1
|
Dai F, Lee SO, Song JH, Yoo WG, Shin EH, Bai X, Hong SJ. Glucose transporters and sodium glucose co-transporters cooperatively import glucose into energy-demanding organs in carcinogenic liver fluke Clonorchis sinensis. PLoS Negl Trop Dis 2024; 18:e0012315. [PMID: 38968307 PMCID: PMC11253919 DOI: 10.1371/journal.pntd.0012315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/17/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The liver fluke Clonorchis sinensis imports large amounts of glucose to generate energy and metabolic intermediates through glycolysis. We hypothesized that C. sinensis absorbs glucose through glucose transporters and identified four subtypes of glucose transporter (CsGTP) and one sodium glucose co-transporter (CsSGLT) in C. sinensis. METHODOLOGY/PRINCIPAL FINDINGS Expressed sequence tags encoding CsGTPs were retrieved from the C. sinensis transcriptome database, and their full-length cDNA sequences were obtained by rapid amplification of cDNA ends (RACE). The tissue distribution of glucose transporters in C. sinensis adults was determined using immunohistochemical staining. Developmental expression was measured using RT-qPCR. The transport and distribution of glucose into living C. sinensis were monitored using confocal microscopy. Membrane topology and key functional residues of CsGTPs were homologous to their counterparts in animals and humans. CsGTP1, 2, and 4 were transcribed 2.4-5.5 times higher in the adults than metacercariae, while CsGTP3 was transcribed 2.1 times higher in the metacercariae than adults. CsSGLT transcription was 163.6 times higher in adults than in metacercariae. In adults, CsSGLT was most abundant in the tegument; CsGTP3 and CsSGLT were localized in the vitelline gland, uterine wall, eggs, mesenchymal tissue, and testes; CsGTP4 was found in sperm and mesenchymal tissue; and CsGTP1 was mainly in the sperm and testes. In C. sinensis adults, exogenous glucose is imported in a short time and is present mainly in the middle and posterior body, in which the somatic and reproductive organs are located. Of the exogenous glucose, 53.6% was imported through CsSGLT and 46.4% through CsGTPs. Exogenous glucose import was effectively inhibited by cytochalasin B and phlorizin. CONCLUSIONS/SIGNIFICANCE We propose that CsSGLT cooperates with CsGTPs to import exogenous glucose from the environmental bile, transport glucose across mesenchymal tissue cells, and finally supply energy-demanding organs in C. sinensis adults. Studies on glucose transporters may pave the way for the development of new anthelmintic drugs.
Collapse
Affiliation(s)
- Fuhong Dai
- Department of Parasitology, School of Biology and Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Suzhou Medical College, Soochow University, Suzhou, China
- Department of Medical Sciences, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Soon-Ok Lee
- Department of Medical Sciences, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Medical Zoology and Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Ho Song
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Won-Gi Yoo
- Department of Medical Sciences, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Eun-Hee Shin
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul, Republic of Korea
- Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Xuelian Bai
- Department of Medical Sciences, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China
| | - Sung-Jong Hong
- Department of Medical Sciences, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Center for Infectious Vectors and Diseases, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
2
|
Fifty years of the schistosome tegument: discoveries, controversies, and outstanding questions. Int J Parasitol 2021; 51:1213-1232. [PMID: 34767805 DOI: 10.1016/j.ijpara.2021.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022]
Abstract
The unique multilaminate appearance of the tegument surface of schistosomes was first described in 1973, in one of the earliest volumes of the International Journal for Parasitology. The present review, published almost 50 years later, traces the development of our knowledge of the tegument, starting with those earliest cytological advances, particularly the surface plasma membrane-membranocalyx complex, through an era of protein discovery to the modern age of protein characterization, aided by proteomics. More recently, analysis of single cell transcriptomes of schistosomes is providing insight into the organisation of the cell bodies that support the surface syncytium. Our understanding of the tegument, notably the nature of the proteins present within the plasma membrane and membranocalyx, has provided insights into how the schistosomes interact with their hosts but many aspects of how the tegument functions remain unanswered. Among the unresolved aspects are those concerned with maintenance and renewal of the surface membrane complex, and whether surface proteins and membrane components are recycled. Current controversies arising from investigations about whether the tegument is a source of extracellular vesicles during parasitism, and if it is covered with glycolytic enzymes, are evaluated in the light of cytological and proteomic knowledge of the layer.
Collapse
|
3
|
McKenzie M, Kirk RS, Walker AJ. Glucose Uptake in the Human Pathogen Schistosoma mansoni Is Regulated Through Akt/Protein Kinase B Signaling. J Infect Dis 2019; 218:152-164. [PMID: 29309602 PMCID: PMC5989616 DOI: 10.1093/infdis/jix654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background In Schistosoma mansoni, the facilitated glucose transporter SGTP4, which is expressed uniquely in the apical surface tegumental membranes of the parasite, imports glucose from host blood to support its growth, development, and reproduction. However, the molecular mechanisms that underpin glucose uptake in this blood fluke are not understood. Methods In this study we employed techniques including Western blotting, immunolocalization, confocal laser scanning microscopy, pharmacological assays, and RNA interference to functionally characterize and map activated Akt in S mansoni. Results We find that Akt, which could be activated by host insulin and l-arginine, was active in the tegument layer of both schistosomules and adult worms. Blockade of Akt attenuated the expression and evolution of SGTP4 at the surface of the host-invading larval parasite life-stage, and suppressed SGTP4 expression at the tegument in adults; concomitant glucose uptake by the parasite was also attenuated in both scenarios. Conclusions These findings shed light on crucial mechanistic signaling processes that underpin the energetics of glucose uptake in schistosomes, which may open up novel avenues for antischistosome drug development.
Collapse
Affiliation(s)
- Maxine McKenzie
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| |
Collapse
|
4
|
McVeigh P, Cwiklinski K, Garcia-Campos A, Mulcahy G, O'Neill SM, Maule AG, Dalton JP. In silico analyses of protein glycosylating genes in the helminth Fasciola hepatica (liver fluke) predict protein-linked glycan simplicity and reveal temporally-dynamic expression profiles. Sci Rep 2018; 8:11700. [PMID: 30076319 PMCID: PMC6076252 DOI: 10.1038/s41598-018-29673-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/04/2018] [Indexed: 01/05/2023] Open
Abstract
Glycoproteins secreted by helminth parasites are immunogenic and represent appealing components of vaccine preparations. Our poor knowledge of the pathways that mediate protein glycosylation in parasitic flatworms hinders our understanding of how proteins are synthesised and modified, and our ability to target these pathways for parasite control. Here we provide the first detailed description of genes associated with protein glycosylation in a parasitic flatworm, focusing on the genome of the liver fluke (Fasciola hepatica), which is a globally important trematode parasite of humans and their livestock. Using 190 human sequences as search queries against currently available F. hepatica genomes, we identified 149 orthologues with putative roles in sugar uptake or nucleotide sugar synthesis, and an array of glycosyltransferase and glycosidase activities required for protein N- and O-glycosylation. We found appreciable duplication within these orthologues, describing just 87 non-redundant genes when paralogues were excluded. F. hepatica lacks many of the enzymes required to produce complex N- and O-linked glycans, which explains the genomic basis for the structurally simple glycans described by F. hepatica glycomic datasets, and predicts pervasive structural simplicity in the wider glycome. These data provide a foundation for functional genomic interrogation of these pathways with the view towards novel parasite intervention strategies.
