1
|
Petroff R, Hendrix A, Shum S, Grant KS, Lefebvre KA, Burbacher TM. Public health risks associated with chronic, low-level domoic acid exposure: A review of the evidence. Pharmacol Ther 2021; 227:107865. [PMID: 33930455 PMCID: PMC8939048 DOI: 10.1016/j.pharmthera.2021.107865] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Domoic acid (DA), the causative agent for the human syndrome Amnesic Shellfish Poisoning (ASP), is a potent, naturally occurring neurotoxin produced by common marine algae. DA accumulates in seafood, and humans and wildlife alike can subsequently be exposed when consuming DA-contaminated shellfish or finfish. While strong regulatory limits protect people from the acute effects associated with ASP, DA is an increasingly significant public health concern, particularly for coastal dwelling populations, and there is a growing body of evidence suggesting that there are significant health consequences following repeated exposures to levels of the toxin below current safety guidelines. However, gaps in scientific knowledge make it difficult to precisely determine the risks of contemporary low-level exposure scenarios. The present review characterizes the toxicokinetics and neurotoxicology of DA, discussing results from clinical and preclinical studies after both adult and developmental DA exposure. The review also highlights crucial areas for future DA research and makes the case that DA safety limits need to be reassessed to best protect public health from deleterious effects of this widespread marine toxin.
Collapse
Affiliation(s)
- Rebekah Petroff
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Alicia Hendrix
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Kimberly S Grant
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Kathi A Lefebvre
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. East, Seattle, WA, USA
| | - Thomas M Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA; Infant Primate Research Laboratory, Washington National Primate Research Center, Seattle,WA, USA.
| |
Collapse
|
2
|
Giordano G, Kavanagh TJ, Faustman EM, White CC, Costa LG. Low-level domoic acid protects mouse cerebellar granule neurons from acute neurotoxicity: role of glutathione. Toxicol Sci 2013; 132:399-408. [PMID: 23315585 PMCID: PMC3693515 DOI: 10.1093/toxsci/kft002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/28/2012] [Indexed: 11/14/2022] Open
Abstract
Domoic acid (DomA) is a potent marine neurotoxin. By activating α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid/kainate receptors, DomA induces oxidative stress-mediated apoptotic cell death in neurons. The effect of prolonged (10 days) exposure to a low, nontoxic concentration (5nM) of DomA on acute (intermediate concentration) neurotoxicity of this toxin was investigated in cerebellar granule neurons (CGNs) from wild-type mice and mice lacking the glutamate cysteine ligase (GCL) modifier subunit (Gclm (/)). CGNs from Gclm (/) mice have very low glutathione (GSH) levels and are very sensitive to DomA toxicity. In CGNs from wild-type mice, prolonged exposure to 5nM DomA did not cause any overt toxicity but reduced oxidative stress-mediated apoptotic cell death induced by exposure to an intermediate concentration (100nM for 24h) of DomA. This protection was not observed in CGNs from Gclm (/) mice. Prolonged DomA exposure increased GSH levels in CGNs of wild-type but not Gclm (/) mice. Levels of GCLC (the catalytic subunit of GCL) protein and mRNA were increased in CGNs of both mouse strains, whereas levels of GCLM protein and mRNA, activity of GCL, and levels of GCL holoenzyme were only increased in CGNs of wild-type mice. Chronic DomA exposure also protected wild-type CGNs from acute toxicity of other oxidants. The results indicate that CGNs from Gclm (/) mice, which are already more sensitive to DomA toxicity, are unable to upregulate their GSH levels. As Gclm (/) mice may represent a model for a common human polymorphism in GCLM, such individuals may be at particular risk for DomA-induced neurotoxicity.
