1
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
2
|
Li Z, Zhang N, Ma L, Qu Z, Wei X, Liu Z, Tang M, Zhang N, Jiang Y, Xia C. Distribution of ancient α1 and α2 domain lineages between two classical MHC class I genes and their alleles in grass carp. Immunogenetics 2019; 71:395-405. [PMID: 30941483 DOI: 10.1007/s00251-019-01111-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class I molecules play a crucial role in the immune response by binding and presenting pathogen-derived peptides to specific CD8+ T cells. From cDNA of 20 individuals of wild grass carp (Ctenopharyngodon idellus), we could amplify one or two alleles each of classical MHC class I genes Ctid-UAA and Ctid-UBA. In total, 27 and 22 unique alleles of Ctid-UAA and Ctid-UBA were found. The leader, α1, transmembrane and cytoplasmic regions distinguish between Ctid-UAA and Ctid-UBA, and their encoded α1 domain sequences belong to the ancient lineages α1-V and α1-II, respectively, which separated several hundred million years ago. However, Ctid-UAA and Ctid-UBA share allelic lineage variation in their α2 and α3 sequences, in a pattern suggestive of past interlocus recombination events that transferred α2+α3 fragments. The allelic Ctid-UAA and Ctid-UBA variation involves ancient variation between domain lineages α2-I and α2-II, which in the present study was dated back to before the ancestral separation of teleost fish and spotted gar (> 300 million years ago). This is the first report with compelling evidence that recombination events combining different ancient α1 and α2 domain lineages had a major impact on the allelic variation of two different classical MHC class I genes within the same species.
Collapse
Affiliation(s)
- Zibin Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nan Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zehui Qu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zixin Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Minghu Tang
- Chinese Carp of Yangtze River System and Primitive Breed Fishery, Guangling, Yangzhou, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yinan Jiang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Lu XJ, Chen Q, Rong YJ, Chen J. Mobilisation and dysfunction of haematopoietic stem/progenitor cells after Listonella anguillarum infection in ayu, Plecoglossus altivelis. Sci Rep 2016; 6:28082. [PMID: 27306736 PMCID: PMC4910102 DOI: 10.1038/srep28082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
Haematopoietic stem/progenitor cells (HSPCs) can mobilise into blood and produce immune cell lineages following stress. However, the homeostasis and function of HSPCs after infection in teleosts are less well known. Here, we report that Listonella anguillarum infection enhances HSPC mobilisation and reduces their differentiation into myeloid cells in ayu (Plecoglossus altivelis), an aquacultured teleost in East Asia. We established a colony-forming unit culture (CFU-C) assay to measure HSPCs using conditioned medium from peripheral blood mononuclear cells stimulated with phytohaemagglutinin. The number of CFU-Cs decreased in the head kidney and increased in the blood and spleen of ayu infected with L. anguillarum. HSPC mobilisation after L. anguillarum infection was mediated by norepinephrine. Furthermore, HSPCs from ayu treated with L. anguillarum lipopolysaccharide (LPS) showed defective myeloid differentiation and could no longer rescue L. anguillarum-infected ayu. HSPC expansion was suppressed after L. anguillarum infection or its LPS treatment in vitro. These results reveal a link between HSPC regulation and pathogen infection in teleosts.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiang Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Ye-Jing Rong
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Kennedy DA, Kurath G, Brito IL, Purcell MK, Read AF, Winton JR, Wargo AR. Potential drivers of virulence evolution in aquaculture. Evol Appl 2016; 9:344-54. [PMID: 26834829 PMCID: PMC4721074 DOI: 10.1111/eva.12342] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/06/2015] [Indexed: 01/24/2023] Open
Abstract
Infectious diseases are economically detrimental to aquaculture, and with continued expansion and intensification of aquaculture, the importance of managing infectious diseases will likely increase in the future. Here, we use evolution of virulence theory, along with examples, to identify aquaculture practices that might lead to the evolution of increased pathogen virulence. We identify eight practices common in aquaculture that theory predicts may favor evolution toward higher pathogen virulence. Four are related to intensive aquaculture operations, and four others are related specifically to infectious disease control. Our intention is to make aquaculture managers aware of these risks, such that with increased vigilance, they might be able to detect and prevent the emergence and spread of increasingly troublesome pathogen strains in the future.