Collapse
Affiliation(s)
- Paul McVeigh
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | - Krystyna Cwiklinski
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | | | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Sandra M O'Neill
- Department of Biotechnology, Dublin City University, Dublin, Ireland
| | - Aaron G Maule
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - John P Dalton
- Parasitology & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Han Q, Jia B, Hong Y, Cao X, Zhai Q, Lu K, Li H, Zhu C, Fu Z, Shi Y, Lin J. Suppression of VAMP2 Alters Morphology of the Tegument and Affects Glucose uptake, Development and Reproduction of Schistosoma japonicum. Sci Rep 2017; 7:5212. [PMID: 28701752 PMCID: PMC5507895 DOI: 10.1038/s41598-017-05602-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023] Open
Abstract
Schistosomiasis caused by schsitosomes is a serious global public health concern. The tegument that surrounds the worm is critical to the schistosomes survival. The tegument apical membrane undergoes a continuous process of rupture and repair owing to membranous vacuoles fusing with the plasma membrane. Vesicle-associated membrane protein 2 (VAMP2), a member of soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNAREs) is required for membrane fusion. Here, we used RNA interference (RNAi) to knock down the expression of VAMP2 of Schistosoma japonicum (SjVAMP2), and both real-time PCR and western blot analysis confirmed the suppression of this molecule, as well as the suppression of the transcript levels of schistosome glucose transporters (SGTP1 and SGTP4), and insulin receptors (SjIR1 and SjIR2). SjVAMP2-suppressed worms exhibited a lower viability, and phenotypic alterations were also observed in the tegument. Moreover, the glucose consumption of SjVAMP2-suppressed worms decreased significantly in 4 and 6 days, respectively, as well as a significant reduction in egg production. We also observed a significant reduction in worm burden and hepatic eggs burden in two independent RNAi experiment in vivo, and minor pathological changes in mice treated with SjVAMP2 specific small interfering (si)RNA. These findings reveal that SjVAMP2 may play important roles in the maintenance of tegument, glucose uptake, worm development and egg production in schistosomes.
Collapse
Affiliation(s)
- Qian Han
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Bingguang Jia
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yang Hong
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Xiaodan Cao
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Qi Zhai
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Ke Lu
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Hao Li
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Chuangang Zhu
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Zhiqiang Fu
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yonghong Shi
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Jiaojiao Lin
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
6
|
Characterization of VAMP2 in Schistosoma japonicum and the Evaluation of Protective Efficacy Induced by Recombinant SjVAMP2 in Mice. PLoS One 2015; 10:e0144584. [PMID: 26641090 PMCID: PMC4671580 DOI: 10.1371/journal.pone.0144584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 11/20/2015] [Indexed: 11/25/2022] Open
Abstract
Background The outer-tegument membrane covering the schistosome is believed to maintain via the fusion of membranous vesicles. Fusion of biological membranes is a fundamental process in all eukaryotic cells driven by formation of trans-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes through pairing of vesicle associated v-SNAREs (VAMP) with complementary t-SNAREs on target membranes. The purpose of this study was to characterize Schistosoma japonicum vesicle-associated membrane protein 2 (SjVAMP2) and to investigate its potential as a candidate vaccine against schistosomiasis. Methodology/Principal Findings The sequence of SjVAMP2 was analyzed, cloned, expressed and characterized. SjVAMP2 is a member of the synaptobrevin superfamily harboring the v-SNARE coiled-coil homology domain. RT–PCR analysis revealed that significantly higher SjVAMP2 levels were observed in 14-, 28- and 42-day-old worms, and SjVAMP2 expression was much higher in 42-day-old female worms than in those male worms. Additionally, the expression of SjVAMP2 was associated with membrane recovery in PZQ-treated worms. Immunostaining assay showed that SjVAMP2 was mainly distributed in the sub-tegument of the worms. Western blotting revealed that rSjVAMP2 showed strong immunogenicity. Purified rSjVAMP2 emulsified with ISA206 adjuvant induced 41.5% and 27.3% reductions in worm burden, and 36.8% and 23.3% reductions in hepatic eggs in two independent trials. Besides, significantly higher rSjVAMP2-specific IgG, IgG1, IgG2a levels were detected in rSjVAMP2-vaccinated mice. Conclusion Our study indicated that SjVAMP2 is a potential vaccine candidate against S. japonicum and provided the basis for further investigations into the biological function of SjVAMP2.
Collapse
|
7
|
Cabezas-Cruz A, Valdés JJ, Lancelot J, Pierce RJ. Fast evolutionary rates associated with functional loss in class I glucose transporters of Schistosoma mansoni. BMC Genomics 2015; 16:980. [PMID: 26584526 PMCID: PMC4653847 DOI: 10.1186/s12864-015-2144-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/26/2015] [Indexed: 11/24/2022] Open
Abstract
Background The trematode parasite, Schistosoma mansoni, has evolved to switch from oxidative phosphorylation to glycolysis in the presence of glucose immediately after invading the human host. This metabolic switch is dependent on extracellular glucose concentration. Four glucose transporters are encoded in the genome of S. mansoni, however, only two were shown to facilitate glucose diffusion. Results By modeling the phase of human host infection, we showed that transporter transcript expression profiles of recently transformed schistosomula have two opposing responses to increased glucose concentrations. Concurring with the transcription profiles, our phylogenetic analyses revealed that S. mansoni glucose transporters belong to two separate clusters, one associated with class I glucose transporters from vertebrates and insects, and the other specific to parasitic Platyhelminthes. To study the evolutionary paths of both groups and their functional implications, we determined evolutionary rates, relative divergence times, genomic organization and performed structural analyses with the protein sequences. We finally used the modelled structures of the S. mansoni glucose transporters to biophysically (i) analyze the dynamics of key residues during glucose binding, (ii) test glucose stability within the active site, and (iii) demonstrate glucose diffusion. The two S. mansoni Platyhelminthes-specific glucose transporters, which seem to be younger than the other two, exhibit slower rates of molecular evolution, are encoded by intron-poor genes, and transport glucose. Interestingly, our molecular dynamic analyses suggest that S. mansoni class I glucose transporters are not able to transport glucose. Conclusions The glucose transporter family in S. mansoni exhibit different evolutionary histories. Our results suggested that S. mansoni class I glucose transporters lost their capacity to transport glucose and that this function evolved independently in the Platyhelminthes-specific glucose transporters. Finally, taking into account the differences in the dynamics of glucose transport of the Platyhelminthes-specific transporters of S. mansoni compared to that of humans, we conclude that S. mansoni glucose transporters may be targets for rationally designed drugs against schistosomiasis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2144-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France.
