1
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Blagojevic B, Van Damme I, Hempen M, Messens W, Bolton D. Microbiological safety of aged meat. EFSA J 2023; 21:e07745. [PMID: 36698487 PMCID: PMC9850206 DOI: 10.2903/j.efsa.2023.7745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The impact of dry-ageing of beef and wet-ageing of beef, pork and lamb on microbiological hazards and spoilage bacteria was examined and current practices are described. As 'standard fresh' and wet-aged meat use similar processes these were differentiated based on duration. In addition to a description of the different stages, data were collated on key parameters (time, temperature, pH and aw) using a literature survey and questionnaires. The microbiological hazards that may be present in all aged meats included Shiga toxin-producing Escherichia coli (STEC), Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, enterotoxigenic Yersinia spp., Campylobacter spp. and Clostridium spp. Moulds, such as Aspergillus spp. and Penicillium spp., may produce mycotoxins when conditions are favourable but may be prevented by ensuring a meat surface temperature of -0.5 to 3.0°C, with a relative humidity (RH) of 75-85% and an airflow of 0.2-0.5 m/s for up to 35 days. The main meat spoilage bacteria include Pseudomonas spp., Lactobacillus spp. Enterococcus spp., Weissella spp., Brochothrix spp., Leuconostoc spp., Lactobacillus spp., Shewanella spp. and Clostridium spp. Under current practices, the ageing of meat may have an impact on the load of microbiological hazards and spoilage bacteria as compared to standard fresh meat preparation. Ageing under defined and controlled conditions can achieve the same or lower loads of microbiological hazards and spoilage bacteria than the variable log10 increases predicted during standard fresh meat preparation. An approach was used to establish the conditions of time and temperature that would achieve similar or lower levels of L. monocytogenes and Yersinia enterocolitica (pork only) and lactic acid bacteria (representing spoilage bacteria) as compared to standard fresh meat. Finally, additional control activities were identified that would further assure the microbial safety of dry-aged beef, based on recommended best practice and the outputs of the equivalence assessment.
Collapse
|
2
|
Use of bacterial strains antagonistic to Escherichia coli for biocontrol of spinach: A field trial. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Fuchisawa Y, Abe H, Koyama K, Koseki S. Competitive growth kinetics of Campylobacter jejuni, Escherichia coli O157:H7 and Listeria monocytogenes with enteric microflora in a small-intestine model. J Appl Microbiol 2021; 132:1467-1478. [PMID: 34498377 PMCID: PMC9291610 DOI: 10.1111/jam.15294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 09/04/2021] [Indexed: 11/29/2022]
Abstract
Aims The biological events occurring during human digestion help to understand the mechanisms underlying the dose–response relationships of enteric bacterial pathogens. To better understand these events, we investigated the growth and reduction behaviour of bacterial pathogens in an in vitro model simulating the environment of the small intestine. Methods and Results The foodborne pathogens Campylobacter jejuni, Listeria monocytogenes and Escherichia coli O157:H7 were cultured with multiple competing enteric bacteria. Differences in the pathogen's growth kinetics due to the relative amount of competing enteric bacteria were investigated. These growth differences were described using a mathematical model based on Bayesian inference. When pathogenic and enteric bacteria were inoculated at 1 log CFU per ml and 9 log CFU per ml, respectively, L. monocytogenes was inactivated over time, while C. jejuni and E. coli O157:H7 survived without multiplying. However, as pathogen inocula were increased, its inhibition by enteric bacteria also decreased. Conclusions Although the growth of pathogenic species was inhibited by enteric bacteria, the pathogens still survived. Significance and Impact of the Study Competition experiments in a small‐intestine model have enhanced understanding of the infection risk in the intestine and provide insights for evaluating dose–response relationships.
Collapse
Affiliation(s)
- Yuto Fuchisawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroki Abe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kento Koyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shigenobu Koseki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Handorf O, Pauker VI, Weihe T, Schäfer J, Freund E, Schnabel U, Bekeschus S, Riedel K, Ehlbeck J. Plasma-Treated Water Affects Listeria monocytogenes Vitality and Biofilm Structure. Front Microbiol 2021; 12:652481. [PMID: 33995311 PMCID: PMC8113633 DOI: 10.3389/fmicb.2021.652481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Plasma-generated compounds (PGCs) such as plasma-processed air (PPA) or plasma-treated water (PTW) offer an increasingly important alternative for the control of microorganisms in hard-to-reach areas found in several industrial applications including the food industry. To this end, we studied the antimicrobial capacity of PTW on the vitality and biofilm formation of Listeria monocytogenes, a common foodborne pathogen. Results: Using a microwave plasma (MidiPLexc), 10 ml of deionized water was treated for 100, 300, and 900 s (pre-treatment time), after which the bacterial biofilm was exposed to the PTW for 1, 3, and 5 min (post-treatment time) for each pre-treatment time, separately. Colony-forming units (CFU) were significantly reduced by 4.7 log10 ± 0.29 log10, as well as the metabolic activity decreased by 47.9 ± 9.47% and the cell vitality by 69.5 ± 2.1%, compared to the control biofilms. LIVE/DEAD staining and fluorescence microscopy showed a positive correlation between treatment and incubation times, as well as reduction in vitality. Atomic force microscopy (AFM) indicated changes in the structure quality of the bacterial biofilm. Conclusion: These results indicate a promising antimicrobial impact of plasma-treated water on Listeria monocytogenes, which may lead to more targeted applications of plasma decontamination in the food industry in the future.
Collapse
Affiliation(s)
- Oliver Handorf
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | | | - Thomas Weihe
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Jan Schäfer
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Eric Freund
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Uta Schnabel
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University, Dublin, Ireland
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jörg Ehlbeck
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| |
Collapse
|
5
|
Salazar JK, Gonsalves LJ, Fay M, Ramachandran P, Schill KM, Tortorello ML. Metataxonomic Profiling of Native and Starter Microbiota During Ripening of Gouda Cheese Made With Listeria monocytogenes-Contaminated Unpasteurized Milk. Front Microbiol 2021; 12:642789. [PMID: 33776975 PMCID: PMC7994605 DOI: 10.3389/fmicb.2021.642789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/19/2021] [Indexed: 12/02/2022] Open
Abstract
Unpasteurized milk is used to produce aged artisanal cheeses, which presents a safety concern due to possible contamination with foodborne pathogens, especially Listeria monocytogenes. The objective of this study was to examine the composition of the bacterial community in unpasteurized milk used to prepare Gouda cheese artificially contaminated with L. monocytogenes (~1 log CFU/ml) and assess the community dynamics and their potential interaction with L. monocytogenes during a 90-day ripening period using targeted 16S rRNA sequencing. The diversity of bacterial taxa in three batches of unpasteurized milk was not significantly different, and the microbiomes were dominated by species of Lactococcus, Streptomyces, Staphylococcus, and Pseudomonas. The highest relative abundances were observed for Pseudomonas fluorescens (31.84-78.80%) and unidentified operational taxonomic units (OTUs) of Pseudomonas (7.56-45.27%). After manufacture, both with and without L. monocytogenes-contaminated unpasteurized milk, Gouda cheese was dominated by starter culture bacteria (including Lactococcus lactis subsp. cremoris, lactis, lactis bv. diacetylactis, and Streptococcus thermophilus), in addition to unassigned members in the taxa L. lactis and Streptococcus. During ripening there was an overall decrease in L. lactis abundance and an increase in the number of taxa with relative abundances >0.1%. After 90-day ripening, a total of 82 and 81 taxa were identified in the Gouda cheese with and without L. monocytogenes, respectively. Of the identified taxa after ripening, 31 (Gouda cheese with L. monocytogenes) and 56 (Gouda cheese without L. monocytogenes) taxa had relative abundances >0.1%; 31 were shared between the two types of Gouda cheese, and 25 were unique to the Gouda cheese without added L. monocytogenes. No unique taxa were identified in the Gouda cheese with the added L. monocytogenes. This study provides information on the dynamics of the bacterial community in Gouda cheese during ripening, both with and without the addition of L. monocytogenes.