Collapse
Affiliation(s)
- David A Kennedy
- Center for Infectious Disease Dynamics Departments of Biology and Entomology The Pennsylvania State University University Park PA USA; Fogarty International Center National Institutes of Health Bethesda MD USA
| | - Gael Kurath
- U.S. Geological Survey Western Fisheries Research Center Seattle WA USA
| | - Ilana L Brito
- Massachusetts Institute of Technology Cambridge MA USA
| | - Maureen K Purcell
- U.S. Geological Survey Western Fisheries Research Center Seattle WA USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics Departments of Biology and Entomology The Pennsylvania State University University Park PA USA; Fogarty International Center National Institutes of Health Bethesda MD USA
| | - James R Winton
- U.S. Geological Survey Western Fisheries Research Center Seattle WA USA
| | - Andrew R Wargo
- Virginia Institute of Marine Science College of William and Mary Gloucester Point VA USA
| |
Collapse
|
5
|
Selection and phylogenetics of salmonid MHC class I: wild brown trout (Salmo trutta) differ from a non-native introduced strain. PLoS One 2013; 8:e63035. [PMID: 23667568 PMCID: PMC3646885 DOI: 10.1371/journal.pone.0063035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/29/2013] [Indexed: 01/29/2023] Open
Abstract
We tested how variation at a gene of adaptive importance, MHC class I (UBA), in a wild, endemic Salmo trutta population compared to that in both a previously studied non-native S. trutta population and a co-habiting Salmo salar population (a sister species). High allelic diversity is observed and allelic divergence is much higher than that noted previously for co-habiting S. salar. Recombination was found to be important to population-level divergence. The α1 and α2 domains of UBA demonstrate ancient lineages but novel lineages are also identified at both domains in this work. We also find examples of recombination between UBA and the non-classical locus, ULA. Evidence for strong diversifying selection was found at a discrete suite of S. trutta UBA amino acid sites. The pattern was found to contrast with that found in re-analysed UBA data from an artificially stocked S. trutta population.
Collapse
|
6
|
Polymorphisms in MHC class Ia genes and resistance to IHNV in rainbow trout (Oncorhynchus mykiss). Genes Genomics 2013. [DOI: 10.1007/s13258-013-0107-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Molecular cloning of partial 14-3-3 genes in the marine sponge Hymeniacidon perleve and its role in differentiating infectious and non-infectious bacteria. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-012-5400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Chen W, Jia Z, Zhang T, Zhang N, Lin C, Gao F, Wang L, Li X, Jiang Y, Li X, Gao GF, Xia C. MHC Class I Presentation and Regulation by IFN in Bony Fish Determined by Molecular Analysis of the Class I Locus in Grass Carp. THE JOURNAL OF IMMUNOLOGY 2010; 185:2209-21. [DOI: 10.4049/jimmunol.1000347] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Fu W, Sun L, Zhang X, Zhang W. Potential of the marine sponge Hymeniacidon perleve as a bioremediator of pathogenic bacteria in integrated aquaculture ecosystems. Biotechnol Bioeng 2006; 93:1112-22. [PMID: 16470871 DOI: 10.1002/bit.20823] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this article is to investigate the potential of using sponges as a bioremediator to remove pathogenic bacteria in integrated aquaculture ecosystems. Using the inter-tidal marine sponge Hymeniacidon perleve as a model system, the ability of removing the most common pathogens Escherichia coli and Vibrio anguillarum II in aquaculture waters was screened in laboratory tests. In sterilized natural seawater (SNSW) supplemented with E. coli at (7.0-8.3) x 10(6) cells/mL, H. perleve can remove an average 96% of E.coli within 10.5 h at a filter rate of ca. (7.53-8.03) x 10(7) cells/h x g of fresh sponge in two independent tests. Despite the removal efficiency and filter rate are similar; the clearance rates (CR) vary significantly among individual sponge specimens and between two batches. For the tests on V. anguillarum II in SNSW, about 1.5 g fresh sponges can keep the pathogen growth under control at a lower initial density 3.6 x 10(4) cells/mL of 200 mL water volume. Further tests were done for 24 h using about 12 g fresh sponge in 2-L actual seawater collected from two aquaculture sites that have ca. eightfold difference in pathogenic bacteria load. The concentrations of E. coli, Vibrio, and total bacteria at 24 h in treatment groups were markedly lower, at about 0.9%, 6.2%-34.5%, and 13.7%-22.5%, respectively, of those in the control. Using a fluoresce stain 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, E. coli, and V. anguillarum II cells were stained and fed to sponges in two independent tests. The confocal microscope observation confirmed that the sponges filtering-retained and digested these bacteria by phagocytosis.