| | - James J Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, 37005, České Budějovice, Czech Republic.
| | - Julien Lancelot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France.
| | - Raymond J Pierce
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France.
| |
Collapse
|
8
|
Abstract
Schistosomes are parasitic flatworms that infect >200 million people worldwide, causing the chronic, debilitating disease schistosomiasis. Unusual among parasitic helminths, the long-lived adult worms, continuously bathed in blood, take up nutrients directly across the body surface and also by ingestion of blood into the gut. Recent proteomic analyses of the body surface revealed the presence of hydrolytic enzymes, solute, and ion transporters, thus emphasising its metabolic credentials. Furthermore, definition of the molecular mechanisms for the uptake of selected metabolites (glucose, certain amino acids, and water) establishes it as a vital site of nutrient acquisition. Nevertheless, the amount of blood ingested into the gut per day is considerable: for males ∼100 nl; for the more actively feeding females ∼900 nl, >4 times body volume. Ingested erythrocytes are lysed as they pass through the specialized esophagus, while leucocytes become tethered and disabled there. Proteomics and transcriptomics have revealed, in addition to gut proteases, an amino acid transporter in gut tissue and other hydrolases, ion, and lipid transporters in the lumen, implicating the gut as the site for acquisition of essential lipids and inorganic ions. The surface is the principal entry route for glucose, whereas the gut dominates amino acid acquisition, especially in females. Heme, a potentially toxic hemoglobin degradation product, accumulates in the gut and, since schistosomes lack an anus, must be expelled by the poorly understood process of regurgitation. Here we place the new observations on the proteome of body surface and gut, and the entry of different nutrient classes into schistosomes, into the context of older studies on worm composition and metabolism. We suggest that the balance between surface and gut in nutrition is determined by the constraints of solute diffusion imposed by differences in male and female worm morphology. Our conclusions have major implications for worm survival under immunological or pharmacological pressure.
Collapse
Affiliation(s)
- Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Xiao-Hong Li
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
- Key Laboratory of Parasitology and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People‘s Republic of China
| | - William Castro-Borges
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - R. Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
9
|
Skelly PJ. The use of imaging to detect schistosomes and diagnose schistosomiasis. Parasite Immunol 2014; 35:295-301. [PMID: 23647173 DOI: 10.1111/pim.12040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022]
Abstract
Several imaging modalities have been employed to examine schistosomes and monitor schistosome-induced pathology. Ultrasound is a noninvasive imaging method that has long been used in the laboratory and in the field to evaluate pathological changes, notably fibrosis, that arise as a consequence of the host response to schistosome eggs lodging in a variety of tissues. Ultrasonography has been widely used to monitor changes in the extent of fibrosis and in spleen/liver enlargement following chemotherapeutic treatment for schistosomiasis. Imaging methods to monitor schistosomes themselves in vivo (as opposed to detecting schistosome-induced pathology) include positron emission tomography and fluorescence molecular tomography. Both approaches rely on schistosome uptake of tracers that are introduced into infected animals and that can be detected externally. These methods have been used to successfully detect schistosomes in vivo and to monitor their elimination following chemotherapeutic treatment. Direct monitoring of live schistosomes in vivo has been achieved using intravital microscopy, when the infected tissues of anaesthetized animals are exposed. Finally, schistosome eggs have been visualized by confocal laser scanning microscopy in infected mice as well as in a human patient with schistosomiasis hematobium. Further advances in imaging technologies seem likely to provide greater insight into disease progression and into the biology of schistosomes in the most relevant setting-within a live animal.
Collapse
Affiliation(s)
- P J Skelly
- Department of Infectious Disease and Global Health, Molecular Helminthology Laboratory, Tufts Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA.
| |
Collapse
|
10
|
Huang SCC, Freitas TC, Amiel E, Everts B, Pearce EL, Lok JB, Pearce EJ. Fatty acid oxidation is essential for egg production by the parasitic flatworm Schistosoma mansoni. PLoS Pathog 2012; 8:e1002996. [PMID: 23133378 PMCID: PMC3486914 DOI: 10.1371/journal.ppat.1002996] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 09/13/2012] [Indexed: 02/02/2023] Open
Abstract
Schistosomes, parasitic flatworms that cause the neglected tropical disease schistosomiasis, have been considered to have an entirely carbohydrate based metabolism, with glycolysis playing a dominant role in the adult parasites. However, we have discovered a close link between mitochondrial oxygen consumption by female schistosomes and their ability to produce eggs. We show that oxygen consumption rates (OCR) and egg production are significantly diminished by pharmacologic inhibition of carnitine palmitoyl transferase 1 (CPT1), which catalyzes a rate limiting step in fatty acid β-oxidation (FAO) and by genetic loss of function of acyl CoA synthetase, which complexes with CPT1 and activates long chain FA for use in FAO, and of acyl CoA dehydrogenase, which catalyzes the first step in FAO within mitochondria. Declines in OCR and egg production correlate with changes in a network of lipid droplets within cells in a specialized reproductive organ, the vitellarium. Our data point to the importance of regulated lipid stores and FAO for the compartmentalized process of egg production in schistosomes. Schistosomes are parasitic worms that are the cause of the Neglected Tropical Disease schistosomiasis. Female schistosomes mated with males produce eggs, which either pass out of the host's body for transmission of the infection, or become trapped in host tissues, where they induce inflammation that contributes to disease symptoms. It has been assumed that egg production is a bioenergetically-demanding process fuelled by glucose metabolism. However, we have discovered that egg production is blocked by inhibition of fatty acid oxidation (FAO), the process through which FA are utilized within mitochondria to fuel the tricarboxylic acid cycle and thereby produce substrates for ATP synthesis through oxidative phosphorylation. Consistent with a role for FAO in egg production, fecund females have extensive fat stores, in the form of lipid droplets, whereas virgin adult females have little or no fat reserves. Moreover, fecund females placed into tissue culture exhaust their fat reserves and cease to be able to produce eggs. Since schistosomes cannot produce their own FA, our data point to the acquisition of FA from the host as a key process necessary for egg production. Our findings point to the importance of regulated lipid stores and FAO for egg production by schistosomes.