Collapse
Affiliation(s)
- Joelle K. Salazar
- Division of Food Processing Science and Technology, Office of Food Safety, U. S. Food and Drug Administration, Bedford Park, IL, United States
| | - Lauren J. Gonsalves
- Division of Food Processing Science and Technology, Office of Food Safety, U. S. Food and Drug Administration, Bedford Park, IL, United States
| | - Megan Fay
- Division of Food Processing Science and Technology, Office of Food Safety, U. S. Food and Drug Administration, Bedford Park, IL, United States
| | - Padmini Ramachandran
- Division of Microbiology, Office of Food Safety, U. S. Food and Drug Administration, College Park, MD, United States
| | - Kristin M. Schill
- Division of Food Processing Science and Technology, Office of Food Safety, U. S. Food and Drug Administration, Bedford Park, IL, United States
| | - Mary Lou Tortorello
- Division of Food Processing Science and Technology, Office of Food Safety, U. S. Food and Drug Administration, Bedford Park, IL, United States
| |
Collapse
|
6
|
Gkerekou MA, Athanaseli KG, Kapetanakou AE, Drosinos EH, Skandamis PN. Εvaluation of oxygen availability on growth and inter-strain interactions of L. monocytogenes in/on liquid, semi-solid and solid laboratory media. Int J Food Microbiol 2021; 341:109052. [PMID: 33515814 DOI: 10.1016/j.ijfoodmicro.2021.109052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The coexistence and interactions among Listeria monocytogenes strains in combination with the structural characteristics of foods, may influence their growth capacity and thus, the final levels at the time of consumption. In the present study, we aimed to evaluate the effect of oxygen availability in combination with substrate micro-structure on growth and inter-strain interactions of L. monocytogenes. L. monocytogenes strains, selected for resistance to different antibiotics (to enable distinct enumeration), belonging to serotypes 4b (C5, ScottA), 1/2a (6179) and 1/2b (PL25) and were inoculated in liquid (Tryptic Soy Broth supplemented with Yeast Extract - TSB-YE) and solid (TSB-YE supplemented with 0.6% and 1.2% agar) media (2-3 log CFU/mL, g or cm2), single or as two-strain cultures (1:1 strain-ratio). Aerobic conditions (A) were achieved with constant shaking or surface inoculation for liquid and solid media respectively, while static incubation or pour plated media corresponded to hypoxic environment (H). Anoxic conditions (An) were attained by adding 0.1% w/v sodium thioglycolate and paraffin overlay (for solid media). Growth was assessed during storage at 7 °C (n = 3 × 2). Inter-strain interactions were manifested by the difference in the final population between singly and co-cultured strains. Τhe extent of suppression increased with reduction in agar concentration, while the impact of oxygen availability was dependent on strain combination. During co-culture, in liquid and solid media, 6179 was suppressed by C5 by 4.0 (in TSB-YE under H) to 1.8 log units (in solid medium under An), compared to the single culture, which attained population of ca. 9.4 log CFU/mL or g. The growth of 6179 was also inhibited by ScottA by 2.7 and 1.9 log units, in liquid culture under H and An, respectively. Interestingly, in liquid medium under A, H and An, ScottA was suppressed by C5, by 3.3, 2.4 and 2.3 log units, respectively, while in solid media, growth inhibition was less pronounced. Investigating growth interactions in different environments could assist in explaining the dominance of L. monocytogenes certain serotypes.
Collapse
Affiliation(s)
- Maria A Gkerekou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Konstantina G Athanaseli
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Anastasia E Kapetanakou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Eleftherios H Drosinos
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece.
| |
Collapse
|
7
|
Misra G, Gibson KE. Survival of Salmonella enterica subsp. enterica serovar Javiana and Listeria monocytogenes is dependent on type of soil-free microgreen cultivation matrix. J Appl Microbiol 2020; 129:1720-1732. [PMID: 32396260 DOI: 10.1111/jam.14696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
Abstract
AIMS This study measured the survival of Listeria monocytogenes and Salmonella enterica subsp. enterica serovar Javiana over a 10-day period on four soil-free cultivation matrix (SFCM) types in the absence of microgreens and fertilizers. METHODS AND RESULTS Coco coir (CC), a Sphagnum peat/vermiculite mix, Biostrate® and hemp mat samples were inoculated with 3 × 106 CFU per ml bacteria, incubated at room temperature, and analysed on day 0, 1, 3, 6, and 10. Statistically significant differences in pathogen survival were observed across multiple time points for hemp and Biostrate compared to CC, peat and bacteria in phosphate buffered saline (PBS) (P < 0·05). S. Javiana showed greater overall survival compared to Listeria (P < 0·0002). By day 10, S. Javiana persisted at the initial inoculum concentration for hemp and Biostrate while declining by 1-2 log CFU per ml in CC, peat and PBS. Listeria also persisted at the initial concentration in hemp and Biostrate but decreased to 1 log CFU per ml in peat and below the detection limit in CC and PBS. CONCLUSIONS Overall, there are survival differences between bacterial pathogens in SFCM used in microgreen production systems. To our knowledge, this is the first comparison of survival among SFCM involving a S. enterica serovar and L. monocytogenes, and the first study comparing CC, Biostrate and hemp. SIGNIFICANCE AND IMPACT OF THE STUDY Microgreens production systems predominantly utilize soil alternatives, and it is not well-understood how pathogen transmission risk may be affected by the type of SFCM. The results of this study impact the microgreen industry as media selection may be used to reduce the risk of bacterial pathogen proliferation and transmission to the plant potentially resulting in potential foodborne illness.
Collapse
Affiliation(s)
- G Misra
- Division of Agriculture, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - K E Gibson
- Division of Agriculture, Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
8
|
Chen Y, Wang X, Zhang X, Xu D, Zhang W, Qiu J, Liu Q, Dong Q. Modeling the interactions among
Salmonella
enteritidis,
Pseudomonas aeruginosa
, and
Lactobacillus plantarum. J Food Saf 2020. [DOI: 10.1111/jfs.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanmei Chen
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Xiang Wang
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Xibin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and EngineeringShandong Agricultural University Taian Shandong China
- New Hope Liuhe Co., Ltd. Beijing China
| | - Dongpo Xu
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Wenmin Zhang
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Jingxuan Qiu
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Qing Liu
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| | - Qingli Dong
- School of Medical Instrument and Food EngineeringUniversity of Shanghai for Science and Technology Shanghai China
| |
Collapse
|
9
|
Quinto EJ, Marín JM, Caro I, Mateo J, Schaffner DW. Modelling Growth and Decline in a Two-Species Model System: Pathogenic Escherichia coli O157:H7 and Psychrotrophic Spoilage Bacteria in Milk. Foods 2020; 9:E331. [PMID: 32178268 PMCID: PMC7142549 DOI: 10.3390/foods9030331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023] Open
Abstract
Shiga toxin-producing Escherichia coli O157:H7 is a food-borne pathogen and the major cause of hemorrhagic colitis. Pseudomonas is the genus most frequent psychrotrophic spoilage microorganisms present in milk. Two-species bacterial systems with E. coli O157:H7, non-pathogenic E. coli, and P. fluorescens in skimmed milk at 7, 13, 19, or 25 °C were studied. Bacterial interactions were modelled after applying a Bayesian approach. No direct correlation between P. fluorescens's growth rate and its effect on the maximum population densities of E. coli species was found. The results show the complexity of the interactions between two species in a food model. The use of natural microbiota members to control foodborne pathogens could be useful to improve food safety during the processing and storage of refrigerated foods.
