasticity and Memory. HEAT SHOCK PROTEINS IN NEUROSCIENCE 2019. [DOI: 10.1007/978-3-030-24285-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Porto RR, Dutra FD, Crestani AP, Holsinger RMD, Quillfeldt JA, Homem de Bittencourt PI, de Oliveira Alvares L. HSP70 Facilitates Memory Consolidation of Fear Conditioning through MAPK Pathway in the Hippocampus. Neuroscience 2018; 375:108-118. [PMID: 29374537 DOI: 10.1016/j.neuroscience.2018.01.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
Abstract
Heat shock proteins of the 70-kDa (HSP70) family are cytoprotective molecular chaperones that are present in neuronal cells and can be induced by a variety of homeostatically stressful situations (not only proteostatic insults), but also by synaptic activity, including learning tasks. Physiological stimuli that induce long-term memory formation are also capable of stimulating the synthesis of HSP70 through the activation of heat shock transcription factor-1 (HSF1). In this study, we investigated the influence of HSP70 on fear memory consolidation and MAPK activity. Male rats were trained in contextual fear conditioning task and HSP70 content was analyzed by western blot in the hippocampus at different time points. We observed rapid and transient elevations in HSP70 60 min following training. Double immunofluorescence with GFAP and HSP72 revealed that astrocytes were not the site for HSP72 induction by CFC training. HSP72 distribution markedly surrounded synapses between Shaffer collateral and CA1 pyramidal cells. Infusion of recombinant HSP70 (hspa1a) into the dorsal hippocampus immediately after training facilitated memory consolidation and enhanced ERK activity while decreasing the activated forms of JNK and p38 in the hippocampus. Blocking endogenous extracellular HSP70 through the administration of specific antibody did not produce any further effect on memory consolidation when applied immediately after training, suggesting that it is indeed acting intracellularly. Induction of HSP70 after fear conditioning is fast and can act as a signaling molecule, modulating MAPK downstream signaling during memory consolidation in the hippocampus, which is crucial for fear memory formation.
Collapse
Affiliation(s)
- Rossana R Porto
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Laboratory of Cellular Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil; Laboratory of Molecular Neuroscience and Dementia, Brain & Mind Centre, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Fabrício D Dutra
- Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - Ana Paula Crestani
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - R M Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, Brain & Mind Centre, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Jorge A Quillfeldt
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil.
| |
Collapse
|
12
|
Das A, Arifuzzaman S, Yoon T, Kim SH, Chai JC, Lee YS, Jung KH, Chai YG. RNA sequencing reveals resistance of TLR4 ligand-activated microglial cells to inflammation mediated by the selective jumonji H3K27 demethylase inhibitor. Sci Rep 2017; 7:6554. [PMID: 28747667 PMCID: PMC5529413 DOI: 10.1038/s41598-017-06914-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Persistent microglial activation is associated with the production and secretion of various pro-inflammatory genes, cytokines and chemokines, which may initiate or amplify neurodegenerative diseases. A novel synthetic histone 3 lysine 27 (H3K27) demethylase JMJD3 inhibitor, GSK-J4, was proven to exert immunosuppressive activities in macrophages. However, a genome-wide search for GSK-J4 molecular targets has not been undertaken in microglia. To study the immuno-modulatory effects of GSK-J4 at the transcriptomic level, triplicate RNA sequencing and quantitative real-time PCR analyses were performed with resting, GSK-J4-, LPS- and LPS + GSK-J4-challenged primary microglial (PM) and BV-2 microglial cells. Among the annotated genes, the transcriptional sequencing of microglia that were treated with GSK-J4 revealed a selective effect on LPS-induced gene expression, in which the induction of cytokines/chemokines, interferon-stimulated genes, and prominent transcription factors TFs, as well as previously unidentified genes that are important in inflammation was suppressed. Furthermore, we showed that GSK-J4 controls are important inflammatory gene targets by modulating STAT1, IRF7, and H3K27me3 levels at their promoter sites. These unprecedented results demonstrate that the histone demethylase inhibitor GSK-J4 could have therapeutic applications for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Amitabh Das
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sarder Arifuzzaman
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea
| | - Taeho Yoon
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sun Hwa Kim
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jin Choul Chai
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Young Seek Lee
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Institute of Natural Science & Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 04673, Republic of Korea. .,Department of Molecular & Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
13
|
Lee BS, Jung E, Lee Y, Chung SH. Hypothermia decreased the expression of heat shock proteins in neonatal rat model of hypoxic ischemic encephalopathy. Cell Stress Chaperones 2017; 22:409-415. [PMID: 28285429 PMCID: PMC5425372 DOI: 10.1007/s12192-017-0782-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Hypothermia (HT) is a well-established neuroprotective strategy against neonatal hypoxic ischemic encephalopathy (HIE). The overexpression of heat shock proteins (HSP) has been shown to provide neuroprotection in animal models of stroke. We aimed to investigate the effect of HT on HSP70 and HSP27 expression in a neonatal rat model of HIE. Seven-day-old rat pups were exposed to hypoxia for 90 min to establish the Rice-Vannucci model and were assigned to the following four groups: hypoxic injury (HI)-normothermia (NT, 36 °C), HI-HT (30 °C), sham-NT, and sham-HT. After temperature intervention for 24 h, the mRNA and protein expression of HSP70 and HSP27 were measured. The association between HSP expression and brain injury severity was also evaluated. The brain infarct size was significantly smaller in the HI-HT group than in the HI-NT group. The mRNA and protein expression of both HSPs were significantly greater in the two HI groups, compared to those in the two sham groups. Moreover, among the rat pups subjected to HI, HT significantly reduced the mRNA and protein expression of both HSPs. The mRNA expression level of the HSPs was proportional to the brain injury severity. Post-ischemic HT, i.e., a cold shock attenuated the expression of HSP70 and HSP27 in a neonatal rat model of HIE. Our study suggests that neither HSP70 nor HSP27 expression is involved in the neuroprotective mechanism through which prolonged HT protects against neonatal HIE.
Collapse
Affiliation(s)
- Byong Sop Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 138-736, South Korea.
| | - Euiseok Jung
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 138-736, South Korea
| | - Yeonjoo Lee
- Medical School, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung-Hoon Chung
- Department of Pediatrics, Kyung Hee University School of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Lin KC, Lin HJ, Chang CP, Lin MT. Decreasing or increasing heat shock protein 72 exacerbates or attenuates heat-induced cell death, respectively, in rat hypothalamic cells. FEBS Open Bio 2015; 5:724-30. [PMID: 26448905 PMCID: PMC4571539 DOI: 10.1016/j.fob.2015.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 11/09/2022] Open
Abstract
Mild heat preconditioning up-regulated HSP72 expression in cultured hypothalamic cells. siRNA-HSP72 pretreatment down-regulated HSP72 expression. Mild heat preconditioning attenuated heat-induced cell loss. siRNA-HSP72 pre-treatment exacerbated heat-induced cell loss. A positive correlation between HSP72 expression and heat tolerance might exist in hypothalamic cells.
Heat shock protein (HSP) 72 in serum was decreased to a greater degree in patients with serious heat stroke than in those with mild heat stroke. Thus, increased levels of HSP72 appeared to correlate with a better outcome for the patient. Nevertheless, the function of HSP72 in the heat-induced hypothalamic cell death has not been assessed. In this study, we found that increasing HSP72 levels with mild heat preconditioning or decreasing HSP72 levels with pSUPER plasmid expressing HSP72 small interfering RNA significantly attenuated or exacerbated heat-induced cell death in cultured primary hypothalamic cells, respectively. Our findings suggest that HSP72 plays a pivotal role in heat-induced cell death and may be associated with heat tolerance.