Collapse
Affiliation(s)
- Stanley Ching-Cheng Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Trudeau Institute, Saranac Lake, New York, United States of America
| | - Tori C. Freitas
- Trudeau Institute, Saranac Lake, New York, United States of America
| | - Eyal Amiel
- Trudeau Institute, Saranac Lake, New York, United States of America
| | - Bart Everts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Trudeau Institute, Saranac Lake, New York, United States of America
| | - Erika L. Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Trudeau Institute, Saranac Lake, New York, United States of America
| | - James B. Lok
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Edward J. Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Trudeau Institute, Saranac Lake, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Intravascular schistosome parasites are covered by an unusual double lipid bilayer. Nutrients, such as glucose and amino acids, as well as other metabolites, are known to be transported across this surface via specific transporter proteins. For instance, the glucose transporter protein SGTP4 is found in the host-interactive tegumental membranes. A second glucose transporter, SGTP1, localizes to the tegumental basal membrane (and internal tissues). Following expression in Xenopus oocytes, SGTP1 and SGTP4 both function as facilitated-diffusion sugar transporters. Suppressing the expression of SGTP1 and SGTP4 in juvenile schistosomes using RNA interference (RNAi) impairs the parasite's ability to import glucose and severely decreases worm viability. Amino acids can also be imported into schistosomes across their surface and an amino acid transporter (SPRM1lc) has been localized in the parasite surface membranes (as well as internally). In Xenopus oocytes, SPRM1lc can import the basic amino acids arginine, lysine and histidine as well as leucine, phenylalanine, methionine and glutamine. To function, this protein requires the assistance of a heavy-chain partner (SPRM1hc) which acts as a chaperone. Water is transported across the tegument of schistosomes via the aquaporin protein SmAQP. Suppressing SmAQP gene expression makes the parasites less able to osmoregulate and decreases their viability. In addition, SmAQP-suppressed adult parasites have been shown to be impaired in their ability to excrete lactate. Analysis of tegumental transporter proteins, as described in this report, is designed to generate a comprehensive understanding of the role of such proteins in promoting parasite survival by controlling the movement of metabolites into and out of the worms.
Collapse
|
12
|
Abstract
The intravascular trematode Schistosoma mansoni is a causative agent of schistosomiasis, a disease that constitutes a major health problem globally. In this study we cloned and characterized the schistosome tegumental phosphodiesterase SmNPP-5 and evaluated its role in parasite virulence. SmNPP-5 is a 52.5-kDa protein whose gene is rapidly turned on in the intravascular parasitic life stages, following invasion of the definitive host. Highest expression is found in mated adult males. As revealed by immunofluorescence analysis, SmNPP-5 protein is found prominently in the dorsal surface of the tegument of males. Localization by immuno-electron microscopy illustrates a unique pattern of immunogold-labeled SmNPP-5 within the tegument; some immunogold particles are scattered throughout the tissue, but many are clustered in tight arrays. To determine the importance of the protein for the parasites, RNA interference (RNAi) was employed to knock down expression of the SmNPP-5-encoding gene in schistosomula and adult worms. Both quantitative real-time PCR (qRT-PCR) and Western blotting confirmed successful and robust gene suppression. In addition, the suppression and the ectolocalization of this enzyme in live parasites were evident because of a significantly impaired ability of the suppressed parasites to hydrolyze exogenously added phosphodiesterase substrate p-nitrophenyl 5'-dTMP (p-Nph-5'-TMP). The effects of suppressing expression of the SmNPP-5 gene in vivo were tested by injecting parasites into mice. It was found that, unlike controls, parasites whose SmNPP-5 gene was demonstrably suppressed at the time of host infection were greatly impaired in their ability to establish infection. These results demonstrate that SmNPP-5 is a virulence factor for schistosomes.
Collapse
|
13
|
Krautz-Peterson G, Simoes M, Faghiri Z, Ndegwa D, Oliveira G, Shoemaker CB, Skelly PJ. Suppressing glucose transporter gene expression in schistosomes impairs parasite feeding and decreases survival in the mammalian host. PLoS Pathog 2010; 6:e1000932. [PMID: 20532163 PMCID: PMC2880588 DOI: 10.1371/journal.ppat.1000932] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 04/28/2010] [Indexed: 11/18/2022] Open
Abstract
Adult schistosomes live in the host's bloodstream where they import nutrients such as glucose across their body surface (the tegument). The parasite tegument is an unusual structure since it is enclosed not by the typical one but by two closely apposed lipid bilayers. Within the tegument two glucose importing proteins have been identified; these are schistosome glucose transporter (SGTP) 1 and 4. SGTP4 is present in the host interactive, apical tegumental membranes, while SGTP1 is found in the tegumental basal membrane (as well as in internal tissues). The SGTPs act by facilitated diffusion. To examine the importance of these proteins for the parasites, RNAi was employed to knock down expression of both SGTP genes in the schistosomula and adult worm life stages. Both qRT-PCR and western blotting analysis confirmed successful gene suppression. It was found that SGTP1 or SGTP4-suppressed parasites exhibit an impaired ability to import glucose compared to control worms. In addition, parasites with both SGTP1 and SGTP4 simultaneously suppressed showed a further reduction in capacity to import glucose compared to parasites with a single suppressed SGTP gene. Despite this debility, all suppressed parasites exhibited no phenotypic distinction compared to controls when cultured in rich medium. Following prolonged incubation in glucose-depleted medium however, significantly fewer SGTP-suppressed parasites survived. Finally, SGTP-suppressed parasites showed decreased viability in vivo following infection of experimental animals. These findings provide direct evidence for the importance of SGTP1 and SGTP4 for schistosomes in importing exogenous glucose and show that these proteins are important for normal parasite development in the mammalian host.