Collapse
Affiliation(s)
- Gennaro Giordano
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA.
| | | | | | | | | |
Collapse
|
3
|
Toxicokinetics of domoic acid in the fetal rat. Toxicology 2012; 294:36-41. [DOI: 10.1016/j.tox.2012.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 11/16/2022]
|
4
|
Carulla P, Bribián A, Rangel A, Gavín R, Ferrer I, Caelles C, del Río JA, Llorens F. Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. Mol Biol Cell 2011; 22:3041-54. [PMID: 21757544 PMCID: PMC3164453 DOI: 10.1091/mbc.e11-04-0321] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/21/2011] [Accepted: 06/29/2011] [Indexed: 01/15/2023] Open
Abstract
Cellular prion protein (PrP(C)) is a glycosyl-phosphatidylinositol-anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrP(SC)) induces transmissible spongiform encephalopathies. In contrast, PrP(C) has a number of physiological functions in several neural processes. Several lines of evidence implicate PrP(C) in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrP(C) has been implicated in the inhibition of N-methyl-d-aspartic acid (NMDA)-mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnp(o/o)Jnk3(o/o) mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrP(C)-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrP(C) with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6-PSD-95 interaction after KA injections was favored by the absence of PrP(C). Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrP(C) against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.
Collapse
Affiliation(s)
- Patricia Carulla
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
| | - Ana Bribián
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
| | - Alejandra Rangel
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
| | - Rosalina Gavín
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
| | - Isidro Ferrer
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
- Institute of Neuropathology, Bellvitge Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | - Carme Caelles
- Cellular Signalling, Institute for Research in Biomedicine, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
| | - Franc Llorens
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases, Barcelona, Spain
| |
Collapse
|
5
|
Costa LG, Giordano G, Faustman EM. Domoic acid as a developmental neurotoxin. Neurotoxicology 2010; 31:409-23. [PMID: 20471419 PMCID: PMC2934754 DOI: 10.1016/j.neuro.2010.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 11/21/2022]
Abstract
Domoic acid (DomA) is an excitatory amino acid which can accumulate in shellfish and finfish under certain environmental conditions. DomA is a potent neurotoxin. In humans and in non-human primates, oral exposure to a few mg/kg DomA elicits gastrointestinal effects, while slightly higher doses cause neurological symptoms, seizures, memory impairment, and limbic system degeneration. In rodents, which appear to be less sensitive than humans or non-human primates, oral doses cause behavioral abnormalities (e.g. hindlimb scratching), followed by seizures and hippocampal degeneration. Similar effects are also seen in other species (from sea lions to zebrafish), indicating that DomA exerts similar neurotoxic effects across species. The neurotoxicity of DomA is ascribed to its ability to interact and activate the AMPA/KA receptors, a subfamily of receptors for the neuroexcitatory neurotransmitter glutamate. Studies exploring the neurotoxic effects of DomA on the developing nervous system indicate that DomA elicits similar behavioral, biochemical and morphological effects as in adult animals. However, most importantly, developmental neurotoxicity is seen at doses of DomA that are one to two orders of magnitude lower than those exerting neurotoxicity in adults. This difference may be due to toxicokinetic and/or toxicodynamic differences. Estimated safe doses may be exceeded in adults by high consumption of shellfish contaminated with DomA at the current limit of 20 microg/g. Given the potential higher susceptibility of the young to DomA neurotoxicity, additional studies investigating exposure to, and effects of this neurotoxin during brain development are warranted.
Collapse
Affiliation(s)
- Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA.
| | | | | |
Collapse
|
6
|
Poirrier A, Van den Ackerveken P, Kim T, Vandenbosch R, Nguyen L, Lefebvre P, Malgrange B. Ototoxic drugs: Difference in sensitivity between mice and guinea pigs. Toxicol Lett 2010; 193:41-9. [DOI: 10.1016/j.toxlet.2009.12.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/02/2009] [Accepted: 12/06/2009] [Indexed: 01/18/2023]
|
7
|
Rangel A, Madroñal N, Massó AGI, Gavín R, Llorens F, Sumoy L, Torres JM, Delgado-García JM, Río JAD. Regulation of GABA(A) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice. PLoS One 2009; 4:e7592. [PMID: 19855845 PMCID: PMC2763346 DOI: 10.1371/journal.pone.0007592] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Accepted: 09/30/2009] [Indexed: 11/18/2022] Open
Abstract
Background Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrPsc) of the natural cellular prion protein (PrPc) encoded by the Prnp gene. Although several roles have been attributed to PrPc, its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrPc studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. Methodology/Principal Findings Here we explore the role of PrPc expression in neurotransmission and neural excitability using wild-type, Prnp −/− and PrPc-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp −/− mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina™ microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp −/− and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABAA and AMPA-kainate receptors are co-regulated in both Prnp −/− and Tg20 mice. Conclusions/Significance Present results demonstrate that PrPc is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABAA and AMPA-Kainate neurotransmission. New PrPc functions have recently been described, which point to PrPc as a target for putative therapies in Alzheimer's disease. However, our results indicate that a “gain of function” strategy in Alzheimer's disease, or a “loss of function” in prionopathies, may impair PrPc function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.