Collapse
Affiliation(s)
- Kao-Chang Lin
- Department of Neurology, Chi Mei Medical Center, Tainan 710, Taiwan ; Department of Biotechnology, Tainan 710, Taiwan
| | - Hung-Jung Lin
- Department of Biotechnology, Tainan 710, Taiwan ; Department of Emergency Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ching-Ping Chang
- Department of Biotechnology, Tainan 710, Taiwan ; Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Mao-Tsun Lin
- Department of Biotechnology, Tainan 710, Taiwan ; Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| |
Collapse
|
15
|
Qi J, Han X, Liu HT, Chen T, Zhang JL, Yang P, Bo SH, Lu XT, Zhang J. 17-Dimethylaminoethylamino-17-demethoxygeldanamycin attenuates inflammatory responses in experimental stroke. Biol Pharm Bull 2015; 37:1713-8. [PMID: 25366476 DOI: 10.1248/bpb.b14-00208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock protein 90 (HSP90) is a ubiquitous molecular chaperone involved in the proper conformation of many proteins. HSP90 inhibitors (17-dimethyl aminoethylamino-17-demethoxygeldanamycin hydrochloride [17-DMAG]) bind to and inactivate HSP90, suppressing some key signaling pathways involved in the inflammatory process. Since considerable evidence suggests that inflammation accounts for the progression of cerebral ischemic injury, we investigated whether 17-DMAG can modulate inflammatory responses in middle cerebral artery occluded (MCAO) mice. Male C57/BL6 mice were pretreated with 17-DMAG or vehicle for 7 d before being subjected to transient occlusion of middle cerebral artery and reperfusion. Mice were evaluated at 24 h after MCAO for neurological deficit scoring. Moreover, the mechanism of the anti-inflammatory effect of 17-DMAG was investigated with a focus on nuclear factor kappa B (NF-κB) pathway. 17-DMAG significantly reduced cerebral infarction and improved neurological outcome. 17-DMAG suppressed activation of microglia and decreased phosphorylation of inhibitory (I)κB and subsequent nuclear translocation of p65, which eventually downregulated expression of NF-κB-regulated genes. These results suggest that 17-DMAG has a promising therapeutic effect in ischemic stroke treatment through an anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Jia Qi
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci 2015; 35:3384-96. [PMID: 25716838 DOI: 10.1523/jneurosci.2620-14.2015] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clearing cellular debris after brain injury represents an important mechanism in regaining tissue homeostasis and promoting functional recovery. Triggering receptor expressed on myeloid cells-2 (TREM2) is a newly identified receptor expressed on microglia and is thought to phagocytose damaged brain cells. The precise role of TREM2 during ischemic stroke has not been fully understood. We explore TREM2 in both in vitro and in vivo stroke models and identify a potential endogenous TREM2 ligand. TREM2 knockdown in microglia reduced microglial activation to an amoeboid phenotype and decreased the phagocytosis of injured neurons. Phagocytosis and infarcted brain tissue resorption was reduced in TREM2 knock-out (KO) mice compared with wild-type (WT) mice. TREM2 KO mice also had worsened neurological recovery and decreased viable brain tissue in the ipsilateral hemisphere. The numbers of activated microglia and phagocytes in TREM2 KO mice were decreased compared with WT mice, and foamy macrophages were nearly absent in the TREM2 KO mice. Postischemia, TREM2 was highly expressed on microglia and TREM2-Fc fusion protein (used as a probe to identify potential TREM2 binding partners) bound to an unknown TREM2 ligand that colocalized to neurons. Oxygen glucose deprivation-exposed neuronal media, or cellular fractions containing nuclei or purified DNA, but not cytosolic fractions, stimulated signaling through TREM2. TREM2-Fc fusion protein pulled down nucleic acids from ischemic brain lysate. These findings establish the relevance of TREM2 in the phagocytosis of the infarcted brain and emphasize its role in influencing neurological outcomes following stroke. Further, nucleic acids may be one potential ligand of TREM2 in brain ischemia.
Collapse
|
17
|
Kim JY, Yenari MA, Lee JE. Regulation of inflammatory transcription factors by heat shock protein 70 in primary cultured astrocytes exposed to oxygen-glucose deprivation. Neuroscience 2014; 286:272-80. [PMID: 25485480 DOI: 10.1016/j.neuroscience.2014.11.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/13/2014] [Accepted: 11/26/2014] [Indexed: 01/28/2023]
Abstract
Inflammation is an important event in ischemic injury. These immune responses begin with the expression of pro-inflammatory genes modulating transcription factors, such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and signal transducers and activator of transcription-1 (STAT-1). The 70-kDa heat shock protein (Hsp70) can both induce and arrest inflammatory reactions and lead to improved neurological outcome in experimental brain injury and ischemia. Since Hsp70 are induced under heat stress, we investigated the link between Hsp70 neuroprotection and phosphorylation of inhibitor of κB (IκB), c-Jun N-terminal kinases (JNK) and p38 through co-immunoprecipitation and enzyme-linked immunosorbent assay (ELISA) assay. Transcription factors and pro-inflammatory genes were quantified by immunoblotting, electrophoretic-mobility shift assay and reverse transcription-polymerase chain reaction assays. The results showed that heat stress led to Hsp70 overexpression which rendered neuroprotection after ischemia-like injury. Overexpression Hsp70 also interrupts the phosphorylation of IκB, JNK and p38 and blunts DNA binding of their transcription factors (NF-κB, AP-1 and STAT-1), effectively downregulating the expression of pro-inflammatory genes in heat-pretreated astrocytes. Taken together, these results suggest that overexpression of Hsp70 may protect against brain ischemia via an anti-inflammatory mechanism by interrupting the phosphorylation of upstream of transcription factors.
Collapse
Affiliation(s)
- J Y Kim
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - M A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - J E Lee
- Department of Anatomy, BK21 Plus Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|
18
|
Exercise preconditioning protects against spinal cord injury in rats by upregulating neuronal and astroglial heat shock protein 72. Int J Mol Sci 2014; 15:19018-36. [PMID: 25334068 PMCID: PMC4227258 DOI: 10.3390/ijms151019018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 01/02/2023] Open
Abstract
The heat shock protein 72 (HSP 72) is a universal marker of stress protein whose expression can be induced by physical exercise. Here we report that, in a localized model of spinal cord injury (SCI), exercised rats (given pre-SCI exercise) had significantly higher levels of neuronal and astroglial HSP 72, a lower functional deficit, fewer spinal cord contusions, and fewer apoptotic cells than did non-exercised rats. pSUPER plasmid expressing HSP 72 small interfering RNA (SiRNA-HSP 72) was injected into the injured spinal cords. In addition to reducing neuronal and astroglial HSP 72, the (SiRNA-HSP 72) significantly attenuated the beneficial effects of exercise preconditioning in reducing functional deficits as well as spinal cord contusion and apoptosis. Because exercise preconditioning induces increased neuronal and astroglial levels of HSP 72 in the gray matter of normal spinal cord tissue, exercise preconditioning promoted functional recovery in rats after SCI by upregulating neuronal and astroglial HSP 72 in the gray matter of the injured spinal cord. We reveal an important function of neuronal and astroglial HSP 72 in protecting neuronal and astroglial apoptosis in the injured spinal cord. We conclude that HSP 72-mediated exercise preconditioning is a promising strategy for facilitating functional recovery from SCI.