Collapse
Affiliation(s)
- Emiliano J. Quinto
- Department of Nutrition and Food Science, College of Medicine, University of Valladolid, 47005 Valladolid, Spain;
| | - Juan M. Marín
- Department of Statistics, University Carlos III de Madrid, 28903 Getafe, Madrid, Spain;
| | - Irma Caro
- Department of Nutrition and Food Science, College of Medicine, University of Valladolid, 47005 Valladolid, Spain;
| | - Javier Mateo
- Department of Food Hygiene and Food Technology, University of León, Campus de Vegazana s/n, 24071 León, Spain;
| | - Donald W. Schaffner
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| |
Collapse
|
10
|
Sharma R, Gal L, Garmyn D, Bisaria VS, Sharma S, Piveteau P. Evidence of Biocontrol Activity of Bioinoculants Against a Human Pathogen, Listeria monocytogenes. Front Microbiol 2020; 11:350. [PMID: 32218775 PMCID: PMC7078112 DOI: 10.3389/fmicb.2020.00350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/17/2020] [Indexed: 11/13/2022] Open
Abstract
Due to rhizodeposits and various microbial interactions, the rhizosphere is an extremely dynamic system, which provides a conductive niche not only for bacteria beneficial to plants but also for those that might pose a potential threat to humans. The importance of bioinoculants as biocontrol agents to combat phytopathogens has been widely recognized. However, little information exists with respect to their role in inhibiting human pathogens in the rhizosphere. The present study is an attempt to understand the impact of an established bacterial consortium, Azotobacter chroococcum, Bacillus megaterium, and Pseudomonas fluorescens, on the survivability of Listeria monocytogenes in the rhizosphere of Cajanus cajan and Festuca arundinacea. An experiment conducted in Hoagland's medium in the presence of C. cajan demonstrated that the presence of bioinoculants impaired growth of L. monocytogenes compared to that observed in their absence. On the other hand, in the presence of F. arundinacea, no significant differences were observed in the population dynamics of L. monocytogenes in the presence or absence of the bioinoculants. Agar plate assay through cross streak method revealed the inhibition of L. monocytogenes by bioinoculants. Potential bioactive compounds were identified by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). These results suggest that agricultural amendments can act as protective agents against human pathogens while enforcing plant growth promotion.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Laurent Gal
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne – Franche-Comté, Dijon, France
| | - Dominique Garmyn
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne – Franche-Comté, Dijon, France
| | - V. S. Bisaria
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Pascal Piveteau
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique, Université Bourgogne – Franche-Comté, Dijon, France
| |
Collapse
|
11
|
Choyam S, Srivastava AK, Shin JH, Kammara R. Ocins for Food Safety. Front Microbiol 2019; 10:1736. [PMID: 31428063 PMCID: PMC6687839 DOI: 10.3389/fmicb.2019.01736] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
The food industry produces highly perishable products. Food spoilage represents a severe problem for food manufacturers. Therefore, it is important to identify effective preservation solutions to prevent food spoilage. Ocins (e.g., bacteriocins, lactocins, and enterocins) are antibacterial proteins synthesized by bacteria that destroy or suppress the growth of related or unrelated bacterial strains. Ocins represent a promising strategy for food preservation, because of their antagonist effects toward food spoilage microorganisms, high potency, and low toxicity. Additionally, they can be bioengineered. The most common and commercially available ocins are nisin, plantaracin, sakacin P, and pediocin. Several ocins have been characterized and studied biochemically and genetically; however, their structure-function relationship, biosynthesis, and mechanism of action are not understood. This narrative review focuses primarily on ocins and their relevance to the food industry to help prevent food spoilage. In particular, the applications and limitations of ocins in the food industry are highlighted.
Collapse
Affiliation(s)
- Shilja Choyam
- Affiliated to AcSIR for Ph.D. Thesis, CSIR-CFTRI, Mysuru, India
- Department of Protein Chemistry and Technology, CSIR-CFTRI, Mysuru, India
| | | | - Jae-Ho Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Rajagopal Kammara
- Affiliated to AcSIR for Ph.D. Thesis, CSIR-CFTRI, Mysuru, India
- Department of Protein Chemistry and Technology, CSIR-CFTRI, Mysuru, India
| |
Collapse
|
12
|
Patange A, Boehm D, Ziuzina D, Cullen PJ, Gilmore B, Bourke P. High voltage atmospheric cold air plasma control of bacterial biofilms on fresh produce. Int J Food Microbiol 2019; 293:137-145. [PMID: 30711711 DOI: 10.1016/j.ijfoodmicro.2019.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/24/2022]
Abstract
Atmospheric cold plasma (ACP) offers great potential for decontamination of food borne pathogens. This study examined the antimicrobial efficacy of ACP against a range of pathogens of concern to fresh produce comparing planktonic cultures, monoculture biofilms (Escherichia coli, Salmonella enterica, Listeria monocytogenes, Pseudomonas fluorescens) and mixed culture biofilms (Listeria monocytogenes and Pseudomonas fluorescens). Biotic and abiotic surfaces commonly occurring in the fresh food industry were investigated. Microorganisms showed varying susceptibility to ACP treatment depending on target and process factors. Bacterial biofilm populations treated with high voltage (80 kV) ACP were reduced significantly (p < 0.05) in both mono- and mixed species biofilms after 60 s of treatment and yielded non-detectable levels after extending treatment time to 120 s. However, an extended time was required to reduce the challenge mixed culture biofilm of L. monocytogenes and P. fluorescens inoculated on lettuce, which was dependent on biofilm formation conditions and substrate. Contained treatment for 120 s reduced L. monocytogenes and P. fluorescens inoculated as mixed cultures on lettuce (p < 0.05) by 2.2 and 4.2 Log10 CFU/ml respectively. When biofilms were grown at 4 °C on lettuce, there was an increased resistance to ACP treatment by comparison with biofilm grown at temperature abuse conditions of 15 °C. Similarly, L. monocytogenes and P. fluorescens exposed to cold stress (4 °C) for 1 h demonstrated increased tolerance to ACP treatment compared to non-stressed cells. These finding demonstrates that bacterial form, mono versus mixed challenges as well as environmental stress conditions play an important role in ACP inactivation efficacy.
Collapse
Affiliation(s)
- Apurva Patange
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland
| | - D Boehm
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland
| | - Dana Ziuzina
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland
| | - P J Cullen
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland
| | - Brendan Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT97BL, UK
| | - Paula Bourke
- Plasma Research Group, School of Food Science and Environmental Health, Technological University Dublin, Dublin 1, Ireland.
| |
Collapse
|
13
|
Zilelidou EA, Skandamis PN. Growth, detection and virulence of Listeria monocytogenes in the presence of other microorganisms: microbial interactions from species to strain level. Int J Food Microbiol 2018; 277:10-25. [PMID: 29677551 DOI: 10.1016/j.ijfoodmicro.2018.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/28/2023]
Abstract
Like with all food microorganisms, many basic aspects of L. monocytogenes life are likely to be influenced by its interactions with bacteria living in close proximity. This pathogenic bacterium is a major concern both for the food industry and health organizations since it is ubiquitous and able to withstand harsh environmental conditions. Due to the ubiquity of Listeria monocytogenes, various strains may contaminate foods at different stages of the supply chain. Consequently, simultaneous exposure of consumers to multiple strains is also possible. In this context even strain-to-strain interactions of L. monocytogenes play a significant role in fundamental processes for the life of the pathogen, such as growth or virulence, and subsequently compromise food safety, affect the evolution of a potential infection, or even introduce bias in the detection by classical enrichment techniques. This article summarizes the impact of microbial interactions on the growth and detection of L. monocytogenes primarily in foods and food-associated environments. Furthermore it provides an overview of L. monocytogenes virulence in the presence of other microorganisms.