Collapse
Affiliation(s)
- Alejandra Rangel
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, and Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Noelia Madroñal
- Division de Neurociencias. Universidad Pablo de Olavide, Sevilla, Spain
| | | | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, and Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Franc Llorens
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, and Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lauro Sumoy
- Institute of Predictive and Personalized Medicine of Cancer, Badalona, Spain
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA), INIA, Valdeolmos, Madrid, Spain
| | | | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, and Department of Cell Biology, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- * E-mail: (JADR); (JMDG)
| |
Collapse
|
8
|
Goldstein T, Mazet JAK, Zabka TS, Langlois G, Colegrove KM, Silver M, Bargu S, Van Dolah F, Leighfield T, Conrad PA, Barakos J, Williams DC, Dennison S, Haulena M, Gulland FMD. Novel symptomatology and changing epidemiology of domoic acid toxicosis in California sea lions (Zalophus californianus): an increasing risk to marine mammal health. Proc Biol Sci 2008; 275:267-76. [PMID: 18006409 DOI: 10.1098/rspb.2007.1221] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Harmful algal blooms are increasing worldwide, including those of Pseudo-nitzschia spp. producing domoic acid off the California coast. This neurotoxin was first shown to cause mortality of marine mammals in 1998. A decade of monitoring California sea lion (Zalophus californianus) health since then has indicated that changes in the symptomatology and epidemiology of domoic acid toxicosis in this species are associated with the increase in toxigenic blooms. Two separate clinical syndromes now exist: acute domoic acid toxicosis as has been previously documented, and a second novel neurological syndrome characterized by epilepsy described here associated with chronic consequences of previous sub-lethal exposure to the toxin. This study indicates that domoic acid causes chronic damage to California sea lions and that these health effects are increasing.
Collapse
Affiliation(s)
- T Goldstein
- The Marine Mammal Center, 1065 Fort Cronkhite, Sausalito, CA 94965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Domoic acid toxicologic pathology: a review. Mar Drugs 2008; 6:180-219. [PMID: 18728725 PMCID: PMC2525487 DOI: 10.3390/md20080010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 12/29/2022] Open
Abstract
Domoic acid was identified as the toxin responsible for an outbreak of human poisoning that occurred in Canada in 1987 following consumption of contaminated blue mussels [Mytilus edulis]. The poisoning was characterized by a constellation of clinical symptoms and signs. Among the most prominent features described was memory impairment which led to the name Amnesic Shellfish Poisoning [ASP]. Domoic acid is produced by certain marine organisms, such as the red alga Chondria armata and planktonic diatom of the genus Pseudo-nitzschia. Since 1987, monitoring programs have been successful in preventing other human incidents of ASP. However, there are documented cases of domoic acid intoxication in wild animals and outbreaks of coastal water contamination in many regions world-wide. Hence domoic acid continues to pose a global risk to the health and safety of humans and wildlife. Several mechanisms have been implicated as mediators for the effects of domoic acid. Of particular importance is the role played by glutamate receptors as mediators of excitatory neurotransmission and the demonstration of a wide distribution of these receptors outside the central nervous system, prompting the attention to other tissues as potential target sites. The aim of this document is to provide a comprehensive review of ASP, DOM induced pathology including ultrastructural changes associated to subchronic oral exposure, and discussion of key proposed mechanisms of cell/tissue injury involved in DOM induced brain pathology and considerations relevant to food safety and human health.