Collapse
|
19
|
Valbonesi P, Franzellitti S, Bersani F, Contin A, Fabbri E. Effects of the exposure to intermittent 1.8 GHz radio frequency electromagnetic fields on HSP70 expression and MAPK signaling pathways in PC12 cells. Int J Radiat Biol 2014; 90:382-91. [PMID: 24512569 DOI: 10.3109/09553002.2014.892225] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE We previously reported effects on heat shock protein 70 (HSP70) mRNA expression, a cytoprotective protein induced under stressful condition, in human trophoblast cells exposed to amplitude-modulated Global System for Mobile Communication (GSM) signals. In the present work the same experimental conditions were applied to the rat PC12 cells, in order to assess the stress responses mediated by HSP70 and by the Mitogen Activated Protein Kinases (MAPK) in neuronal-like cells, an interesting model to study possible effects of mobile phone frequencies exposure. MATERIALS AND METHODS HSP70 gene expression level was evaluated by reverse transcriptase polymerase chain reaction, HSP70 protein expression and MAPK phosphorylation were assessed by Western blotting. PC12 cells were exposed for 4, 16 or 24 h to 1.8 GHz continuous wave signal (CW, carrier frequency without modulation) or to two different GSM modulation schemes, GSM-217Hz and GSM-Talk (which generates temporal changes between two different GSM signals, active during talking or listening phases, respectively, thus simulating a typical conversation). Specific adsorption rate (SAR) was 2 W/kg. RESULTS After PC12 cells exposure to the GSM-217Hz signal for 16 or 24 h, HSP70 transcription significantly increased, whereas no effect was observed in cells exposed to the CW or GSM-Talk signals. HSP70 protein expression and three different MAPK signaling pathways were not affected by the exposure to any of the three different 1.8 GHz signals. CONCLUSION The positive effect on HSP70 mRNA expression, observed only in cells exposed to the GSM-217Hz signal, is a repeatable response previously reported in human trophoblast cells and now confirmed in PC12 cells. Further investigations towards a possible role of 1.8 GHz signal modulation are therefore advisable.
Collapse
Affiliation(s)
- Paola Valbonesi
- Interdepartmental Centre for Environmental Science Research, University of Bologna , Ravenna
| | | | | | | | | |
Collapse
|
20
|
Gómez-Choco M, Doucerain C, Urra X, Planas AM, Chamorro A. Presence of heat shock protein 70 in secondary lymphoid tissue correlates with stroke prognosis. J Neuroimmunol 2014; 270:67-74. [PMID: 24656941 DOI: 10.1016/j.jneuroim.2014.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/23/2013] [Accepted: 03/03/2014] [Indexed: 01/19/2023]
Abstract
Heat shock protein 70 (Hsp-70) can act as a danger signal and activate immune responses. We studied the presence of Hsp-70 in lymphoid tissue and plasma of acute stroke patients and asymptomatic controls free of neurological disease. Immunofluorescence, Western blotting, qRT-PCR and flow cytometry studies were performed. Plasma Hsp-70 concentration at day 7 was similar in patients and controls, whereas patients disclosed stronger immunoreactivity to Hsp-70 in lymphoid tissue than controls. Most Hsp-70+ cells were antigen presenting cells located in T cell zones. Stronger immunoreactivity to Hsp-70 was associated with smaller infarctions and better functional outcome.
Collapse
Affiliation(s)
- Manuel Gómez-Choco
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain
| | - Cedric Doucerain
- Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Xabier Urra
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Angel Chamorro
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; School of Medicine, University of Barcelona, Spain.
| |
Collapse
|
21
|
Van Elzen R, Moens L, Dewilde S. Expression profiling of the cerebral ischemic and hypoxic response. Expert Rev Proteomics 2014; 5:263-82. [DOI: 10.1586/14789450.5.2.263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Microglial P2Y12 deficiency/inhibition protects against brain ischemia. PLoS One 2013; 8:e70927. [PMID: 23940669 PMCID: PMC3733797 DOI: 10.1371/journal.pone.0070927] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/24/2013] [Indexed: 12/11/2022] Open
Abstract
Objective Microglia are among the first immune cells to respond to ischemic insults. Triggering of this inflammatory response may involve the microglial purinergic GPCR, P2Y12, activation via extracellular release of nucleotides from injured cells. It is also the inhibitory target of the widely used antiplatelet drug, clopidogrel. Thus, inhibiting this GPCR in microglia should inhibit microglial mediated neurotoxicity following ischemic brain injury. Methods Experimental cerebral ischemia was induced, in vitro with oxygen-glucose deprivation (OGD), or in vivo via bilateral common carotid artery occlusion (BCCAO). Genetic knock-down in vitro via siRNA, or in vivo P2Y12 transgenic mice (P2Y12−/− or P2Y12+/−), or in vivo treatment with clopidogrel, were used to manipulate the receptor. Neuron death, microglial activation, and microglial migration were assessed. Results The addition of microglia to neuron-astrocyte cultures increases neurotoxicity following OGD, which is mitigated by microglial P2Y12 deficiency (P<0.05). Wildtype microglia form clusters around these neurons following injury, which is also prevented in P2Y12 deficient microglia (P<0.01). P2Y12 knock-out microglia migrated less than WT controls in response to OGD-conditioned neuronal supernatant. P2Y12 (+/−) or clopidogrel treated mice subjected to global cerebral ischemia suffered less neuronal injury (P<0.01, P<0.001) compared to wild-type littermates or placebo treated controls. There were also fewer microglia surrounding areas of injury, and less activation of the pro-inflammatory transcription factor, nuclear factor Kappa B (NFkB). Interpretation P2Y12 participates in ischemia related inflammation by mediating microglial migration and potentiation of neurotoxicity. These data also suggest an additional anti-inflammatory, neuroprotective benefit of clopidogrel.
Collapse
|
23
|
Kim JY, Kim N, Zheng Z, Lee JE, Yenari MA. The 70 kDa heat shock protein protects against experimental traumatic brain injury. Neurobiol Dis 2013; 58:289-95. [PMID: 23816752 DOI: 10.1016/j.nbd.2013.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 06/15/2013] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) causes disruption of the blood brain barrier (BBB) leading to hemorrhage which can complicate an already catastrophic illness. Matrix metalloproteinases (MMPs) involved in the breakdown of the extracellular matrix may lead to brain hemorrhage. We explore the contribution of the 70 kDa heat shock protein (Hsp70) to outcome and brain hemorrhage in a model of TBI. Male, wildtype (Wt), Hsp70 knockout (Ko) and transgenic (Tg) mice were subjected to TBI using controlled cortical impact (CCI). Motor function, brain hemorrhage and lesion size were assessed at 3, 7 and 14 days. Brains were evaluated for the effects of Hsp70 on MMPs. In Hsp70 Tg mice, CCI led to smaller brain lesions, decreased hemorrhage and reduced expression and activation of MMPs compared to Wt. CCI also significantly decreased right-biased swings and corner turns in the Hsp70 Tg mice. Conversely, Hsp70 Ko mice had significantly increased lesion size, worsened brain hemorrhage and increased expression and activation of MMPs with worsened behavioral outcomes compared to Wt. Hsp70 is protective in experimental TBI. To our knowledge, this is the direct demonstration of brain protection by Hsp70 in a TBI model. Our data demonstrate a new mechanism linking TBI-induced hemorrhage and neuronal injury to the suppression of MMPs by Hsp70, and support the development of Hsp70 enhancing strategies for the treatment of TBI.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
24
|
Sabirzhanov B, Stoica BA, Hanscom M, Piao CS, Faden AI. Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J Neurochem 2012; 123:542-54. [PMID: 22909049 DOI: 10.1111/j.1471-4159.2012.07927.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 01/22/2023]
Abstract
HSP70 is a member of the family of heat-shock proteins that are known to be up-regulated in neurons following injury and/or stress. HSP70 over-expression has been linked to neuroprotection in multiple models, including neurodegenerative disorders. In contrast, less is known about the neuroprotective effects of HSP70 in neuronal apoptosis and with regard to modulation of programmed cell death (PCD) mechanisms in neurons. We examined the effects of HSP70 over-expression by transfection with HSP70-expression plasmids in primary cortical neurons and the SH-SY5Y neuronal cell line using four independent models of apoptosis: etoposide, staurosporine, C2-ceramide, and β-Amyloid. In these apoptotic models, neurons transfected with the HSP70 construct showed significantly reduced induction of nuclear apoptotic markers and/or cell death. Furthermore, we demonstrated that HSP70 binds and potentially inactivates Apoptotic protease-activating factor 1, as well as apoptosis-inducing factor, key molecules involved in development of caspase-dependent and caspase-independent PCD, respectively. Markers of caspase-dependent PCD, including active caspase-3, caspase-9, and cleaved PARP were attenuated in neurons over-expressing HSP70. These data indicate that HSP70 protects against neuronal apoptosis and suggest that these effects reflect, at least in part, to inhibition of both caspase-dependent and caspase-independent PCD pathways.