Collapse
Affiliation(s)
- Greice Krautz-Peterson
- Molecular Helminthology Laboratory, Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, Grafton, Massachusetts, United States of America
| | - Mariana Simoes
- Laboratory of Cellular and Molecular Parasitology and CEBio, Instituto René Rachou - FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Zahra Faghiri
- Molecular Helminthology Laboratory, Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, Grafton, Massachusetts, United States of America
| | - David Ndegwa
- Molecular Helminthology Laboratory, Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, Grafton, Massachusetts, United States of America
| | - Guilherme Oliveira
- Laboratory of Cellular and Molecular Parasitology and CEBio, Instituto René Rachou - FIOCRUZ, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Salvador, BA, Brazil
| | - Charles B. Shoemaker
- Molecular Helminthology Laboratory, Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, Grafton, Massachusetts, United States of America
| |
Collapse
|
14
|
Mulvenna J, Moertel L, Jones MK, Nawaratna S, Lovas EM, Gobert GN, Colgrave M, Jones A, Loukas A, McManus DP. Exposed proteins of the Schistosoma japonicum tegument. Int J Parasitol 2009; 40:543-54. [PMID: 19853607 DOI: 10.1016/j.ijpara.2009.10.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/08/2009] [Accepted: 10/08/2009] [Indexed: 01/02/2023]
Abstract
The ability of the mammalian blood fluke Schistosoma japonicum to survive in the inhospitable environment of the mammalian bloodstream can be attributed, at least in part, to its host-exposed outer surface, called the tegument. The tegument is a dynamic organ and is involved in nutrition, immune evasion and modulation, excretion, osmoregulation and signal transduction. Given its importance for parasite survival, proteins exposed to the host at the surface of the tegument are ideal targets for the development of vaccines and drugs. By biotinylating live adult worms and using a combination of OFFGEL electrophoresis and tandem mass spectrometry 54 proteins were identified as putatively host-exposed in S. japonicum. These included glucose transport proteins, an amino permease, a leucine aminopeptidase and a range of transporters, heat shock proteins and novel immune-active proteins. Members of the tetraspanin protein family and a homologue of Sm 29, a tegument membrane protein from Schistosoma mansoni, both effective vaccine antigens in S. mansoni, were also identified. The fate of labelled surface proteins was monitored over time using electron microscopy and revealed that biotinylated proteins were rapidly internalised from the surface of the tegument and trafficked into the cytoplasmic bridges that connect the distal cytoplasm of the tegument to the underlying cell bodies. The results reported herein dramatically increase the number of S. japonicum proteins known to be exposed to the host and, hence, those of interest as therapeutic targets. The ability of the parasite to rapidly internalise proteins at its surface has implications for the development of vaccines and may explain how these parasites are able to avoid the host immune system for long periods of time.
Collapse
Affiliation(s)
- Jason Mulvenna
- Helminth Biology Laboratory, Division of Infectious Diseases, Queensland Institute of Medical Research, Qld 4006, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Faghiri Z, Skelly PJ. The role of tegumental aquaporin from the human parasitic worm, Schistosoma mansoni, in osmoregulation and drug uptake. FASEB J 2009; 23:2780-9. [PMID: 19364765 PMCID: PMC2717781 DOI: 10.1096/fj.09-130757] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 03/19/2009] [Indexed: 11/11/2022]
Abstract
Schistosomes are parasitic platyhelminths that constitute an important public health problem globally. Infection is characterized by the presence of adult worms within the vasculature of their hosts, where they can reside for many years. The worms are covered by an unusual dual lipid bilayer through which they import nutrients. How the parasites import other vital molecules, such as water, is not known. Recent proteomic analysis of the schistosome tegumental membranes revealed the presence of an aquaporin homologue at the host-interactive surface whose cDNA we have cloned and characterized. The cDNA encodes a predicted 304-aa protein (SmAQP) that is found largely in the parasite tegument by immunolocalization and is most highly expressed in the intravascular life stages. Treatment of parasites with short interfering RNAs targeting the SmAQP gene results in potent (>90%) suppression. These suppressed parasites resist swelling when placed in hypotonic medium, unlike their control counterparts, which rapidly double in volume. In addition, SmAQP-suppressed parasites, unlike controls, resist shrinkage when incubated in hyperosmotic solution. While suppressed parasites exhibit lower viability in culture relative to controls and exhibit a stunted appearance following prolonged suppression, they are nonetheless more resistant to killing by the drug potassium antimonyl tartrate (PAT). This is likely because SmAQP acts as a conduit for this drug, as is the case for aquaporins in other systems. These experiments reveal a heretofore unrecognized role of the schistosome tegument in controlling water and drug movement into the parasites and highlight the importance of the tegument in parasite osmoregulation and drug uptake.
Collapse
Affiliation(s)
- Zahra Faghiri
- Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, USA
| | | |
Collapse
|
16
|
Siddiqui AA, Ahmad G, Damian RT, Kennedy RC. Experimental vaccines in animal models for schistosomiasis. Parasitol Res 2008; 102:825-33. [PMID: 18259777 DOI: 10.1007/s00436-008-0887-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/13/2008] [Indexed: 01/06/2023]
Abstract
Considerable morbidity and mortality results from the affliction of an estimated 200 million people worldwide by several species of schistosomes; 779 million are exposed to the disease in 74 different countries. Even though anti-parasitic drugs and other control measures, including public hygiene and snail control are available, the advent of an effective vaccine still remains the most potentially powerful means for the control of this disease. The putative vaccine could be administered to small children prior to the time when their contact with infected water is maximal, so as to prevent severe infection in the subsequent years. This review attempts to summarize the status of schistosome vaccine development with special emphasis on functionally important vaccine candidates. The importance of utilizing both murine and nonhuman primate models as a prerequisite for clinical trials is discussed.
Collapse
Affiliation(s)
- Afzal A Siddiqui
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, 3601 4th Street, Stop 6591, Lubbock, TX 79430-6591, USA.
| | | | | | | |
Collapse
|
17
|
Kim TI, Cho PY, Song KJ, Li S, Hong SJ, Park SW, Chai JY, Shin EH. Gene expression of Clonorchis sinensis metacercaria induced by gamma irradiation. Parasitol Res 2008; 102:1143-50. [PMID: 18224473 DOI: 10.1007/s00436-008-0882-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 01/09/2008] [Indexed: 01/01/2023]
Abstract
Gamma-rays are a form of ionizing radiation and produce serious cellular damage to nuclei and organelles. Gamma irradiation induces the expressions of genes involved in DNA repair. Clonorchis sinensis resides in and provokes pathophysiologic changes in the bile ducts of mammals. The C. sinensis metacercariae are unsusceptible or resistant to gamma irradiation with LD50 of 16.5 Gy. Using the annealing control primer-based polymerase chain reaction (PCR) method, 19 genes were found to be up-regulated in C. sinensis metacercariae exposed to gamma rays. Contigs of up-regulated genes (URGs) were retrieved in a C. sinensis expressed sequence tag pool and extended by DNA-walking. Of the 13 URGs annotated putatively as functional genes, five URGs were associated with energy metabolism, six with protein processing, and the other two with DNA repair protein RAD23 and inhibitor of apoptosis protein. Four URGs were confirmed up-regulated by gamma irradiation by quantitative real-time PCR. One unknown gene, which was up-regulated to the greatest extent, might contribute to early recovery from gamma-irradiation-induced damage. The up-regulations of genes encoding DNA repair, protein processing, and energy metabolism proteins suggests that increases in gene products orchestrate DNA lesion repair and recover cellular functions in gamma-irradiated C. sinensis metacercariae.