Collapse
|
11
|
Rangel A, Burgaya F, Gavín R, Soriano E, Aguzzi A, Del Río JA. Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: Role of AMPA/kainate receptors. J Neurosci Res 2008; 85:2741-55. [PMID: 17304577 DOI: 10.1002/jnr.21215] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Normal physiologic functions of the cellular prion protein (PrPc) are still elusive. This GPI-anchored protein exerts many functions, including roles in neuron proliferation, neuroprotection or redox homeostasis. There are, however, conflicting data concerning its role in synaptic transmission. Although several studies report that PrPc participates in NMDA-mediated neurotransmission, parallel studies describe normal behavior of PrPc-mutant mice. Abnormal axon connections have been described in the dentate gyrus of the hippocampi of PrPc-deficient mice similar to those observed in epilepsy. A study indicates increased susceptibility to kainate (KA) in these mutant mice. We extend the observation of these studies by means of several histologic and biochemical analyses of KA-treated mice. PrPc-deficient mice showed increased sensitivity to KA-induced seizures in vivo and in vitro in organotypic slices. In addition, we show that this sensitivity is cell-specific because interference experiments to abolish PrPc expression increased susceptibility to KA in PrPc-expressing cells. We indicate a correlation of susceptibility to KA in cells lacking PrPc with the differential expression of GluR6 and GluR7 KA receptor subunits using real-time RT-PCR methods. These results indicate that PrPc exerts a neuroprotective role against KA-induced neurotoxicity, probably by regulating the expression of KA receptor subunits.
Collapse
Affiliation(s)
- Alejandra Rangel
- Cellular and Molecular Basis of Neurodegeneration and Neurorepair, Department of Cell Biology, University of Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Hesp BR, Clarkson AN, Sawant PM, Kerr DS. Domoic acid preconditioning and seizure induction in young and aged rats. Epilepsy Res 2007; 76:103-12. [PMID: 17716870 DOI: 10.1016/j.eplepsyres.2007.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 05/21/2007] [Accepted: 07/10/2007] [Indexed: 11/28/2022]
Abstract
Clinical reports suggest that the elderly are hypersensitive to the neurological effects of domoic acid (DOM). In the present study we assessed DOM-induced seizures in young and aged rats, and seizure attenuation following low-dose DOM pretreatment (i.e. preconditioning). Seizure behaviours following saline or DOM administration (0.5-2mg/kg i.p.) were continuously monitored for 2.5h in naïve and DOM preconditioned rats. Competitive ELISA was used to determine serum and brain DOM concentrations. Dose- and age-dependent increases in seizure activity were evident in response to DOM. Lower doses of DOM in young and aged rats promoted low level seizure behaviours. Animals administered high doses (2mg/kg in young; 1mg/kg in aged) progressed through various stages of stereotypical behaviour (e.g., head tics, scratching, wet dog shakes) before ultimately exhibiting tonic-clonic convulsions. Serum and brain DOM analysis indicated impaired renal clearance as contributory to increased DOM sensitivity in aged animals, and this was supported by seizure analysis following direct intrahippocampal administration of DOM. Preconditioning young and aged animals with low-dose DOM 45-90 min before high-dose DOM significantly reduced seizure intensity. We conclude that age-related supersensitivity to DOM is related to reduced clearance rather than increased neuronal sensitivity, and that preconditioning mechanisms underlying an inducible tolerance to excitotoxins are robustly expressed in both young and aged CNS.