Collapse
Affiliation(s)
- Boris Sabirzhanov
- Department of Anesthesiology, Shock Trauma & Anesthesiology Research (STAR) Organized Research Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
25
|
Zhang Q, Huang C, Meng B, Tang T, Shi Q, Yang H. Acute effect of Ghrelin on ischemia/reperfusion injury in the rat spinal cord. Int J Mol Sci 2012; 13:9864-9876. [PMID: 22949835 PMCID: PMC3431833 DOI: 10.3390/ijms13089864] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 01/25/2023] Open
Abstract
Ghrelin, a 28-amino acid peptide, is mainly secreted by the stomach. Ghrelin has been shown to have neuroprotective effects. However, whether ghrelin protects the spinal cord from ischemia/reperfusion (I/R) injury is unknown. To investigate this, 60 rats were randomly divided into three different groups: the sham group (n = 20), the vehicle group (n = 20), and the Ghrelin group (100 μg/kg, n = 20). Rats were sacrificed 12, 24, 48 and 72 h after ischemia. After the evaluation of neurologic function (48 h), the spinal cords were immediately removed for the determination of myeloperoxidase (MPO) activity (12-72 h). Apoptosis was quantitatively measured using the terminal transferase UTP nick end-labeling (TUNEL) method (24 h). The expression of bax and bcl-2 were evaluated by Western blot analysis (1 h), and GHSR-1a mRNA expression was detected using reverse transcriptase polymerase chain reaction (24 h). The neurological motor function was evaluated by 'Tarlov's score'. The neurologic outcomes in the ghrelin-group were significantly better than those in the vehicle group (p < 0.05). Serum tumor necrosis factor (TNF-α) levels were assessed in the peripheral venous blood. Ghrelin decreased the serum TNF-α levels and ameliorated the down regulation of spinal cord MPO activity. The expression of ghrelin receptors (GHSR-1a) in the rat spinal cord was decreased by I/R injury and increased by ghrelin. Ghrelin reduced the TUNEL-positive rate. Greater bcl-2, HSP27, HSP70, and attenuated bax expression were observed in the ghrelin-treated rats. Our results suggest that ghrelin administration may inhibit spinal I/R injury. Moreover, the improvement of neurologic function in rats was increased after the ghrelin treatment.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Orthopedics, Yuncheng Central Hospital, Yuncheng 044000, China; E-Mail:
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow 215007, China; E-Mails: (C.H.); (B.M.); (T.T.); (Q.S.)
| | - Chen Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow 215007, China; E-Mails: (C.H.); (B.M.); (T.T.); (Q.S.)
| | - Bin Meng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow 215007, China; E-Mails: (C.H.); (B.M.); (T.T.); (Q.S.)
| | - Tiansi Tang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow 215007, China; E-Mails: (C.H.); (B.M.); (T.T.); (Q.S.)
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow 215007, China; E-Mails: (C.H.); (B.M.); (T.T.); (Q.S.)
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow 215007, China; E-Mails: (C.H.); (B.M.); (T.T.); (Q.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-512-6778-1169; Fax: +86-512-6778-0999
| |
Collapse
|
26
|
Moon SU, Kim J, Bokara KK, Kim JY, Khang D, Webster TJ, Lee JE. Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke. Int J Nanomedicine 2012; 7:2751-65. [PMID: 22701320 PMCID: PMC3373297 DOI: 10.2147/ijn.s30273] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The present in vivo study was conducted to evaluate whether hydrophilic (HL) or hydrophobic (HP) carbon nanotubes (CNTs) impregnated with subventricular zone neural progenitor cells (SVZ NPCs) could repair damaged neural tissue following stroke. For this purpose, stroke damaged rats were transplanted with HL CNT-SVZ NPCs, HP CNT-SVZ NPCs, or SVZ NPCs alone for 1, 3, 5, and 8 weeks. Results showed that the HP CNT-SVZ NPC transplants improved rat behavior and reduced infarct cyst volume and infarct cyst area compared with the experimental control and the HL CNT-SVZ NPC and SVZ NPCs alone groups. The transplantation groups showed an increase in the expression of nestin (cell stemness marker) and proliferation which was evident with the increased number of doublecortin and bromodeoxyuridine double-stained immunopositive cells around the lesion site. But, these effects were more prominent in the HP CNT-SVZ NPC group compared with the other transplantation groups. The HP CNT-SVZ NPC and HL CNT-SVZ NPC transplants increased the number of microtubule-associated protein 2 (marker for neurons) and decreased the number of glial fibrillary acidic protein (marker for astroglial cells) positive cells within the injury epicenter. The majority of the transplanted HP CNT-SVZ NPCs collectively broadened around the ischemic injured region and the SVZ NPCs differentiated into mature neurons, attained the synapse morphology (TUJ1, synaptophysin), and decreased microglial activation (CD11b/c [OX-42]). For these reasons, this study provided the first evidence that CNTs can improve stem cell differentiation to heal stroke damage and, thus, deserve further attention.
Collapse
Affiliation(s)
- Sung Ung Moon
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Singh N, Sharma G, Mishra V. Hypoxia inducible factor-1: its potential role in cerebral ischemia. Cell Mol Neurobiol 2012; 32:491-507. [PMID: 22297543 DOI: 10.1007/s10571-012-9803-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/13/2012] [Indexed: 12/16/2022]
Abstract
A divergence in the supply and consumption of oxygen in brain tissue initiates complex cycle of biochemical and molecular events resulting in neuronal death. To overcome such adverse situation, the tissue has to adopt some cellular mechanisms such as induction of various transcription factors, such as hypoxia inducible factor (HIF). It is a transcriptional regulator of oxygen homeostasis and key factor to generate the adaptive responses through upregulation of various target genes involved in the erythropoiesis, angiogenesis as well as glucose metabolism and transport. On the other hand, some studies do suggest that HIF also plays a detrimental role in ischemic reperfusion injury by inducing the pro apoptotic molecules, cytokines such as Nix, BNip3, and IL-20 which cause mitochondrial dysfunction leading to cell death. Hence, modulation of HIF-1 activity seems to provide an innovative therapeutic target to reduce the cellular damage, which arises from ischemic injury. Apart from traditional oxygen dependent HIF regulation, the focus has now shifted toward oxygen independent regulation in cell specific manner through reactive oxygen species involving hypoxia-associated factor, and heat shock protein 90, etc. Therefore, future development of such small molecule regulators for HIF-1 stability and signaling may prove useful to therapeutically target for enhancing recovery and repair in I/R injury.