Collapse
Affiliation(s)
- Tae Im Kim
- Department of Parasitology, Chung-Ang University College of Medicine, Tongjak-gu, Seoul 156-756, Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Krautz-Peterson G, Camargo S, Huggel K, Verrey F, Shoemaker CB, Skelly PJ. Amino acid transport in schistosomes: Characterization of the permeaseheavy chain SPRM1hc. J Biol Chem 2007; 282:21767-75. [PMID: 17545149 DOI: 10.1074/jbc.m703512200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schistosomes are human parasitic flatworms that constitute an important public health problem globally. Adult parasites live in the bloodstream where they import nutrients such as amino acids across their body surface (the tegument). One amino acid transporter, Schistosome Permease 1 light chain, SPRM1lc, a member of the glycoprotein-associated family of transporters (gpaAT), has been characterized in schistosomes. Only a single member of the SLC3 family of glycoproteins that associate with gpaATs is found following extensive searching of the genomes of Schistosoma mansoni and S. japonicum. In this report, we characterize this schistosome permease heavy chain (SPRM1hc) gene and protein. The 72-kDa gene product is predicted to possess a single transmembrane domain, a (betaalpha)(8) (TIM barrel) conformation and a catalytic triad. Xenopus oocytes functionally expressing SPRM1hc with SPRM1lc import phenylalanine, arginine, lysine, alanine, glutamine, histidine, tryptophan, and leucine. Biochemical characterization demonstrates that in Xenopus extracts and in schistosome extracts SPRM1hc is associated into a high molecular weight complex with SPRM1lc that is disrupted by reducing agents. Quantitative real-time PCR and Western analysis demonstrate that SPRM1hc is expressed in each schistosome life stage examined (eggs, cercariae, schistosomula, adult males and females). SPRM1hc is widely distributed throughout adult male and female worms as determined by immunolocalization. Consistent with the hypothesis that SPRM1hc functions to facilitate nutrient uptake from host blood, immunogold electron microscopy confirms that the protein is distributed on the host-interactive tegumental membranes. We propose that surface-exposed, host-interactive, nutrient-transporting proteins like the SPRM1 heterodimer are promising vaccine candidates.
Collapse
Affiliation(s)
- Greice Krautz-Peterson
- Molecular Helminthology Laboratory, Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University, Cummings School of Veterinary Medicine, Grafton, MA 01536, USA
| | | | | | | | | | | |
Collapse
|
19
|
Gobert GN, Chai M, McManus DP. Biology of the schistosome lung-stage schistosomulum. Parasitology 2007; 134:453-60. [PMID: 17109780 PMCID: PMC2754249 DOI: 10.1017/s0031182006001648] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/08/2006] [Accepted: 09/11/2006] [Indexed: 11/07/2022]
Abstract
Past and more recent research has examined the ultrastructure, metabolism, cell biology, genomics and post-genomics of schistosome schistosomula. These areas are considered and discussed in this review with particular emphasis on (1) the early migration phases through the host, (2) interaction of the host immune response with the parasite surface, (3) glucose uptake mechanisms, and (4) defining the transcriptional profiles of lung-stage schistosomula compared with other developmental stages using microarrays. The microarray profiling studies suggest caution is required when considering the use of schistosomes obtained by in vitro means for molecular or biochemical studies.
Collapse
Affiliation(s)
- G N Gobert
- Molecular Parasitology Laboratory, Infectious Diseases and Immunology Division, The Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006 Australia.
| | | | | |
Collapse
|
20
|
Abstract
The syncytial cytoplasmic layer, termed the tegument, which covers the entire surface of adult schistosomes, is a major interface between the parasite and its host. Since schistosomes can survive for decades within the host bloodstream, they are clearly able to evade host immune responses, and their ability is dependent on the properties of the tegument surface. We review here the molecular organization and biochemical functions of the tegument, combining the extensive literature over the last three decades with recent proteomic studies. We have interpreted the organization of the tegument surface as bounded by a conventional plasma membrane overlain by a membrane-like secretion, the membranocalyx, with which host molecules can associate. The range of parasite proteins, glycans and lipids found in the surface complex is evaluated, together with the host molecules detected. We consider the way in which the tegument surface is formed after cercarial penetration into the skin, and changes that occur as parasites develop to maturity. Lastly, we review the evidence on surface dynamics and turnover.
Collapse
Affiliation(s)
- Patrick J Skelly
- Tufts Cummings School of Veterinary Medicine, Department of Biomedical Sciences, 20 Westboro Road, North Grafton, MA 01536, USA
| | | |
Collapse
|
21
|
Saule P, Vicogne J, Delacre M, Macia L, Tailleux A, Dissous C, Auriault C, Wolowczuk I. Host glucose metabolism mediates T4 and IL-7 action on Schistosoma mansoni development. J Parasitol 2006; 91:737-44. [PMID: 17089737 DOI: 10.1645/ge-3402.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Interleukin (IL-)7 and thyroxin (T4) favor Schistosoma mansoni development. Their effect is similar, rather than identical; moreover, cotreatment acts synergistically on parasites. This questioned a common mediator to their action, which we hypothesized was host glucose metabolism. Infection with S. mansoni resulted in an early peak in glycemia immediately followed by a peak of insulinemia (D7-21). In IL-7 + T4 cotreated infected animals, the peak of insulin was abrogated. We further assessed the consequences of experimentally induced glucose- or insulin-level variations on parasite development. Insulin treatment from day 14 to day 21 post-infection (PI) led to increased worm burden and parasite size, thus mimicking the effect of T4 on schistosome development. Interestingly, insulin treatment did not modify glycemia yet abrogated the hyperinsulinemia, normally occurring during infection. Finally, these treatments were associated with an alteration of the expression of parasite genes involved in glucose uptake. These experiments characterize the elaborate links between parasite and host metabolism and their reciprocal influences.