Collapse
Affiliation(s)
- Wantao Fu
- Marine Bioproducts Engineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | |
Collapse
|
10
|
Azuma T, Dijkstra JM, Kiryu I, Sekiguchi T, Terada Y, Asahina K, Fischer U, Ototake M. Growth and behavioral traits in Donaldson rainbow trout (Oncorhynchus mykiss) cosegregate with classical major histocompatibility complex (MHC) class I genotype. Behav Genet 2005; 35:463-78. [PMID: 15971027 DOI: 10.1007/s10519-004-0863-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 10/05/2004] [Indexed: 11/26/2022]
Abstract
Although polymorphism in major histocompatibility complex (MHC) genes has been thought to confer populations with protection against widespread decimation by pathogens, this hypothesis cannot explain the type of large allelic diversity in classical MHC class I (Ia) in rainbow trout. Based on expression of Onmy-UBA (MHC class Ia) in trout neurons, we hypothesized that polymorphism in trout class Ia may contribute to polymorphism in behavioral traits. The present study examined whether polymorphism in Onmy-UBA was associated with behavioral variation in Donaldson rainbow trout (Oncorhynchus mykiss) using experiments on food competition, lure-catch, fright recovery, diel locomotor activity and activity characterized as dominance or aggression. These behavioral traits were investigated in fish having Onmy-UBA*401/*401 or *4901/*4901 homozygous, or Onmy-UBA*401/*4901 heterozygous genotypes (referred to as BB, FF and BF, respectively). The BB fish exhibited boldness, aggression, faster growth and crepuscular activity, while the FF fish showed little boldness, smaller body size, and diurnal activity with no aggressive behavior. The BF fish displayed traits intermediary to those of the BB and FF fish. These results are consistent with polymorphism in a single MHC class Ia locus driving variation in neural circuits, thereby creating behavioral variation in the trout. This is the first study in any animal to show a potential correlation between polymorphism in MHC class Ia genes with polymorphism of behavioral traits such as aggression.
Collapse
Affiliation(s)
- Teruo Azuma
- Nikko Branch, National Research Institute of Aquaculture, Chugushi, Nikko, Tochigi, 321-1661, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kiryu I, Dijkstra JM, Sarder RI, Fujiwara A, Yoshiura Y, Ototake M. New MHC class Ia domain lineages in rainbow trout (Oncorhynchus mykiss) which are shared with other fish species. FISH & SHELLFISH IMMUNOLOGY 2005; 18:243-254. [PMID: 15519543 DOI: 10.1016/j.fsi.2004.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 06/29/2004] [Accepted: 07/19/2004] [Indexed: 05/24/2023]
Abstract
Major histocompatibility complex (MHC) class Ia genes in salmonid fishes are encoded by a single locus with probably the highest allelic diversity ever described. Various combinations of very different domain lineages contribute to the diversity of alleles. An extensive PCR survey distinguishing most domain lineages and their combinations was established. This survey has practical value for researchers investigating salmonid MHC class Ia variation. In the present study it was used to find new domain lineages. Applied for 24 hatchery strains in Japan, the survey identified two new rainbow trout alpha1 lineages and one new rainbow trout alpha2 lineage. The alpha2 lineage and one of the alpha1 lineages had been described in Atlantic salmon, but the other alpha1 lineage is novel. The newly identified trout alpha1 lineages are evolutionary very old. The present study should be the most extensive description of very deep MHC class Ia lineages to date: six trout alpha1 lineages cluster with non-salmonid sequences whereas previous studies mentioned this for only two salmonid alpha1 lineages. Although exon-shuffling events significantly contributed to salmonid MHC class Ia variation, analysis of 800 trout siblings did not detect such events within a single generation.