Collapse
Affiliation(s)
- Neetu Singh
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | | | | |
Collapse
|
28
|
Mokrushin AA, Pavlinova LI. Hsp70 promotes synaptic transmission in brain slices damaged by contact with blood clot. Eur J Pharmacol 2012; 677:55-62. [DOI: 10.1016/j.ejphar.2011.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 12/01/2011] [Accepted: 12/09/2011] [Indexed: 01/19/2023]
|
29
|
Azad P, Ryu J, Haddad GG. Distinct role of Hsp70 in Drosophila hemocytes during severe hypoxia. Free Radic Biol Med 2011; 51:530-8. [PMID: 21616137 PMCID: PMC3138732 DOI: 10.1016/j.freeradbiomed.2011.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 04/29/2011] [Accepted: 05/05/2011] [Indexed: 02/07/2023]
Abstract
Severe hypoxia can lead to injury and mortality in vertebrate or invertebrate organisms. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. In this study, we employed the UAS-Gal4 system to dissect the protective role of Hsp70 in specific tissues in vivo under severe hypoxia. In contrast to overexpression in tissues such as muscles, heart, and brain, we found that overexpression of Hsp70 in hemocytes of flies provides a remarkable survival benefit to flies exposed to severe hypoxia for days. Furthermore, these flies were tolerant not only to severe hypoxia but also to other stresses such as oxidant stress (e.g., paraquat feeding or hyperoxia). Interestingly we observed that the better survival with Hsp70 overexpression in hemocytes under hypoxia or oxidant stress is causally linked to reactive oxygen species (ROS) reduction in whole flies. We also show that hemocytes are a major source of ROS generation, leading to injury during hypoxia, and their elimination results in a better survival under hypoxia. Hence, our study identified a protective role for Hsp70 in Drosophila hemocytes, which is linked to ROS reduction in the whole flies and thus helps in their remarkable survival during oxidant or hypoxic stress.
Collapse
Affiliation(s)
- Priti Azad
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
| | - Julie Ryu
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
- The Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Gabriel G. Haddad
- Department of Pediatrics (Section of Respiratory Medicine), University of California-San Diego, La Jolla, CA 92093, USA
- Department of Neurosciences, University of California-San Diego, La Jolla, CA 92093, USA
- The Rady Children’s Hospital, San Diego, CA 92123, USA
- To whom correspondence should be addressed: Gabriel G. Haddad, MD, Departments of Pediatrics (Section of Respiratory Medicine), 9500 Gilman Dr MC0735, La Jolla, CA 92093, USA, Phone: +1-858-822-4740, Fax- 1- 858-534-6972,
| |
Collapse
|
30
|
Zhang F, Wu Y, Jia J. Exercise preconditioning and brain ischemic tolerance. Neuroscience 2011; 177:170-6. [PMID: 21241780 DOI: 10.1016/j.neuroscience.2011.01.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 01/04/2011] [Accepted: 01/09/2011] [Indexed: 01/17/2023]
Abstract
It is well established that physical exercise can exert neuroprotection both in clinical settings and animal experiments. A series of studies have demonstrated that physical exercise may be a promising preconditioning method to induce brain ischemic tolerance through the promotion of angiogenesis, mediation of the inflammatory response, inhibition of glutamate over-activation, protection of the blood brain barrier (BBB) and inhibition of apoptosis. Through these mechanisms, exercise preconditioning may reduce the neural deficits associated with ischemia and the development of brain infarction and thus provide brain ischemic tolerance. An awareness of the benefits of exercise preconditioning may lead more patients to accept exercise therapy in cases of ischemic stroke.
Collapse
Affiliation(s)
- F Zhang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai 200040, People's Republic of China
| | | | | |
Collapse
|
31
|
Huang WC, Qiao Y, Xu L, Kacimi R, Sun X, Giffard RG, Yenari MA. Direct protection of cultured neurons from ischemia-like injury by minocycline. Anat Cell Biol 2010; 43:325-31. [PMID: 21267407 PMCID: PMC3026185 DOI: 10.5115/acb.2010.43.4.325] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 12/13/2022] Open
Abstract
Minocycline, a tetracycline antibiotic, is now known to protect cells via an anti-inflammatory mechanism. We further explored this effect using an in vitro model of ischemia-like injury to neurons. Coculturing neurons with microglia, the brain's resident immune cell, modestly increased cell death due to oxygen and glucose deprivation (OGD), compared to neurons alone. Treatment of cocultures with minocycline decreased cell death to a level significantly lower than that of neurons alone. Treatment of cocultures with minocycline or inhibitors of various immune mediators, also led to decreased cell death. Importantly, treatment of neuron cultures without added microglia with these same inhibitors of tissue plasminogen activator, matrix metalloproteinases, TNF-alpha and inducible nitric oxide synthase as well as minocycline also led to decreased cell death. Thus, anti-inflammatory treatments appear to be directly protective of neurons from in vitro ischemia.
Collapse
Affiliation(s)
- Wendy C Huang
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Ahn JH, Luo W, Kim J, Rodina A, Clement CC, Aguirre J, Sun W, Kang Y, Maharaj R, Moulick K, Zatorska D, Kokoszka M, Brodsky JL, Chiosis G. Design of a flexible cell-based assay for the evaluation of heat shock protein 70 expression modulators. Assay Drug Dev Technol 2010; 9:236-46. [PMID: 21133677 DOI: 10.1089/adt.2010.0327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is a chaperone protein that helps protect against cellular stress, a function that may be co-opted to fight human diseases. In particular, the upregulation of Hsp70 can suppress the neurotoxicity of misfolded proteins, suggesting possible therapeutic strategies in neurodegenerative diseases. Alternatively, in cancer cells where high levels of Hsp70 inhibit both intrinsic and extrinsic apoptotic pathways, a reduction in Hsp70 levels may induce apoptosis. To evaluate and identify, in a single assay format, small molecules that induce or inhibit endogenous Hsp70, we have designed and optimized a microtiter assay that relies on whole-cell immunodetection of Hsp70. The assay utilizes a minimal number of neuronal or cancer cells, yet is sufficiently sensitive and reproducible to permit quantitative determinations. We further validated the assay using a panel of Hsp70 modulators. In conclusion, we have developed an assay that is fast, robust, and cost efficient. As such, it can be implemented in most research laboratories. The assay should greatly improve the speed at which novel Hsp70 inducers and inhibitors of expression can be identified and evaluated.