Collapse
Affiliation(s)
- Evangelia A Zilelidou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Iera odos 75, 11855 Athens, Greece
| | - Panagiotis N Skandamis
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Iera odos 75, 11855 Athens, Greece.
| |
Collapse
|
14
|
Spanu C, Piras F, Mocci AM, Nieddu G, De Santis EPL, Scarano C. Use of Carnobacterium spp protective culture in MAP packed Ricotta fresca cheese to control Pseudomonas spp. Food Microbiol 2018; 74:50-56. [PMID: 29706337 DOI: 10.1016/j.fm.2018.02.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/15/2018] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
Ricotta fresca is a whey cheese susceptible of secondary contamination, mainly from Pseudomonas spp. The extension of the shelf life of refrigerated ricotta fresca could be obtained using protective cultures inhibiting the growth of this spoilage microorganism. A commercial biopreservative, Lyofast CNBAL, comprising Carnobacterium spp was tested against Pseudomonas spp. The surface of ricotta fresca samples were inoculated either with Pseudomonas spp or Pseudomonas and Carnobacterium spp. Samples were MAP packed, stored at 4 °C and analyzed the day of the inoculum and 7, 14 and 21 days after the contamination. Microbiological analyses included total bacterial count, mesophilic lactic acid bacteria, Enterobacteriaceae, Pseudomonas spp, Listeria monocytogenes, moulds and yeasts. Pseudomonas mean initial contamination level was comparable in blank and artificially inoculated samples, respectively with values of 2.15 ± 0.21 and 2.34 ± 0.26 log cfu g-1. Carnobacterium spp. significantly reduced the growth of Pseudomonas spp respectively of 1.28 log and 0.83 log after 14 and 21 days of refrigerated storage. Intrinsic properties and physico-chemical composition were also investigated. Limited variation of pH was observed in samples inoculated with the protective cultures, indicating low acidification properties of Carnobacterium spp. Instead, no significant differences were observed for aW, moisture, fat and proteins during storage and between inoculated and control samples.
Collapse
Affiliation(s)
- C Spanu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - F Piras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - A M Mocci
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - G Nieddu
- Cooperativa Allevatori Ovini Formaggi Soc. Coop. Agricola, Loc. "Perda Lada" Fenosu, 09170, Oristano, Italy
| | - E P L De Santis
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| | - C Scarano
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
15
|
Quinto EJ, Marín JM, Caro I, Mateo J, Schaffner DW. Bayesian modeling of two- and three-species bacterial competition in milk. Food Res Int 2017; 105:952-961. [PMID: 29433294 DOI: 10.1016/j.foodres.2017.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022]
Abstract
Listeria monocytogenes is a well-known food-borne pathogen and is among the bacteria best adapted to grow at low temperatures. Psychrotrophic spoilage microorganisms present in milk and milk products are primarily in the genus Pseudomonas, and their numbers increase during cold storage leading to deterioration and/or spoilage. The nature of the competition in two- or three-species bacterial systems with L. monocytogenes, L. innocua, and P. fluorescens in skimmed milk at 7 or 14°C was studied. The Baranyi growth model was used to estimate the growth rate and the maximum population density of the three microorganisms for each strain in single cultures or in two- or three-strains co-cultures. The highest Listeria populations were achieved by pure cultures, decreasing in co-culture with P. fluorescens at both temperatures. A modified deterministic logistic model was applied which includes inhibition functions for single cultures, and two- or three-species cultures. A subsequent Bayesian approach was applied for modelling the bacterial interactions. There was not a direct correlation between the growth rate of P. fluorescens and its inhibitory effect on Listeria species. The use of some species from the natural food microflora to inhibit pathogen growth may be an important tool to enhance the safety of refrigerated foods such as milk and dairy products.
Collapse
Affiliation(s)
- E J Quinto
- Department of Food Science and Nutrition, College of Medicine, University of Valladolid, 47005 Valladolid, Spain.
| | - J M Marín
- Department of Statistics, University Carlos III de Madrid, 28903 Getafe, Madrid, Spain.
| | - I Caro
- Department of Food Science and Nutrition, College of Medicine, University of Valladolid, 47005 Valladolid, Spain; Department of Food Hygiene and Food Technology, University of León, Campus de Vegazana s/n, 24071 León, Spain.
| | - J Mateo
- Department of Food Hygiene and Food Technology, University of León, Campus de Vegazana s/n, 24071 León, Spain.
| | - D W Schaffner
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
16
|
Kataoka A, Wang H, Elliott PH, Whiting RC, Hayman MM. Growth of Listeria monocytogenes in Thawed Frozen Foods. J Food Prot 2017; 80:447-453. [PMID: 28207303 DOI: 10.4315/0362-028x.jfp-16-397r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The growth characteristics of Listeria monocytogenes inoculated onto frozen foods (corn, green peas, crabmeat, and shrimp) and thawed by being stored at 4, 8, 12, and 20°C were investigated. The growth parameters, lag-phase duration (LPD) and exponential growth rate (EGR), were determined by using a two-phase linear growth model as a primary model and a square root model for EGR and a quadratic model for LPD as secondary models, based on the growth data. The EGR model predictions were compared with growth rates obtained from the USDA Pathogen Modeling Program, calculated with similar pH, salt percentage, and NaNO2 parameters, at all storage temperatures. The results showed that L. monocytogenes grew well in all food types, with the growth rate increasing with storage temperature. Predicted EGRs for all food types demonstrated the significance of storage temperature and similar growth rates among four food types. The predicted EGRs showed slightly slower rate compared with the values from the U.S. Department of Agriculture Pathogen Modeling Program. LPD could not be accurately predicted, possibly because there were not enough sampling points. These data established by using real food samples demonstrated that L. monocytogenes can initiate growth without a prolonged lag phase even at refrigeration temperature (4°C), and the predictive models derived from this study can be useful for developing proper handling guidelines for thawed frozen foods during production and storage.