Collapse
Affiliation(s)
- Blair R Hesp
- Department of Pharmacology & Toxicology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | | | | | |
Collapse
|
13
|
Qiu S, Pak CW, Currás-Collazo MC. Sequential involvement of distinct glutamate receptors in domoic acid-induced neurotoxicity in rat mixed cortical cultures: effect of multiple dose/duration paradigms, chronological age, and repeated exposure. Toxicol Sci 2005; 89:243-56. [PMID: 16221958 DOI: 10.1093/toxsci/kfj008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The increasing occurrence of poisoning accidents in marine animals caused by the amnesic shellfish toxin, domoic acid (DOM), necessitates a better understanding of the factors contributing to DOM neurotoxicity. Here we evaluated the contribution and temporal involvement of NMDA, non-NMDA- and metabotropic-type glutamate receptors (GluRs) in DOM-induced neuronal death using rat primary mixed cortical cultures. Co-application of antagonists for AMPA/kainate- (NBQX) and NMDA-type GluRs (D-AP5) but not for metabotropic GluRs reduced DOM toxicity induced by either of three EC50 dose/duration exposure paradigms. Maximal protection offered by D-AP5 and NBQX either extended or not to the 30- to 60-min period after DOM exposure, respectively. Antagonists were ineffective if applied with a 2-h delay, indicating the presence of a critical time window for neuronal protection after DOM exposure. Early effects correlated with neuronal swelling was seen as early as 10 min post-DOM, which has been linked to non-NMDAR-mediated depolarization and release of endogenous glutamate. That DOM toxicity is dictated by iGluRs is supported by the finding that increased efficacy and potency of DOM with in vitro neuronal maturation are positively correlated with elevated protein levels of iGluR subunits, including NR1, GluR1, GluR2/3, GluR5, and GluR6/7. We determined the time course of DOM excitotoxicity. At >10 microM maximal neuronal death occurs within 2 h, while doses < or = 10 microM continue to produce death during the subsequent 22-h washout period, indicating a quicker progression of the neuronal death cascade with high DOM concentrations. Accordingly, NBQX applied 30 min post-DOM afforded better protection against low dose/prolonged duration (3 microM/24 h) than against high dose/brief duration exposure (50 microM/10 min). Interestingly, prior exposure to subthreshold DOM dose-dependently aggravated toxicity produced by a subsequent exposure to DOM. These findings provide greater insight into the complex properties underlying DOM toxicity, including the sequential involvement of multiple GluRs, greater potency with increasing neuronal maturation and protein levels of iGluRs, varying efficacy depending on dose, duration, and prior history of DOM exposure.
Collapse
Affiliation(s)
- Shenfeng Qiu
- Environmental Toxicology Graduate Program, University of California at Riverside, Riverside, California 92521, USA
| | | | | |
Collapse
|
14
|
Ryan JC, Morey JS, Ramsdell JS, Van Dolah FM. Acute phase gene expression in mice exposed to the marine neurotoxin domoic acid. Neuroscience 2005; 136:1121-32. [PMID: 16216424 DOI: 10.1016/j.neuroscience.2005.08.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 07/11/2005] [Accepted: 08/15/2005] [Indexed: 11/23/2022]
Abstract
Domoic acid is a rigid analog of the neurotransmitter glutamate and a potent agonist of kainate subtype glutamate receptors. Persistent activation of these receptor subtypes results in rapid excitotoxicity, calcium dependent cell death and neuronal lesions in areas of the brain where kainate pathways are concentrated. To better understand responses to domoic acid induced excitotoxicity, microarrays were used to profile gene expression in mouse brain following domoic acid exposure. Adult female mice were subjected intraperitoneally to domoic acid at the lethal dose 50, killed and dissected at 30, 60 and 240 min post-injection. Total brain RNA from treated mice was compared with time-matched controls on Agilent 22K feature microarrays. Real-time PCR was performed on selected genes. For the 30, 60 and 240 min time points, 3.96%, 3.94% and 4.36% of the genes interrogated were differentially expressed (P-value < or = 0.01), respectively. Rigorous filtering of the data resulted in a set of 56 genes used for trending analysis and K-medians and agglomerative clustering. The earliest genes induced consisted primarily of early response gene families (Jun, Fos, Ier, Egr, growth arrest and DNA damage 45) and the inflammatory response element cyclooxygenase 2. Some later responding genes involved glucocorticoid responses (Gilz, Sgk), cold inducible proteins (Cirbp, Rbm3), Map kinases (Map3k6) and NF-kappaB inhibition. Real-time PCR in male mice from an additional study confirmed the expression of several of these genes across gender. The transcriptional profile induced by domoic acid shared similarity with expression profiles of brain ischemia and other excitotoxins, suggesting a common transcriptional response.