Collapse
Affiliation(s)
- Pasquine Saule
- UMR 8527 CNRS Institut de Biologie de Lille, Lille, France 59 021.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schistosoma mansoni: biochemical characterization of lactate transporters or similar proteins. Exp Parasitol 2006; 114:180-8. [PMID: 16682030 DOI: 10.1016/j.exppara.2006.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 11/30/2022]
Abstract
While in medium containing glucose, schistosomes exhibit homolactic fermentation. Accumulation of lactate acid in tissue fluid causes lowering of pH and a resultant inhibition of metabolic pathways. This requires lactate transporter protein in homolactic fermentors to facilitate the translocation of lactate(-) and [H(+)] across their plasma membrane. The ex-vivo experiment assessed lactic acid secretion by adult worms in absence and the presence of lactic acid transporter protein inhibitors. Phloretin and alpha-cyano-4-hydroxycinnamate caused a combined 25-35% inhibition of lactic acid secretion and probenecid increased this inhibition to 65% of control values. The removal of inhibitors resulted in 80% recovery of lactic acid secretion. In the in-vitro studies using vesicles isolated from adult worms and from schistosomula, the effects of phloretin and alpha-cyano-4-hydroxycinnamate were greater, each causing approximately 80% inhibition independently. The data obtained in this study demonstrate the presence of lactic acid transporters or similar proteins in Schistosoma mansoni.
Collapse
|
23
|
Van Hellemond JJ, Retra K, Brouwers JFHM, van Balkom BWM, Yazdanbakhsh M, Shoemaker CB, Tielens AGM. Functions of the tegument of schistosomes: clues from the proteome and lipidome. Int J Parasitol 2006; 36:691-9. [PMID: 16545817 DOI: 10.1016/j.ijpara.2006.01.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/20/2006] [Accepted: 01/25/2006] [Indexed: 10/25/2022]
Abstract
The tegumental outer-surface of schistosomes is a unique double membrane structure that is of crucial importance for modulation of the host response and parasite survival. Although several tegumental proteins had been identified by classical biochemical approaches, knowledge on the entire molecular composition of the tegument was limited. The Schistosoma mansoni genome project, together with recently developed proteomic and lipidomic techniques, allowed studies on detailed characterisation of the proteins and lipids of the tegumental membranes. These studies identified tegumental proteins and lipids that confirm the function of the tegument in nutrient uptake and immune evasion. However, these studies also demonstrated that compared to the complete worm, the tegument is enriched in lipids that are absent in the host. The tegument is also enriched in proteins that share no sequence similarity to any sequence present in databases of species other than schistosomes. These results suggest that the unique tegumental structures comprise multiple unique components that are likely to fulfil yet unknown functions. The tegumental proteome and lipidome, therefore, imply that many unknown molecular mechanisms are employed by schistosomes to survive within their host.
Collapse
Affiliation(s)
- Jaap J Van Hellemond
- Department Biochemistry and Cell Biology, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Gobert GN, Stenzel DJ, McManus DP, Jones MK. The ultrastructural architecture of the adult Schistosoma japonicum tegument. Int J Parasitol 2004; 33:1561-75. [PMID: 14636672 DOI: 10.1016/s0020-7519(03)00255-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The tegument of the adult blood fluke Schistosoma japonicum is in direct contact with the host blood and immune systems. A comprehensive understanding of the ultrastructure of the tegument is crucial to the understanding of how the parasite maintains itself within the mammalian host. Important functions such as nutritional uptake and immune evasion are suspected functions of the tegument and this review discusses these aspects and presents some insights into some of these crucial functions. Transmission electron microscopy has allowed the identification of ultrastructural features of the adult S. japonicum, some of which differ from the reported features of other schistosome species. Morphological differences within the tegument of the adult S. japonicum are noted between sexes, among different regions of the worms and between aspects along the length of the parasite. Differences included variations in the ultrastructure, size and number of tegumental bodies and mitochondria within the matrix, and differences in the relative area of the apical surface of the tegument. Functions of the various components of the tegument matrix and specialised functions of different regions of the male and female parasites are discussed based on ultrastructural findings and previously reported biochemical and molecular data.
Collapse
Affiliation(s)
- Geoffrey N Gobert
- Molecular Parasitology Laboratory, Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Royal Brisbane Hospital Post Office, Herston, Queensland 4006, Australia.
| | | | | | | |
Collapse
|
25
|
Dalton JP, Skelly P, Halton DW. Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. CAN J ZOOL 2004. [DOI: 10.1139/z03-213] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ease of procuring nutrient is probably the main selection pressure that drives and maintains the host–parasite relationship. The feeding activities of the ectoparasitic monogeneans exhibit similarities with the predatory turbellarians, with certain monopisthocotylean members feeding by means of a protrusible pharynx. These parasites degrade fish skin by secreting enzymes extracorporeally, but most of the digestion is carried out intracellularly in cells lining a well-differentiated gut. Some polyopisthocotylean monogeneans, however, living within the vascularized gill chamber, took advantage of the availability of a more highly nutritious, consistent, and renewable diet in the form of blood, and this represented a major step in the evolution of endoparasitism. Blood provides a rich source of carbohydrates for the production of energy and amino acids and fatty acids for the synthesis of parasite molecules and for egg production. The external surfaces of all parasitic flatworms depart from turbellarian character and are composed of a multifunctional syncytial tegument that is permeable to a variety of small organic solutes. Glucose and amino acid transporter molecules situated in the tegumental surface and basal membranes of trematodes and cestodes function in the uptake of these molecules and their distribution to the parasite tissues. Cestodes are bereft of any vestige of a gut, but their tegument has become elaborated into a highly efficient digestive–absorptive layer that competes with the vertebrate mucosa for nutrients. The patterns of energy metabolism in adult flatworm parasites are generally anaerobic and based on glycogen, with abbreviated metabolic pathways and the loss of biosynthetic capacities. In contrast to the tegument, the role of the gut is to digest host macromolecules and subsequently absorb the soluble products. However, the switch to blood as the major source of nutrient necessitated development of a means of overcoming the problems of blood clotting, attack by immune effector mechanisms, and the intracellular accumulations of haematin pigment. Digenean trematode, in contrast to monogeneans, digest blood extracellularly and their secretions include molecules capable of lysing erythrocytes and preventing blood clotting. Digestion of the ingested proteins is generally rapid, involving a range of cathepsin-like cysteine and aspartic proteases, which reduce the blood meal to absorbable peptides that are most likely further catabolized to amino acids by intracellular aminopeptidases. The parasites dispose of accumulated haematin by simply emptying the contents of their blind-ended gut.