Collapse
Affiliation(s)
- Ai Kataoka
- 1 Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005
| | - Hua Wang
- 1 Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005
| | - Philip H Elliott
- 1 Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005
| | - Richard C Whiting
- 2 Exponent, Inc., 10808 Topview Lane, Knoxville, Tennessee 37934, USA
| | - Melinda M Hayman
- 1 Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005
| |
Collapse
|
17
|
Growth differences and competition between Listeria monocytogenes strains determine their predominance on ham slices and lead to bias during selective enrichment with the ISO protocol. Int J Food Microbiol 2016; 235:60-70. [DOI: 10.1016/j.ijfoodmicro.2016.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/20/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
|
18
|
Paparella A, Mazzarrino G, Chaves-López C, Rossi C, Sacchetti G, Guerrieri O, Serio A. Chitosan boosts the antimicrobial activity of Origanum vulgare essential oil in modified atmosphere packaged pork. Food Microbiol 2016; 59:23-31. [DOI: 10.1016/j.fm.2016.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 04/22/2016] [Accepted: 05/10/2016] [Indexed: 11/25/2022]
|
19
|
Effect of the competitive growth of Lactobacillus sakei MN on the growth kinetics of Listeria monocytogenes Scott A in model meat gravy. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
|
21
|
Innovative strategies based on the use of bio-control agents to improve the safety, shelf-life and quality of minimally processed fruits and vegetables. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Zilelidou EA, Rychli K, Manthou E, Ciolacu L, Wagner M, Skandamis PN. Highly Invasive Listeria monocytogenes Strains Have Growth and Invasion Advantages in Strain Competition. PLoS One 2015; 10:e0141617. [PMID: 26529510 PMCID: PMC4631365 DOI: 10.1371/journal.pone.0141617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
Multiple Listeria monocytogenes strains can be present in the same food sample; moreover, infection with more than one L. monocytogenes strain can also occur. In this study we investigated the impact of strain competition on the growth and in vitro virulence potential of L. monocytogenes. We identified two strong competitor strains, whose growth was not (or only slightly) influenced by the presence of other strains and two weak competitor strains, which were outcompeted by other strains. Cell contact was essential for growth inhibition. In vitro virulence assays using human intestinal epithelial Caco2 cells showed a correlation between the invasion efficiency and growth inhibition: the strong growth competitor strains showed high invasiveness. Moreover, invasion efficiency of the highly invasive strain was further increased in certain combinations by the presence of a low invasive strain. In all tested combinations, the less invasive strain was outcompeted by the higher invasive strain. Studying the effect of cell contact on in vitro virulence competition revealed a complex pattern in which the observed effects depended only partially on cell-contact suggesting that competition occurs at two different levels: i) during co-cultivation prior to infection, which might influence the expression of virulence factors, and ii) during infection, when bacterial cells compete for the host cell. In conclusion, we show that growth of L. monocytogenes can be inhibited by strains of the same species leading potentially to biased recovery during enrichment procedures. Furthermore, the presence of more than one L. monocytogenes strain in food can lead to increased infection rates due to synergistic effects on the virulence potential.
Collapse
Affiliation(s)
- Evangelia A. Zilelidou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Kathrin Rychli
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| | - Evanthia Manthou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Luminita Ciolacu
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
- “Dunarea de Jos” University of Galaţi, Galaţi, Romania
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
23
|
Baka M, Noriega E, Mertens L, Van Derlinden E, Van Impe JF. Protective role of indigenous Leuconostoc carnosum against Listeria monocytogenes on vacuum packed Frankfurter sausages at suboptimal temperatures. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Determination of the effectiveness of UV radiation as a means of disinfection of metalworking fluids. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-013-0722-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Olanya OM, Ukuku DO, Niemira BA. Effects of temperatures and storage time on resting populations of Escherichia coli O157:H7 and Pseudomonas fluorescens in vitro. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
|
27
|
Fgaier H, Eberl HJ. Antagonistic control of microbial pathogens under iron limitations by siderophore producing bacteria in a chemostat setup. J Theor Biol 2011; 273:103-14. [DOI: 10.1016/j.jtbi.2010.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
|
28
|
Liu JG, Lin TS, Lin WY. Evaluating the growth of Listeria monocytogenes that has been inoculated into tofu containing background microflora. Food Control 2010. [DOI: 10.1016/j.foodcont.2010.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Janevska DP, Gospavic R, Pacholewicz E, Popov V. Application of a HACCP–QMRA approach for managing the impact of climate change on food quality and safety. Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Speranza B, Bevilacqua A, Mastromatteo M, Sinigaglia M, Corbo M. Modelling the interactions between
Pseudomonas putida
and
Escherichia coli
O157:H7 in fish‐burgers: use of the lag‐exponential model and of a combined interaction index. J Appl Microbiol 2010; 109:667-678. [DOI: 10.1111/j.1365-2672.2010.04692.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- B. Speranza
- Department of Food Science, Faculty of Agricultural Science, University of Foggia, via Napoli 25, 71100, Foggia, Italy
| | - A. Bevilacqua
- Department of Food Science, Faculty of Agricultural Science, University of Foggia, via Napoli 25, 71100, Foggia, Italy
- Istituto per la Ricerca e le Applicazioni Biotecnologiche per la Sicurezza e la Valorizzazione dei Prodotti Tipici e di Qualità (BIOAGROMED), University of Foggia, via Napoli 25, 71100, Foggia, Italy
| | - M. Mastromatteo
- Department of Food Science, Faculty of Agricultural Science, University of Foggia, via Napoli 25, 71100, Foggia, Italy
| | - M. Sinigaglia
- Department of Food Science, Faculty of Agricultural Science, University of Foggia, via Napoli 25, 71100, Foggia, Italy
- Istituto per la Ricerca e le Applicazioni Biotecnologiche per la Sicurezza e la Valorizzazione dei Prodotti Tipici e di Qualità (BIOAGROMED), University of Foggia, via Napoli 25, 71100, Foggia, Italy
| | - M.R. Corbo
- Department of Food Science, Faculty of Agricultural Science, University of Foggia, via Napoli 25, 71100, Foggia, Italy
- Istituto per la Ricerca e le Applicazioni Biotecnologiche per la Sicurezza e la Valorizzazione dei Prodotti Tipici e di Qualità (BIOAGROMED), University of Foggia, via Napoli 25, 71100, Foggia, Italy
| |
Collapse
|
31
|
Gálvez A, López RL, Abriouel H, Valdivia E, Omar NB. Application of Bacteriocins in the Control of Foodborne Pathogenic and Spoilage Bacteria. Crit Rev Biotechnol 2008; 28:125-52. [DOI: 10.1080/07388550802107202] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Mellefont L, McMeekin T, Ross T. Effect of relative inoculum concentration on Listeria monocytogenes growth in co-culture. Int J Food Microbiol 2008; 121:157-68. [DOI: 10.1016/j.ijfoodmicro.2007.10.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 08/06/2007] [Accepted: 10/24/2007] [Indexed: 11/26/2022]
|
33
|
Ongeng D, Ryckeboer J, Vermeulen A, Devlieghere F. The effect of micro-architectural structure of cabbage substratum and or background bacterial flora on the growth of Listeria monocytogenes. Int J Food Microbiol 2007; 119:291-9. [PMID: 17910986 DOI: 10.1016/j.ijfoodmicro.2007.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 08/10/2007] [Accepted: 08/15/2007] [Indexed: 11/20/2022]
Abstract
The effect of micro-architectural structure of cabbage (Brassica oleracea var. capitata L.) substratum and or background bacterial flora on the growth of Listeria monocytogenes as a function of incubation temperature was investigated. A cocktail mixture of Pseudomonas fluorescens, Pantoea agglomerans and Lactobacillus plantarum was constituted to a population density of approximately 5 log CFU/ml in order to pseudo-simulate background bacterial flora of fresh-cut cabbage. This mixture was co-inoculated with L. monocytogenes (approximately 3 log CFU/ml) on fresh-cut cabbage or in autoclaved cabbage juice followed by incubation at different temperatures (4-30 degrees C). Data on growth of L. monocytogenes were fitted to the primary growth model of Baranyi in order to generate the growth kinetic parameters of the pathogen. During storage, microbial ecology was dominated by P. fluorescens and L. plantarum at refrigeration and abuse temperature, respectively. At all temperatures investigated, lag duration (lambda, h), maximum specific growth rate (micro(max), h(-1)) and maximum population density (MPD, log CFU/ml) of L. monocytogenes were only affected by medium micro-architectural structure, except at 4 degrees C where it had no effect on the micro(max) of the pathogen. Comparison of observed values of micro(max) with those obtained from the Pathogen Modelling Program (PMP), showed that PMP overestimated the growth rate of L. monocytogenes on fresh-cut cabbage and in cabbage juice, respectively. Temperature dependency of micro(max) of L. monocytogenes, according to the models of Ratkowsky and Arrhenius, showed linearity for temperature range of 4-15 degrees C, discontinuities and linearity again for temperature range of 20-30 degrees C. The results of this experiment have shown that the constituted background bacterial flora had no effect on the growth of L. monocytogenes and that micro-architectural structure of the vegetable was the primary factor that limited the applicability of PMP model for predicting the growth of L. monocytogenes on fresh-cut cabbage. A major limitation of this study however is that nutrient profile of the autoclaved cabbage juice may be different from that of the raw juice thus compromising realistic comparison of the behaviour of L. monocytogenes as affected by micro-architectural structure.