Collapse
Affiliation(s)
- J C Ryan
- Marine Biotoxins Program, NOAA/National Ocean Service Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412, USA.
| | | | | | | |
Collapse
|
15
|
Jeffery B, Barlow T, Moizer K, Paul S, Boyle C. Amnesic shellfish poison. Food Chem Toxicol 2004; 42:545-57. [PMID: 15019178 DOI: 10.1016/j.fct.2003.11.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2002] [Accepted: 11/07/2003] [Indexed: 11/22/2022]
Abstract
Amnesic shellfish poisoning (ASP) is caused by consumption of shellfish that have accumulated domoic acid, a neurotoxin produced by some strains of phytoplankton. The neurotoxic properties of domoic acid result in neuronal degeneration and necrosis in specific regions of the hippocampus. A serious outbreak of ASP occurred in Canada in 1987 and involved 150 reported cases, 19 hospitalisations and 4 deaths after consumption of contaminated mussels. Symptoms ranged from gastrointestinal disturbances, to neurotoxic effects such as hallucinations, memory loss and coma. Monitoring programmes are in place in numerous countries worldwide and closures of shellfish harvesting areas occur when domoic acid concentrations exceed regulatory limits. This paper reviews the chemistry, sources, metabolism and toxicology of domoic acid as well as human case reports of ASP and discusses a possible mechanism of toxicity.
Collapse
Affiliation(s)
- B Jeffery
- Food Standards Agency, Aviation House, 125 Kingsway, London WC2B 6NH, UK.
| | | | | | | | | |
Collapse
|
16
|
Sari P, Kerr DS. Domoic acid-induced hippocampal CA1 hyperexcitability independent of region CA3 activity. Epilepsy Res 2001; 47:65-76. [PMID: 11673022 DOI: 10.1016/s0920-1211(01)00295-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Domoic acid (DOM) is a potent agonist of AMPA and kainic acid (KA) receptors in the CNS and is known to produce seizures acutely, and lasting excitotoxic damage in several brain regions. While the excitotoxic effects of DOM are well documented, its seizurogenic properties are less clear. In this study, we assessed the acute effects of DOM and KA in region CA1 of intact rat hippocampal slices (CA3-on) and in slices lacking region CA3 (CA3-off). Orthodromic Schaffer collateral-evoked CA1 field potentials (population spikes and somal EPSP's) were monitored during DOM and KA (10-500 nM) administration. In CA3-off slices both KA and DOM produced immediate increases in CA1 population spike amplitude. With prolonged exposure, lasting dose-dependent reductions in spike amplitude and EPSP slope were observed, possibly due to depolarising conduction block following excessive AMPA/KA receptor activation; DOM was several-fold more potent than KA in this regard. Population spike threshold did not vary with DOM, but in CA3-on slices a dose-dependent steepening of the I/O curve and increase in maximum spike amplitude was seen. CA1 hyperexcitability, as evidenced by the appearance of prominent second and third population spikes, was equivalently increased across a range of DOM concentrations in both CA3-on and CA3-off slices and, in general, DOM-induced CA1 hyperexcitability was not enhanced by the presence of CA3 for any of the other variables assessed in this study. These findings show that DOM directly promotes neuronal hyperactivity in region CA1, presumably due to tonic AMPA and/or KA-receptor mediated depolarization, and further suggests that DOM-induced hyperactivity in the recurrently networked, AMPA/KA-receptor rich region CA3 does not contribute to the onset and spread of limbic seizures during relatively mild DOM intoxication.
Collapse
Affiliation(s)
- P Sari
- Department of Pharmacology, University of Otago School of Medical Sciences, PO Box 913, Dunedin, New Zealand
| | | |
Collapse
|
17
|
Gabrielson KL, Hogue BA, Bohr VA, Cardounel AJ, Nakajima W, Kofler J, Zweier JL, Rodriguez ER, Martin LJ, de Souza-Pinto NC, Bressler J. Mitochondrial toxin 3-nitropropionic acid induces cardiac and neurotoxicity differentially in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:1507-20. [PMID: 11583977 PMCID: PMC1850498 DOI: 10.1016/s0002-9440(10)62536-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the effects of 3-nitropropionic acid (3NPA), a previously characterized neurotoxin, in four strains of mice to better understand the molecular basis of variable host responses to this agent. Unexpectedly, we found significant cardiac toxicity that always accompanied the neurotoxicity in all strains of mice in acute and subacute/chronic toxicity testing. Caudate putamen infarction never occurred without cardiac toxicity. All mouse strains tested are sensitive to 3NPA although the C57BL/6 and BALB/c mice require more exposure than 129SVEMS and FVB/n mice. Cardiac toxicity alone was found in 50% of symptomatic mice tested and morphologically, the cardiac toxicity is characterized by diffuse swelling of cardiomyocytes and multifocal coagulative contraction band necrosis. In subacute to chronic exposure, atrial thrombosis, cardiac mineralization, cell loss, and fibrosis are combined with cardiomyocyte swelling and necrosis. Ultrastructurally, mitochondrial swelling occurs initially, followed by disruption of myofilaments. Biochemically, isolated heart mitochondria from the highly sensitive 129SVEMS mice have a significant reduction of succinate dehydrogenase activity, succinate oxygen consumption rates, and heart adenosine triphosphate after 3NPA treatment. The severity of morphological changes parallels the biochemical alterations caused by 3NPA, consistent with cardiac toxicity being a consequence of the effects of 3NPA on succinate dehydrogenase. These experiments show, for the first time, that 3NPA has important cardiotoxic effects as well as neurotoxic effects, and that cardiac toxicity possibly resulting from inhibition of the succinate dehydrogenase in heart mitochondria, contributes to the cause of death in 3NPA poisoning in acute and subacute/chronic studies in mice.