Collapse
Affiliation(s)
- James H Ahn
- Department of Medicine and Program in Molecular Pharmacology and Chemistry, Memorial Sloan-Kettering Cancer Center, New York
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ottens AK, Bustamante L, Golden EC, Yao C, Hayes RL, Wang KKW, Tortella FC, Dave JR. Neuroproteomics: a biochemical means to discriminate the extent and modality of brain injury. J Neurotrauma 2010; 27:1837-52. [PMID: 20698760 DOI: 10.1089/neu.2010.1374] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diagnosis and treatment of stroke and traumatic brain injury remain significant health care challenges to society. Patient care stands to benefit from an improved understanding of the interactive biochemistry underlying neurotrauma pathobiology. In this study, we assessed the power of neuroproteomics to contrast biochemical responses following ischemic and traumatic brain injuries in the rat. A middle cerebral artery occlusion (MCAO) model was employed in groups of 30-min and 2-h focal neocortical ischemia with reperfusion. Neuroproteomes were assessed via tandem cation-anion exchange chromatography-gel electrophoresis, followed by reversed-phase liquid chromatography-tandem mass spectrometry. MCAO results were compared with those from a previous study of focal contusional brain injury employing the same methodology to characterize homologous neocortical tissues at 2 days post-injury. The 30-min MCAO neuroproteome depicted abridged energy production involving pentose phosphate, modulated synaptic function and plasticity, and increased chaperone activity and cell survival factors. The 2-h MCAO data indicated near complete loss of ATP production, synaptic dysfunction with degraded cytoarchitecture, more conservative chaperone activity, and additional cell survival factors than those seen in the 30-min MCAO model. The TBI group exhibited disrupted metabolism, but with retained malate shuttle functionality. Synaptic dysfunction and cytoarchitectural degradation resembled the 2-h MCAO group; however, chaperone and cell survival factors were more depressed following TBI. These results underscore the utility of neuroproteomics for characterizing interactive biochemistry for profiling and contrasting the molecular aspects underlying the pathobiological differences between types of brain injuries.
Collapse
Affiliation(s)
- Andrew K Ottens
- Department of Anatomy, Medical College of Virginia at Virginia Commonwealth University, Richmond, Virginia 23298-0709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mun CH, Lee WT, Park KA, Lee JE. Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain. Anat Cell Biol 2010. [PMID: 21212863 DOI: 10.5115/acb.2010-43.3.230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.
Collapse
Affiliation(s)
- Chin Hee Mun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
35
|
Mun CH, Lee WT, Park KA, Lee JE. Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain. Anat Cell Biol 2010; 43:230-40. [PMID: 21212863 PMCID: PMC3015041 DOI: 10.5115/acb.2010.43.3.230] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 11/27/2022] Open
Abstract
Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.
Collapse
Affiliation(s)
- Chin Hee Mun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
36
|
Combined effect of tumor necrosis factor (TNF)-alpha and heat shock protein (HSP)-70 in reducing apoptotic injury in hypoxia: a cell culture study. Neurosci Lett 2010; 483:162-6. [PMID: 20691248 DOI: 10.1016/j.neulet.2010.07.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/13/2010] [Accepted: 07/24/2010] [Indexed: 01/06/2023]
Abstract
Studies have demonstrated neuroprotective effects of either TNF-alpha or HSP-70 in ischemia/reperfusion injury following exercise. However, the protective mechanisms involving combined effect of the two proteins, particularly in neuronal apoptosis, remain unclear. This study aims to elucidate the beneficial role of TNF-alpha and HSP-70 in the regulation of apoptotic proteins and ERK signaling in hypoxic injury. Cortical neurons from 20 Sprague-Dawley rat embryos were isolated and cultured in five groups with or without pretreatment with recombinant TNF-alpha, HSP-70 protein or both prior to hypoxic conditions: (1) control; (2) control/hypoxia; (3) TNF-alpha/hypoxia; (4) HSP-70/hypoxia and (5) TNF-alpha/HSP-70/hypoxia. Western blotting was used to detect pro- and anti-apoptotic proteins, including Bax, AIF, Bcl-xL, Bcl-2, and pERK1/2 protein. TNF-alpha and HSP-70 significantly (p<0.05) reduced the levels of pro-apoptotic proteins, Bax and AIF. Also, pretreatment of hypoxic brain tissue with TNF-alpha and HSP-70 significantly (p<0.05) enhanced the levels of anti-apoptotic protein, Bcl-xL. TNF-alpha and HSP-70 together increased Bcl-2 levels by 70%. Hypoxia caused a significant (p<0.05) increase in ERK1/2 phosphorylation levels by 224%. The most effective inhibition of ERK levels was obtained by the combined administration of TNF-alpha and HSP-70. This study suggested that TNF-alpha and HSP-70 together enhance the decrease in pro-apoptotic protein levels and the increase in anti-apoptotic protein levels in the event of neuronal hypoxia through ERK1/2 signal transduction.
Collapse
|
37
|
Kim HJ, Jung JI, Kim Y, Lee JS, Yoon YW, Kim J. Loss of hsp70.1 Decreases Functional Motor Recovery after Spinal Cord Injury in Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:157-61. [PMID: 20631888 DOI: 10.4196/kjpp.2010.14.3.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 01/30/2023]
Abstract
Heat shock proteins (HSPs) are specifically induced by various forms of stress. Hsp70.1, a member of the hsp70 family is known to play an important role in cytoprotection from stressful insults. However, the functional role of Hsp70 in motor function after spinal cord injury (SCI) is still unclear. To study the role of hsp70.1 in motor recovery following SCI, we assessed locomotor function in hsp70.1 knockout (KO) mice and their wild-type (WT) mice via the Basso, Beattie and Bresnahan (BBB) locomotor rating scale, before and after spinal hemisection at T13 level. We also examined lesion size in the spinal cord using Luxol fast blue/cresyl violet staining. One day after injury, KO and WT mice showed no significant difference in the motor function due to complete paralysis following spinal hemisection. However, when it compared to WT mice, KO mice had significantly delayed and decreased functional outcomes from 4 days up to 21 days after SCI. KO mice also showed significantly greater lesion size in the spinal cord than WT mice showed at 21 days after spinal hemisection. These results suggest that Hsp70 has a protective effect against traumatic SCI and the manipulation of the hsp70.1 gene may help improve the recovery of motor function, thereby enhancing neuroprotection after SCI.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of Dental Anesthesiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-744, Korea
| | | | | | | | | | | |
Collapse
|
38
|
Kim JH, Lee YW, Park KA, Lee WT, Lee JE. Agmatine attenuates brain edema through reducing the expression of aquaporin-1 after cerebral ischemia. J Cereb Blood Flow Metab 2010; 30:943-9. [PMID: 20029450 PMCID: PMC2949179 DOI: 10.1038/jcbfm.2009.260] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of L-arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood-brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limiting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia.
Collapse
Affiliation(s)
- Jae Hwan Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
39
|
Multifaceted role of heat shock protein 70 in neurons. Mol Neurobiol 2010; 42:114-23. [PMID: 20354811 DOI: 10.1007/s12035-010-8116-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/15/2010] [Indexed: 12/22/2022]
Abstract
Heat shock protein 70 (Hsp70) plays important roles in neural protection from stress by assisting cellular protein folding. In this review we discuss the current understanding of inducible and constitutive Hsp70 in maintaining and protecting neuronal synaptic function under normal and stressed conditions.