Collapse
Affiliation(s)
- Duncan Ongeng
- Department of Food Science and Post-Harvest Technology, Faculty of Agriculture and Environment, Gulu University, Gulu, Uganda.
| | | | | | | |
Collapse
|
34
|
McKellar RC. Role of nutrient limitation in the competition between Pseudomonas fluorescens and Escherichia coli O157: H7. J Food Prot 2007; 70:1739-43. [PMID: 17685353 DOI: 10.4315/0362-028x-70.7.1739] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Competition between spoilage microorganisms and foodborne pathogens provides a potentially simple approach to limiting the growth of pathogens. A strain of Pseudomonas fluorescens isolated from raw milk repressed growth of Escherichia coli O157:H7 at 22 degrees C in nutrient broth once the maximum population density of the pseudomonad had been reached (9.6 log CFU ml(-1)). The presence of iron in the growth medium and the parallel inhibitory effect of a siderophore-deficient mutant of P. fluorescens precluded iron limitation as the mechanism of action. Medium depleted by prior growth of P. fluorescens prevented the growth of E. coli, and this effect was reversed by the replenishment of the nutrient broth, its component fractions, or the addition of soy peptones but not peptones derived from milk protein. This is the first report of competition between spoilage microflora and foodborne pathogens in which the mechanism was clearly shown to be nutrient limitation. These results suggest possible improvements in biocontrol systems to prevent pathogen growth on foods.
Collapse
Affiliation(s)
- R C McKellar
- Food Research Program, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada N1G 5C9.
| |
Collapse
|
35
|
|
36
|
Cornu M, Beaufort A, Rudelle S, Laloux L, Bergis H, Miconnet N, Serot T, Delignette-Muller ML. Effect of temperature, water-phase salt and phenolic contents on Listeria monocytogenes growth rates on cold-smoked salmon and evaluation of secondary models. Int J Food Microbiol 2006; 106:159-68. [PMID: 16216370 DOI: 10.1016/j.ijfoodmicro.2005.06.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 05/20/2005] [Accepted: 06/30/2005] [Indexed: 11/19/2022]
Abstract
Salting and smoking are ancient processes for fish preservation. The effects of salt and phenolic smoke compounds on the growth rate of L. monocytogenes in cold-smoked salmon were investigated through physico-chemical analyses, challenge tests on surface of cold-smoked salmon at 4 degrees C and 8 degrees C, and a survey of the literature. Estimated growth rates were compared to predictions of existing secondary models, taking into account the effects of temperature, water phase salt content, phenolic content, and additional factors (e.g. pH, lactate, dissolved CO2). The secondary model proposed by Devlieghere et al. [Devlieghere, F., Geeraerd, A.H., Versyck, K.J., Vandewaetere, B., van Impe, J., Debevere, J., 2001. Growth of Listeria monocytogenes in modified atmosphere packed cooked meat products: a predictive model. Food Microbiology 18, 53-66.] and modified by Giménez and Dalgaard [Giménez, B., Dalgaard, P., 2004. Modelling and predicting the simultaneous growth of Listeria monocytogenes and spoilage micro-organisms in cold-smoked salmon. Journal of Applied Microbiology 96, 96-109.] appears appropriate. However, further research is needed to understand all effects affecting growth of L. monocytogenes in cold-smoked salmon and to obtain fully validated predictive models for use in quantitative risk assessment.
Collapse
Affiliation(s)
- M Cornu
- Afssa (French food safety agency), 23 avenue du Général de Gaulle, BP19, F-94706 Maisons-Alfort cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Molinos AC, Abriouel H, Ben Omar N, Valdivia E, López RL, Maqueda M, Cañamero MM, Gálvez A. Effect of immersion solutions containing enterocin AS-48 on Listeria monocytogenes in vegetable foods. Appl Environ Microbiol 2005; 71:7781-7. [PMID: 16332751 PMCID: PMC1317399 DOI: 10.1128/aem.71.12.7781-7787.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 08/03/2005] [Indexed: 11/20/2022] Open
Abstract
The effect of immersion solutions containing enterocin AS-48 alone or in combination with chemical preservatives on survival and proliferation of Listeria monocytogenes CECT 4032 inoculated on fresh alfalfa sprouts, soybean sprouts, and green asparagus was tested. Immersion treatments (5 min at room temperature) with AS-48 solutions (25 microg/ml) reduced listeria counts of artificially contaminated alfalfa and soybean sprouts by approximately 2.0 to 2.4 log CFU/g compared to a control immersion treatment in distilled water. The same bacteriocin immersion treatment applied on green asparagus had a very limited effect. During storage of vegetable samples treated with immersion solutions of 12.5 and 25 microg of AS-48/ml, viable listeria counts were reduced below detection limits at days 1 to 7 for alfalfa and soybean sprouts at 6 and 15 degrees C, as well as green asparagus at 15 degrees C. Only a limited inhibition of listeria proliferation was detected during storage of bacteriocin-treated alfalfa sprouts and green asparagus at 22 degrees C. Treatment with solutions containing AS-48 plus lactic acid, sodium lactate, sodium nitrite, sodium nitrate, trisodium phosphate, trisodium trimetaphosphate, sodium thiosulphate, n-propyl p-hydroxybenzoate, p-hydoxybenzoic acid methyl ester, hexadecylpyridinium chloride, peracetic acid, or sodium hypochlorite reduced viable counts of listeria below detection limits (by approximately 2.6 to 2.7 log CFU/g) upon application of the immersion treatment and/or further storage for 24 h, depending of the chemical preservative concentration. Significant increases of antimicrobial activity were also detected for AS-48 plus potassium permanganate and in some combinations with acetic acid, citric acid, sodium propionate, and potassium sorbate.
Collapse
Affiliation(s)
- Antonio Cobo Molinos
- Area de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus Las Lagunillas s/n, 23071-Jaén, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Lu Z, Sebranek JG, Dickson JS, Mendonca AF, Bailey TB. Inhibitory effects of organic acid salts for control of Listeria monocytogenes on frankfurters. J Food Prot 2005; 68:499-506. [PMID: 15771173 DOI: 10.4315/0362-028x-68.3.499] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sodium diacetate (SD), sodium diacetate plus potassium benzoate (SD-PB), and sodium lactate plus sodium diacetate plus potassium benzoate (SL-SD-PB) were selected for initial effectiveness against Listeria monocytogenes on frankfurters. Treatments were evaluated at -2.2, 1.1, 4.4, 10.0, and 12.8 degrees C for up to 90 days. The compounds were applied as 3 or 6% (total concentration) dipping solutions for surface treatment of the frankfurters. The treated frankfurters were inoculated with a five-strain cocktail of L. monocytogenes (Scott A 4b, H7764 1/2a, H7962 4b, H7762 4b, and H7969 4b) using 1 ml of 10(4) cells for each 90.8-g package of two frankfurters. The maximum population of L. monocytogenes was decreased and generation time and lag phase were increased after surface treatments with 6% SD, 6% SL-SD-PB, 3% SD-PB, and 6% SD-PB solutions at 1.1 degrees C. Surface treatment of frankfurters with SD at 6% was more effective for inhibiting L. monocytogenes growth than were the other treatments. Under the conditions of this study, L. monocytogenes survived in refrigerated storage even in the presence of the additives tested.