Collapse
Affiliation(s)
- K L Gabrielson
- Division of Comparative Medicine, School of Medicine, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Doucette TA, Strain SM, Allen GV, Ryan CL, Tasker RA. Comparative behavioural toxicity of domoic acid and kainic acid in neonatal rats. Neurotoxicol Teratol 2000; 22:863-9. [PMID: 11120392 DOI: 10.1016/s0892-0362(00)00110-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cumulative behavioural toxicity was measured in groups of male and female rat pups (n=6/sex) at different stages of postnatal development. Dose-response curves (DRCs) for toxicity produced by domoic acid (DOM) were generated using animals on postnatal days (PND) 0, 5, 14, and 22, using a behavioural rating scale. In a subsequent experiment, DRCs for toxicity generated by either DOM or kainic acid were produced in rats at PND 8 and 14 for comparison between the two toxins. DOM was found to be a very potent neurotoxin in newborn rats and the potency of DOM progressively decreased with increasing age (interpolated ED(50)=0.12, 0.15, 0.30, and 1.06 mg/kg at PND 0, 5, 14, and 22, respectively). In addition, the patterns of behavioural expression were found to differ with age. Comparisons between DOM and kainic acid revealed that DOM was approximately six-fold more potent than kainate at both PND 8 and PND 14 and that both toxins were approximately two-fold less potent in PND 14 rats, compared to PND 8. This implies that the mechanism(s) responsible for reduced potency is/are similar between the two compounds. Consistent with previous reports, however, there were both similarities and differences in the observed patterns of behavioural toxicity produced by the two toxins at both ages.
Collapse
Affiliation(s)
- T A Doucette
- Department of Anatomy and Physiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, C1A 4P3, Charlottetown, PEI, Canada
| | | | | | | | | |
Collapse
|
19
|
Clayton EC, Peng YG, Means LW, Ramsdell JS. Working memory deficits induced by single but not repeated exposures to domoic acid. Toxicon 1999; 37:1025-39. [PMID: 10484738 DOI: 10.1016/s0041-0101(98)00230-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single injections of domoic acid, given either intraperitoneally to mice or directly into the hippocampal formation of rats, have been shown to impair learning on the place version of the Morris water maze task and the eight arm radial maze task. The present study was designed to test whether both single and repeated exposures of intraperitoneally administered domoic acid (1.0 or 2.0 mg/kg) impair spatial working memory in mice on a delayed matching-to-sample task. DBA strain mice were given a series of four injections over a 7-day period consisting of either saline or one of two doses of domoic acid. During the 18 days of testing, each subject was given one trial per day consisting of one information run, followed by three test runs. On non-alternation days (days in which the correct response was the same as the preceding day) the saline injected group significantly outperformed the single injection 2.0 mg/kg domoic acid group. This indicates that domoic acid-treated animals were incapable of forming a memory that persisted for 24 h and hence were less able to utilize the prior day's experience. However, the repeated exposure groups did not perform as poorly on non-alternation days than the single exposure groups, indicating that domoic acid may affect multiple mechanisms involved in memory consolidation.
Collapse
Affiliation(s)
- E C Clayton
- Department of Psychology, East Carolina University, Greenville, NC 27858, USA
| | | | | | | |
Collapse
|