Collapse
|
26
|
Skelly PJ, Shoemaker CB. Schistosoma mansoni proteases Sm31 (cathepsin B) and Sm32 (legumain) are expressed in the cecum and protonephridia of cercariae. J Parasitol 2001; 87:1218-21. [PMID: 11695408 DOI: 10.1645/0022-3395(2001)087[1218:smpscb]2.0.co;2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Adult Schistosoma mansoni parasites live in the bloodstream of their vertebrate hosts where they consume red blood cells. Hemoglobin, released from the ingested red blood cells, is degraded by a variety of parasite proteases, including Sm31 (cathepsin B) and Sm32 (schistosome legumain). In this study the localization pattern of the Sm31 and Sm32 enzymes in cercariae (the infectious life cycle stage) was examined. Antibodies generated against recombinant Sm31 and Sm32 recognize their respective proteins in Western blots of soluble parasite extracts. Highest levels are seen in adult female extracts, whereas the level of both proteins is below detection in cercarial extracts. However, in fixed, whole cercariae, both proteins are seen in the cecum and protonephridia. In the cecum, the staining pattern has a granular appearance, suggesting that the proteins are packaged in vesicles. In the protonephridial system, Sm31 and Sm32 are detected in all 8 flame cells in the cercarial body and in both flame cells in the cercarial tail. The distribution of the 2 proteins differs in the flame cells. Examination of immunostained cercariae using laser scanning confocal microscopy shows that whereas Sm31 is located in the tubule cell, Sm32 is found in both the tubule cell and its adjoining cap cell. These findings suggest that the proteins are involved in the proposed excretory and osmoregulatory roles of flame cells.
Collapse
Affiliation(s)
- P J Skelly
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
27
|
Skelly PJ, Shoemaker CB. Induction cues for tegument formation during the transformation of Schistosoma mansoni cercariae. Int J Parasitol 2000; 30:625-31. [PMID: 10779576 DOI: 10.1016/s0020-7519(00)00031-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Adult schistosomes are parasitic blood flukes that have a continuous double lipid bilayered membrane surrounding the entire worm. This tegumental membrane is synthesised during invasion of the vertebrate host by free-swimming infectious forms called cercariae. As cercariae invade their final hosts they lose their tails and encounter a changing environment that includes altered temperature, sugar concentration and osmolarity. We have identified a glucose transporter protein designated SGTP4 that is found exclusively in the outer adult tegument and on membranous vesicles within the tegumental cytoplasm. By using immunofluorescence analysis to monitor the appearance and distribution of SGTP4 we can track the process of new tegumental membrane formation and examine the cues that trigger this developmental pathway. Cercariae in water do not transform their tegument while those incubated in rich medium do so rapidly. We have examined which of the many constituents of rich medium are responsible for triggering this transformation. Incubation in a solution of moderate osmolarity (120 mOsM PBS) is sufficient by itself to trigger tegument transformation, albeit at a slower rate relative to incubation in rich medium. Adding either glucose (to 100 mM) to the solution or increasing the temperature of incubation (from 22 degrees C to 37 degrees C) further increased the rate of tegument biogenesis. The introduction of glucose together with an increase in the incubation temperature further accelerated the process, suggesting that these factors act synergistically to promote transformation rates. The critical nature of osmolarity in inducing the process is highlighted by the fact that transformation proceeds as efficiently in 360 mOsM alone as it does in rich medium. While the fatty acids linolenic acid (cis-9, cis-12, cis-15-octadecatrienoic acid at 1 mM) and capric acid (Decanoic acid, at 0.1 mM) have both been proposed to stimulate tegumental transformation, we show that neither promotes the morphogenesis of a normal schistosomulum tegument. The schistosomicide praziquantel (to 1 mM) has no detectable effect on new tegument formation.
Collapse
Affiliation(s)
- P J Skelly
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Davies SJ, Pearce EJ. Atypical post-translational modification and targeting of a Schistosoma mansoni surface receptor, a member of the transforming growth factor beta receptor family of cell surface receptors. Mol Biochem Parasitol 1999; 104:299-310. [PMID: 10593183 DOI: 10.1016/s0166-6851(99)00147-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The surface membrane of the intravascular parasite Schistosoma mansoni is composed of not one but two closely apposed lipid bilayers which overlie a syncytial cellular layer, known as the tegument or neodermis. To gain insights into how membrane proteins are transported to and displayed on this unusual surface structure, we have investigated the post-translational modification and targeting of SmRK-1, a receptor and type I membrane protein expressed on the parasite surface, using heterologous expression systems. While SmRK-1 enters the secretory pathway in these systems, our data indicate that the SmRK-1 N-terminal signal peptide is either not cleaved by signal peptidase or is only eleven amino acids long or less. Retention of the signal peptide is accompanied by N-linked glycosylation of an asparagine residue within the predicted signal peptide. The SmRK-1 signal peptide is not capable of directing another cytoplasmic protein to the secretory pathway, suggesting that the signal for insertion of the SmRK-1 extracellular domain into the endoplasmic reticulum resides elsewhere in the protein. Further, SmRK-1 is inefficiently transported to the cell surface in mammalian cells, suggesting that the schistosome neodermis possesses specialized systems for receptor targeting and localization.
Collapse
Affiliation(s)
- S J Davies
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell Unirersity, Ithaca, NY 14t53, USA
| | | |
Collapse
|
29
|
Skelly PJ, Tielens AG, Shoemaker CB. Glucose Transport and Metabolism in Mammalian-stage Schistosomes. ACTA ACUST UNITED AC 1998; 14:402-6. [PMID: 17040830 DOI: 10.1016/s0169-4758(98)01319-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adult schistosomes transport nutrients from the host bloodstream across their outer body covering or tegument. The tegument is a cytologically unusual structure; it is a syncytium bounded externally by two lipid bilayer membranes. In this review, Patrick Skelly, Louis Tielens and Chuck Shoemaker reconsider our understanding of how glucose enters schistosomes across this unusual outer covering in the light of recent papers characterizing glucose transport proteins and glucose metabolism pathways in these parasites.
Collapse
Affiliation(s)
- P J Skelly
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
30
|
Abstract
This review discusses some of the recent advances in the characterization of potential vaccine molecules against Schistosoma japonicum, utilizing microscopy and immunocytochemistry methods. Microscopy has demonstrated the stage-specific expression of the muscle protein paramyosin onto the parasite surface, an important consideration as a vaccine target. Other potential vaccine component proteins examined include glutathione S-transferase (GST) and fatty acid binding protein (FABP); although not associated with the adult parasite surface, their localization to internal structures such as lipid droplets and regions of the female reproductive system have provided valuable insights into the biology of the parasite. Localization of the transport protein SGTP (schistosome glucose transporter protein) has demonstrated that the protein is more prevalent in the juvenile stages of the parasite development. This further highlights the diversity of the parasite life cycle. Using both light microscopy and transmission electron microscopy, the localization of a number of schistosome proteins has demonstrated the functions and significance of these proteins within the parasite. Molecular localization studies are crucial in understanding how and when a vaccine may work against the organism and may provide insights into which can be used in the design of future vaccines.
Collapse
Affiliation(s)
- G N Gobert
- Analytical Electron Microscopy Facility, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|