Collapse
Affiliation(s)
- Zheng Lu
- Department of Animal Science, 215 Meat Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
39
|
Bonilauri P, Liuzzo G, Merialdi G, Bentley S, Poeta A, Granelli F, Dottori M. Growth of Listeria monocytogenes on vacuum-packaged horsemeat for human consumption. Meat Sci 2004; 68:671-4. [DOI: 10.1016/j.meatsci.2004.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 05/10/2004] [Accepted: 05/20/2004] [Indexed: 10/26/2022]
|
40
|
Nilsson L, Ng YY, Christiansen JN, Jørgensen BL, Grótinum D, Gram L. The contribution of bacteriocin to inhibition of Listeria monocytogenes by Carnobacterium piscicola strains in cold-smoked salmon systems. J Appl Microbiol 2004; 96:133-43. [PMID: 14678166 DOI: 10.1046/j.1365-2672.2003.02129.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To study the importance of bacteriocin production for the antilisterial effect of a bacteriocinogenic Carnobacterium piscicola strain A9b on growth of Listeria monocytogenes in broth and cold-smoked salmon systems. METHODS AND RESULTS Acriflavin treatment of strain A9b resulted in loss of bacteriocin production and of immunity to carnobacteriocin B2. Two plasmids present in the wild-type were lost in the variant that was also more sensitive to bavaricin and leucocin A than the wild-type indicating cross-resistance to class IIa bacteriocins. The growth rate of the bac- mutant was higher than that of the wild-type at 5 and 37 degrees C but not at 25 or 30 degrees C. In salmon juice the maximum cell density of L. monocytogenes was suppressed 3 and 6 log by co-culture with C. piscicola A9b bac- and bac+, respectively, as compared with the control. Sterile filtered cultures of C. piscicola A9b bac- caused a limited suppression of the maximum cell density of L. monocytogenes similar to that observed when sterile buffer was added in equal amounts. Semi-purified carnobacteriocin B2 caused a 3.5 log decline in viable cell count after 6 day of incubation in cold-smoked salmon juice at 5 degrees C. High resistance level to carnobacteriocin B2 was observed for L. monocytogenes cells exposed to semi-purified and in situ produced carnobacteriocin B2. CONCLUSIONS The presence of bacteriocin production in C. piscicola enhances its inhibition of L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY Due to the emergence of resistance, a bacteriocin negative lactic acid bacteria may be more suited for practical use as a bioprotective agent against L. monocytogenes in ready-to-eat foods.
Collapse
Affiliation(s)
- L Nilsson
- Department of Seafood Research, Danish Institute for Fisheries Research, Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
41
|
Vereecken K, Devlieghere F, Bockstaele A, Debevere J, Van Impe J. A model for lactic acid-induced inhibition of Yersinia enterocolitica in mono- and coculture with Lactobacillus sakei. Food Microbiol 2003. [DOI: 10.1016/s0740-0020(03)00031-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Ikeda JS, Samelis J, Kendall PA, Smith GC, Sofos JN. Acid adaptation does not promote survival or growth of Listeria monocytogenes on fresh beef following acid and nonacid decontamination treatments. J Food Prot 2003; 66:985-92. [PMID: 12800998 DOI: 10.4315/0362-028x-66.6.985] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to evaluate the survival and growth of acid-adapted and nonadapted Listeria monocytogenes inoculated onto fresh beef subsequently treated with acid or nonacid solutions. Beef slices (2.5 by 5 by 1 cm) from top rounds were inoculated with acid-adapted or nonadapted L. monocytogenes (4.6 to 5.0 log CFU/cm2) and either left untreated (control) or dipped for 30 s in water at 55 degrees C, water at 75 degrees C, 2% lactic acid at 55 degrees C, or 2% acetic acid at 55 degrees C. The beef slices were vacuum packaged and stored at 4 or 10 degrees C and were analyzed after 0, 7, 14, 21, and 28 days of storage. Dipping in 75 degrees C water, lactic acid, and acetic acid resulted in immediate pathogen reductions of 1.4 to 2.0, 1.8 to 2.6, and 1.4 to 2.4 log CFU/cm2, respectively. After storage at 10 degrees C for 28 days, populations of L. monocytogenes on meat treated with 55 degrees C water increased by ca. 1.6 to 1.8 log CFU/cm2. The pathogen remained at low population levels (1.6 to 2.8 log CFU/cm2) on acid-treated meat, whereas populations on meat treated with 75 degrees C water increased rapidly, reaching levels of 3.6 to 4.6 log CFU/cm2 by day 14. During storage at 4 degrees C, there was no growth of the pathogen for at least 21 days in samples treated with 55 and 75 degrees C water, and periods of no growth were longer for acid-treated samples. There were no differences between acid-adapted and nonadapted organisms across treatments with respect to survival or growth. In conclusion, the dipping of meat inoculated with L. monocytogenes into acid solutions reduced and then inhibited the growth of the pathogen during storage at 4 and 10 degrees C, while dipping in hot water allowed growth despite initial reductions in pathogen contamination. The results of this study indicate a residual activity of acid-based decontamination treatments compared with water-based treatments for refrigerated (4 degrees C) or temperature-abused (10 degrees C) lean beef tissue in vacuum packages, and these results also indicate that this activity may not be counteracted by prior acid adaptation of L. monocytogenes.
Collapse
Affiliation(s)
- J S Ikeda
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523-1171, USA
| | | | | | | | | |
Collapse
|
43
|
Pálmai M, Buchanan RL. The effect ofLactococcus lactison the growth characteristics ofListeria monocytogenesin alfalfa sprout broth. ACTA ALIMENTARIA 2002. [DOI: 10.1556/aalim.31.2002.4.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
|
45
|
González-Fandos E, Olarte C, Giménez M, Sanz S, Simón A. Behaviour of Listeria monocytogenes in packaged fresh mushrooms (Agaricus bisporus). J Appl Microbiol 2001; 91:795-805. [PMID: 11722656 DOI: 10.1046/j.1365-2672.2001.01452.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The aim of this study was to evaluate the potential of Listeria monocytogenes to grow in mushrooms packaged in two different types of PVC films when stored at 4 degrees C and 10 degrees C. METHODS AND RESULTS Mushrooms were packed in two polymeric films (perforated and nonperforated PVC) and stored at 4 degrees C and 10 degrees C. The carbon dioxide and oxygen content inside the packages, aerobic mesophiles, psychrotrophs, Pseudomonas spp., Listeria monocytogenes, faecal coliforms, Escherichia coli, anaerobic spores and major sensory factors were determined. The mushrooms packaged in nonperforated film and stored at 4 degrees C had the most desirable quality parameters (texture, development stage and absence of moulds). Listeria monocytogenes was able to grow at 4 degrees C and 10 degrees C in inoculated mushrooms packaged in perforated and nonperforated films between 1 and 2 log units during the first 48 h. After 10 d of storage, the populations of L. monocytogenes were higher in mushrooms packaged in nonperforated film and stored at 10 degrees C. CONCLUSIONS MAP followed by storage at 4 degrees C or 10 degrees C extends the shelf life by maintaining an acceptable appearance, but allows the growth and survival of L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY According to this study additional hurdles must be studied in order to prevent the growth of L. monocytogenes.