Collapse
|
40
|
Uranchimeg D, Kim JH, Kim JY, Lee WT, Park KA, Batbaatar G, Tundevrentsen S, Amgalanbaatar D, Lee JE. Recovered changes in the spleen by agmatine treatment after transient cerebral ischemia. Anat Cell Biol 2010; 43:44-53. [PMID: 21190004 PMCID: PMC2998779 DOI: 10.5115/acb.2010.43.1.44] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/05/2010] [Accepted: 03/05/2010] [Indexed: 11/27/2022] Open
Abstract
Stroke or cerebrovascular injury is the leading cause of disability and the third leading cause of deaths worldwide. After the initial ischemic injury, sympathetic signals are transmitted to the spleen and a compromised blood-brain barrier, coupled with expression of adhesion molecules by the vascular endothelial cells permits an influx of peripheral immune cells. This influx of peripheral immune cells into the brain exacerbates the local brain inflammatory response, leading to enhanced neurodegeneration. Agmatine is a primary amine formed by decarboxylation of L-arginine synthesized in the mammalian brain. In this study, we determined the effect of agmatine on the immune response in the spleen after transient cerebral ischemia. Twenty-three hours after transient cerebral ischemia, the white pulp area was reduced and the number of CD11b+ macrophages and CD4+CD25+ regulatory T cells (T reg cells) were increased in the spleens in the experimental group as a result of alteration of the immune response in the spleen, as regulated by inflammatory cytokines. In the agmatine treatment group (100 mg/kg IP), the contraction of white pulp was diminished and the number of CD11b+ macrophages and CD4+CD25+T reg cells were decreased. Twenty-three hours after transient cerebral ischemia, the brain infarction area was significantly reduced (5.51±1.63% of the whole brain) in the agmatine treatment group compared to 15.02±4.28% of the whole brain in the experimental control group. These results suggest that agmatine treatment can reduce brain infarction through minimizing neuroinflammation and can lessen the danger of post-stroke infection from depression of the immune system after stroke.
Collapse
Affiliation(s)
- D Uranchimeg
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hypoxia-inducible factor 1/heme oxygenase 1 cascade as upstream signals in the prolife role of heat shock protein 70 at rostral ventrolateral medulla during experimental brain stem death. Shock 2010; 32:651-8. [PMID: 19333137 DOI: 10.1097/shk.0b013e3181a71027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As the origin of a life-and-death signal that reflects central cardiovascular regulatory failure during brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate to delineate the cellular mechanisms of this fateful phenomenon. Based on a clinically relevant animal model that used the organophosphate pesticide mevinphos (Mev) as the experimental insult, we reported previously that heat shock protein 70 (HSP70) in RVLM plays a prolife role by ameliorating circulatory depression during brain stem death. Because Mev also elicits significant hypoxia in RVLM, this study evaluated the hypothesis that the hypoxia-inducible factor 1 (HIF-1)/heme oxygenase 1 (HO-1) cascade acts as upstream signals in the prolife role of HSP70 at RVLM during experimental brain stem death. In Sprague-Dawley rats maintained under propofol anesthesia, transcription activity assay or Western blot analysis revealed an enhancement of nuclear activity of HIF-1alpha or augmentation of HO-1 and HSP70 expression in RVLM preferentially during the prolife phase of Mev intoxication. Loss-of-function manipulations in RVLM using HIF-1alpha, HIF-1beta, or HO-1 antiserum or antisense hif-1alpha or ho-1 oligonucleotide significantly antagonized the preferential upregulation of HSP70, depressed the sustained cardiovascular regulatory machinery during the prolife phase, and exacerbated circulatory depression during the prodeath phase. Immunoneutralization of HIF-1alpha also blunted the preferential increase in HO-1 expression. We conclude that the repertoire of cellular events in RVLM during the prolife phase in our Mev intoxication of brain stem death triggered by hypoxia entails sequential activation of HIF-1, HO-1, and HSP70, leading to neuroprotection by amelioration of cardiovascular depression.
Collapse
|
42
|
Conde R, Belak ZR, Nair M, O'Carroll RF, Ovsenek N. Modulation of Hsf1 activity by novobiocin and geldanamycin. Biochem Cell Biol 2010; 87:845-51. [PMID: 19935870 DOI: 10.1139/o09-049] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Since Hsp90 is a known modulator of HSF1 activity, we examined the effects of two pharmacological inhibitors of Hsp90, novobiocin and geldanamycin, on HSF1 DNA-binding activity in the Xenopus oocyte model system. Novobiocin exhibits antiproliferative activity in culture cells and interacts with a C-terminal ATP-binding pocket on Hsp90, inhibiting Hsp90 autophosphorylation. Treatment of oocytes with novobiocin followed by heat shock results in a dose-dependent decrease in HSF1 DNA-binding and transcriptional activity. Immunoprecipitation experiments demonstrate novobiocin does not alter HSF1 activity through dissociation of Hsp90 from either monomeric or trimerized HSF1, suggesting that the effect of novobiocin on HSF1 is mediated through alterations in Hsp90 autophosphorylation. Geldanamycin binds the N-terminal ATPase site of Hsp90 and inhibits chaperone activity. Geldanamycin treatment of oocytes resulted in a dose-dependent increase in stability of active HSF1 trimers during submaximal heat shock and a delay in disassembly of trimers during recovery. The results suggest that Hsp90 chaperone activity is required for disassembly of HSF1 trimers. The data obtained with novobiocin suggests the C-terminal ATP-binding activity of Hsp90 is required for the initial steps of HSF1 trimerization, whereas the effects of geldanamycin suggest N-terminal ATPase and chaperone activities are required for disassembly of activated trimers. These data provide important insight into the molecular mechanisms by which pharmacological inhibitors of Hsp90 affect the heat shock response.
Collapse
Affiliation(s)
- Renaud Conde
- Department of Anatomy and Cell Biology, College of Medicine, 107 Wiggins Rd., University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | | | | | | |
Collapse
|
43
|
Liebelt B, Papapetrou P, Ali A, Guo M, Ji X, Peng C, Rogers R, Curry A, Jimenez D, Ding Y. Exercise preconditioning reduces neuronal apoptosis in stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience 2010; 166:1091-100. [PMID: 20083167 DOI: 10.1016/j.neuroscience.2009.12.067] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/24/2009] [Accepted: 12/29/2009] [Indexed: 01/03/2023]
Abstract
Exercise preconditioning induces neuroprotection after stroke. We investigated the beneficial role of heat shock protein-70 (HSP-70) and phosphorylated extracellular-signal-regulated-kinase 1/2 (pERK 1/2), as they pertain to reducing apoptosis and their influence on Bcl-x(L), Bax, and apoptosis-inducing factor (AIF) in rats subjected to ischemia and reperfusion. Adult male Sprague-Dawley rats were subjected to 30 min of exercise on a treadmill for 1, 2, or 3 weeks. Stroke was induced by a 2-h middle cerebral artery (MCA) occlusion using an intraluminal filament. Protein levels of HSP-70, pERK 1/2, Bcl-x(L), Bax, and AIF were analyzed using Western blot. Neuroprotection was based on levels of apoptosis (TUNEL) and infarct volume (Nissl staining). Immunocytochemistry was used for cellular expression of HSP-70 and pERK 1/2. Significant (P<0.05) up-regulation of HSP-70 and pERK 1/2 after 3 weeks of exercise coincided with significant (P<0.05) reduction in neuronal apoptosis and brain infarct volume. Inhibition of either one of these two factors showed a significant (P<0.05) reversal in the neuroprotection. Bax and AIF were down-regulated, while levels of Bcl-x(L) were up-regulated in response to stroke after exercise. Inhibiting HSP-70 or pERK 1/2 reversed this resultant increase or decrease. Our results indicate that exercise diminishes neuronal injury in stroke by up-regulating HSP-70 and ERK 1/2.