Collapse
Affiliation(s)
- E González-Fandos
- Departamento de Agricultura y Alimentación, Area de Tecnología de los Alimentos, Universidad de La Rioja, Logroño, Spain.
| | | | | | | | | |
Collapse
|
46
|
Norwood DE, Gilmour A. The differential adherence capabilities of two Listeria monocytogenes strains in monoculture and multispecies biofilms as a function of temperature. Lett Appl Microbiol 2001; 33:320-4. [PMID: 11559409 DOI: 10.1046/j.1472-765x.2001.01004.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To determine the differential adherence capabilities at three different temperatures of Listeria monocytogenes Scott A, a clinical food pathogen, and L. monocytogenes FM876, a persistent strain from a milk-processing environment, to stainless steel. METHODS AND RESULTS Differential adherence was investigated by submerging stainless steel coupons in both 48-h Listeria monocultures and mixed cultures additionally containing Staphylococcus xylosus DP5H and Pseudomonas fragi ATCC 4973. Immunofluorescent microscopy and image analysis techniques were utilized to identify and quantify the L. monocytogenes cells adhering to the steel at 4 degrees C, 18 degrees C and 30 degrees C. The monoculture biofilms consistently contained greater L. monocytogenes numbers than the multispecies biofilms, with the persistent strain FM876 showing significantly greater adherence than strain Scott A. Optimum adherence occurred at 18 degrees C in monoculture biofilms. CONCLUSION L. monocytogenes strains exhibit differential, temperature-dependent, adherence to stainless steel. SIGNIFICANCE AND IMPACT OF THE STUDY These results demonstrate temperature dependent biofilm adherence and support previous findings that persistent strains exhibit increased adherence capability.
Collapse
Affiliation(s)
- D E Norwood
- Department of Food Science (Food Microbiology), The Queen's University of Belfast, Newforge Lane, Belfast BT9 5PX, N. Ireland, UK.
| | | |
Collapse
|
47
|
Samelis J, Sofos JN, Kendall PA, Smith GC. Influence of the natural microbial flora on the acid tolerance response of Listeria monocytogenes in a model system of fresh meat decontamination fluids. Appl Environ Microbiol 2001; 67:2410-20. [PMID: 11375145 PMCID: PMC92889 DOI: 10.1128/aem.67.6.2410-2420.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2000] [Accepted: 03/20/2001] [Indexed: 11/20/2022] Open
Abstract
Depending on its composition and metabolic activity, the natural flora that may be established in a meat plant environment can affect the survival, growth, and acid tolerance response (ATR) of bacterial pathogens present in the same niche. To investigate this hypothesis, changes in populations and ATR of inoculated (10(5) CFU/ml) Listeria monocytogenes were evaluated at 35 degrees C in water (10 or 85 degrees C) or acidic (2% lactic or acetic acid) washings of beef with or without prior filter sterilization. The model experiments were performed at 35 degrees C rather than lower (=15 degrees C) temperatures to maximize the response of inoculated L. monocytogenes in the washings with or without competitive flora. Acid solution washings were free (<1.0 log CFU/ml) of natural flora before inoculation (day 0), and no microbial growth occurred during storage (35 degrees C, 8 days). Inoculated L. monocytogenes died off (negative enrichment) in acid washings within 24 h. In nonacid (water) washings, the pathogen increased (approximately 1.0 to 2.0 log CFU/ml), irrespective of natural flora, which, when present, predominated (>8.0 log CFU/ml) by day 1. The pH of inoculated water washings decreased or increased depending on absence or presence of natural flora, respectively. These microbial and pH changes modulated the ATR of L. monocytogenes at 35 degrees C. In filter-sterilized water washings, inoculated L. monocytogenes increased its ATR by at least 1.0 log CFU/ml from days 1 to 8, while in unfiltered water washings the pathogen was acid tolerant at day 1 (0.3 to 1.4 log CFU/ml reduction) and became acid sensitive (3.0 to >5.0 log CFU/ml reduction) at day 8. These results suggest that the predominant gram-negative flora of an aerobic fresh meat plant environment may sensitize bacterial pathogens to acid.
Collapse
Affiliation(s)
- J Samelis
- Center for Red Meat Safety, Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
48
|
Campo JD, Carlin F, Nguyen-The C. Effects of epiphytic Enterobacteriaceae and pseudomonads on the growth of Listeria monocytogenes in model media. J Food Prot 2001; 64:721-4. [PMID: 11348008 DOI: 10.4315/0362-028x-64.5.721] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Four Enterobacteriaceae (Enterobacter agglomerans and Rhanella aquatilis) and six pseudomonads (Pseudomonas fluorescens, Pseudomonas chlororaphis, Pseudomonas putida) isolated from minimally processed green endive were coinoculated at 10 degrees C with Listeria monocytogenes in a minimal medium. Pseudomonads did not modify the growth of L. monocytogenes, whereas Enterobacteriaceae reduced its maximal population by 2 to 3 log CFU/ml. The same effect was observed in a diluted yeast extract medium supplemented with amino acids and glucose, in which L. monocytogenes grown alone reached 10(9) to 10(10) CFU/ml. In the same diluted yeast extract medium, not supplemented with glucose and amino acids, the maximal population of L. monocytogenes in the presence of both Enterobacteriaceae and pseudomonads was only slightly reduced (less than 0.5 log CFU/ml). Culture filtrates of the Enterobacteriaceae had no inhibitory activity on L. monocytogenes. The effect of the Enterobacteriaceae on L. monocytogenes growth was presumably due to a competition for glucose and/or amino acids.
Collapse
Affiliation(s)
- J D Campo
- Institut National de la Recherche Agronomique, Unité de Technologie des Produits Végétaux, Avignon, France
| | | | | |
Collapse
|
49
|
Tsigarida E, Skandamis P, Nychas GJ. Behaviour of Listeria monocytogenes and autochthonous flora on meat stored under aerobic, vacuum and modified atmosphere packaging conditions with or without the presence of oregano essential oil at 5 degrees C. J Appl Microbiol 2000; 89:901-9. [PMID: 11123463 DOI: 10.1046/j.1365-2672.2000.01170.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of aerobic, modified atmosphere packaging (MAP; 40% CO2/30% O2/30% N2) and vacuum packaging (VP) on the growth/survival of Listeria monocytogenes on sterile and naturally contaminated beef meat fillets was studied in relation to film permeability and oregano essential oil. The dominant micro-organism(s) and the effect of the endogenous flora on the growth/survival of L. monocytogenes were dependent on the type of packaging film. The fact that L. monocytogenes increased whenever pseudomonads dominated, i.e. aerobic storage and MAP/VP in high-permeability film, and even earlier than on sterile tissue, suggests that this spoilage group enhanced growth of the pathogen. Brochothrix thermosphacta constituted the major proportion of the total microflora in MAP/VP within the low-permeability film, where no growth of L. monocytogenes was detected either on naturally contaminated or sterile meat fillets. The addition of 0.8% (v/w) oregano essential oil resulted in: (i) an initial reduction of 2-3 log10 of the majority of the bacterial population, with lactic acid bacteria and L. monocytogenes indicating the most apparent decrease in all gaseous environments, and (ii) limited growth aerobically and survival/death of L. monocytogenes in MAP/VP, regardless of film permeability.
Collapse
Affiliation(s)
- E Tsigarida
- Agricultural University of Athens, Department of Food Science and Technology, Laboratory of Microbiology and Biotechnology of Foods, Iera Odos, Athens, Greece
| | | | | |
Collapse
|