Collapse
Affiliation(s)
- B Liebelt
- Department of Neurosurgery, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu ZL, Wang YR, Sha Q, Nie QZ. Influence of geranylgeranylacetone on the expression of HSP70 in retina of rats with chronic IOP elevation. Int J Ophthalmol 2010; 3:28-31. [PMID: 22553512 DOI: 10.3980/j.issn.2222-3959.2010.01.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/23/2010] [Indexed: 11/02/2022] Open
Abstract
AIM To study the effects of geranylgeranylacetone (GGA) on the expression of heat shock protein70 (HSP70) on retinal ganglion cells (RGC) in rats with chronic intraocular pressure (IOP) elevation. METHODS Seventy Wistars were divided into blank control group (10 rats), chronic hypertension group (30 rats) and GGA group (30 rats). Chronic hypertension was created by cauterizing the superficial scleral veins. 800mg/kg/d GGA was given by oral daily after cauterization. Immunohistochemistry was used respectively to observe the changes of expression of HSP70 in the model rats and GGA interference rats at different time points during the course of chronic IOP elevation. RESULTS The successful model was identified as the IOP over 40% of normal rats. The retinal thickness was significantly reduced in model group and model+GGA group compared with normal rats from 21 days through 28 days after cauterization (P<0.05), and that of model rats was obviously decreased in comparison with model+GGA rats (P<0.05). The number of ganglion cells was significantly decreased in model rats and model+GGA rats compared with normal rats from 21 days and 28 days. The stronger expression intensity (IOD) value was seen for HSP70 in the model+GGA rats by immunochemistry (P<0.01). CONCLUSION Systemic administration of GGA protects retina from chronic IOP elevation by regulating the expression of HSP70.
Collapse
Affiliation(s)
- Zhi-Li Liu
- Department of Ophthalmology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning Province, China
| | | | | | | |
Collapse
|
45
|
Tantucci M, Mariucci G, Taha E, Spaccatini C, Tozzi A, Luchetti E, Calabresi P, Ambrosini M. Induction of heat shock protein 70 reduces the alteration of striatal electrical activity caused by mitochondrial impairment. Neuroscience 2009; 163:735-40. [DOI: 10.1016/j.neuroscience.2009.06.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 12/21/2022]
|
46
|
Abstract
Although the majority of studies on the protective effect of individual hsps have concentrated on the major inducible heat shock protein Hsp70, a variety of evidence suggests that the small heat shock protein Hsp27 may have a more potent protective effect in the nervous system. Thus, for example, in cultured neurones over-expression of Hsp70 can protect against subsequent exposure to thermal or ischaemic stress but not against exposure to some other stressful stimuli, whereas over-expression of Hsp27 protects against a variety of stresses. Similarly, although transgenic animals over-expressing Hsp70 are protected against cardiac ischaemia, more equivocal results have been obtained in terms of their protection against cerebral ischaemia and other stresses to the nervous system. In contrast, transgenic animals over-expressing Hsp27 have recently been shown to show neuroprotection as well as being protected against cardiac ischaemia. Recent findings have also implicated Hsp27 and related proteins in human disease. Thus, it has been demonstrated that mutation of either Hsp27 or the related protein hsp22 can be observed in specific families with hereditary motor neuropathy caused by premature axonal loss, possibly due to neuronal death and subsequent degeneration. Moreover, the mutations are associated with a reduced ability to promote neuronal survival compared to the wild type protein. Hence, Hsp27 appears to be a potent protective factor for neuronal cells whose mutation results in neuronal cell death and disease, whilst enhanced expression of the wild type protein may be a therapeutic option for human diseases involving excessive neuronal cell death.
Collapse
|
47
|
Protein ubiquitination in postsynaptic densities after hypoxia in rat neostriatum is blocked by hypothermia. Exp Neurol 2009; 219:404-13. [PMID: 19555686 DOI: 10.1016/j.expneurol.2009.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/24/2009] [Accepted: 06/14/2009] [Indexed: 11/23/2022]
Abstract
Synaptic dysfunction has been associated with neuronal cell death following hypoxia. The lack of knowledge on the mechanisms underlying this dysfunction prompted us to investigate the morphological changes in the postsynaptic densities (PSDs) induced by hypoxia. The results presented here demonstrate that PSDs of the rat neostriatum are highly modified and ubiquitinated 6 months after induction of hypoxia in a model of perinatal asphyxia. Using both two dimensional (2D) and three dimensional (3D) electron microscopic analyses of synapses stained with ethanolic phosphotungstic acid (E-PTA), we observed an increment of PSD thickness dependent on the duration and severity of the hypoxic insult. The PSDs showed clear signs of damage and intense staining for ubiquitin. These morphological and molecular changes were effectively blocked by hypothermia treatment, one of the most effective strategies for hypoxia-induced brain injury available today. Our data suggest that synaptic dysfunction following hypoxia may be caused by long-term misfolding and aggregation of proteins in the PSD.
Collapse
|
48
|
Zhou X, Patel AR, Perez F, Jurivich DA. Acteylcholinesterase inhibitor rivastigmine enhances cellular defenses in neuronal and macrophage-like cell lines. Transl Res 2009; 153:132-41. [PMID: 19218096 DOI: 10.1016/j.trsl.2008.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 12/04/2008] [Accepted: 12/06/2008] [Indexed: 01/06/2023]
Abstract
Neuroprotection mediated by the cellular heat shock response offers 1 clinical strategy to prevent, stabilize, and possibly reverse neurodegenerative processes. Although damaged proteins are thought to be the primary stimulus for the heat shock response, several studies indicate that pharmaceutical agents can either directly induce the heat shock transcription factor (Hsf1) or enhance its activation during different forms of cellular stress. Because Hsf1 is now known to combat the proteotoxicity of aging and has a central role in modulating amyloid aggregation, pharmacologic interventions to strengthen Hsf1 action may have important implications for preventing neurodegeneration linked to altered and damaged proteins such as observed in Alzheimer's disease. Given reports that some agents for the treatment of Alzheimer's disease have neuroprotective properties, this project investigated whether rivastigmine, which is an acetyl and butaryl cholinesterase inhibitor, mediates the neuroprotection of the neuronal-like cell line SH-SY5Y. The cells were exposed to various concentrations of rivastigmine to determine whether the drug protected cells from toxic injury and induced the 1st phase of the cellular heat shock response. In all, 100-micromol/L rivastigmine decreases cell death by 40% compared with untreated cells. This concentration enhances Hsf1 activation by strengthening both its multimerization and its phosphorylation, which leads to increased messenger RNA (mRNA) for hsp70. Therefore, one of the putative neuroprotective mechanisms of rivastigmine seems to be mediated through the heat shock response. These results also are observed in cultured macrophage-like cells, which suggests a future clinical tool for monitoring pharmacologically improved stress responses in peripheral blood mononuclear cells during treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Ximing Zhou
- Department of Medicine, Section of Geriatric Medicine, University of Illinois at Chicago, Jesse Brown VAMC, Chicago, IL, USA
| | | | | | | |
Collapse
|
49
|
YENARI MIDORIA, LIU JIALING, ZHENG ZHEN, VEXLER ZINAIDAS, LEE JONGEUN, GIFFARD RONAG. Antiapoptotic and Anti-inflammatory Mechanisms of Heat-Shock Protein Protection. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.2005.tb00012.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Frøyland E, Skjæret C, Wright MS, Dalen ML, Cvancarova M, Kasi C, Rootwelt T. Inflammatory receptors and pathways in human NT2-N neurons during hypoxia and reoxygenation. Impact of acidosis. Brain Res 2008; 1217:37-49. [DOI: 10.1016/j.brainres.2008.04.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 04/14/2008] [Accepted: 04/20/2008] [Indexed: 01/01/2023]
|