Collapse
Affiliation(s)
- Ikunari Kiryu
- Inland Station/National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, Mie 519-0423, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Sarder MRI, Fischer U, Dijkstra JM, Kiryu I, Yoshiura Y, Azuma T, Köllner B, Ototake M. The MHC class I linkage group is a major determinant in the in vivo rejection of allogeneic erythrocytes in rainbow trout (Oncorhynchus mykiss). Immunogenetics 2003; 55:315-24. [PMID: 12879308 DOI: 10.1007/s00251-003-0587-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Revised: 05/12/2003] [Indexed: 10/26/2022]
Abstract
Despite accumulating sequence data, information on the function of major histocompatibility complex (MHC) genes in fish is scarce. In contrast to the genome organization in higher vertebrates, the polymorphic MHC class I and II genes are not linked in the teleost genome. A previous study found an MHC class II linkage group to be a major determinant in the rejection of allogeneic scales by a teleost species (Cardwell et al. 2001). The present study investigated whether the teleost MHC class I linkage group can be involved in allograft rejection. Erythrocytes were chosen as grafts since they express MHC class I, but do not express class II. Rainbow trout erythrocytes expressing different MHC class I alleles were differentially stained, mixed and injected into recipients that were of the same sibling group as the donors. The MHC class I linkage group was the major determinant for in vivo graft rejection.
Collapse
Affiliation(s)
- Md Rafiqul Islam Sarder
- Inland Station, National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, 519-0423 Mie, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kiryu I, Köllner B, Kuroda A, Ototake M, Dijkstra JM. A new putative G-protein coupled receptor gene associated with the immune system of rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2003; 15:117-127. [PMID: 12834616 DOI: 10.1016/s1050-4648(02)00143-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A putative G-protein coupled receptor (GPCR) gene belonging to the rhodopsin-like family was detected in rainbow trout and designated LPSenhR-1. Only moderate homology (<35%) was present with known GPCRs. Semi-quantitative RT-PCR indicated that the gene was expressed predominantly in lymphoid tissues, with highest expression associated with cells of the monocyte/macrophage lineage. Expression was strongly up-regulated by injection with LPS but not by infection with infectious haematopoietic necrosis virus.
Collapse
Affiliation(s)
- Ikunari Kiryu
- Inland Station/National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, Mie, 519-0423, Japan
| | | | | | | | | |
Collapse
|
14
|
Dijkstra JM, Kiryu I, Köllner B, Yoshiura Y, Ototake M. MHC class II invariant chain homologues in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2003; 15:91-105. [PMID: 12834614 DOI: 10.1016/s1050-4648(02)00141-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The MHC class II invariant chain (Ii or CD74) in higher vertebrates is necessary for normal MHC class II loading in endosomal compartments. Detection of an Ii chain in fish would greatly support the idea that MHC class II function in fish and higher vertebrates is similar. Before this study only Ii homologues had been reported in fish that are unlikely to perform true Ii function. In the present study two Ii-like genes, Onmy-Iclp-1 and Onmy-Iclp-2, were detected in rainbow trout. Conservation of elements, particularly in Onmy-Iclp-1, suggests that the encoded proteins may be involved in MHC class II transport and peptide loading as is the Ii protein. The expression pattern of both rainbow trout genes was similar to that of the MHC class II beta chain, with strong expression in the lymphoid tissues, gills and intestine. Analysis of separated peripheral blood leucocyte fractions indicated that expression of Onmy-Iclp-1, Onmy-Iclp-2 and the MHC class II beta chain were all highest in B lymphocytes. This agrees with the expectation that the functions of the products of the new genes are closely associated with MHC class II. It is interesting why in rainbow trout there are two proteins that may function similar to Ii in higher vertebrates.
Collapse
Affiliation(s)
- Johannes Martinus Dijkstra
- Inland Station/National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, Mie, 519-0423, Japan
| | | | | | | | | |
Collapse
|
15
|
Fischer U, Utke K, Ototake M, Dijkstra JM, Köllner B. Adaptive cell-mediated cytotoxicity against allogeneic targets by CD8-positive lymphocytes of rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2003; 27:323-337. [PMID: 12590966 DOI: 10.1016/s0145-305x(02)00100-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rainbow trout surface-(s)IgM(-) leukocytes exhibited cell-mediated cytotoxicity (CMC) against allogeneic cells. This is described in concordance with a characterization of gene expression in the effector cells. Peripheral blood leukocytes (PBL) isolated from trout grafted with allogeneic tissue lysed allogeneic target cells (erythrocytes or cells of the RTG-2 cell line) in in vitro assays. The PBL were magnetically separated into different subpopulations using monoclonal antibodies (mabs) specific to thrombocytes, IgM, granulocytes and monocytes. Of the isolated subpopulations only the sIgM(-) lymphocytes were capable of lysing allogeneic targets. The separated PBL fractions were characterized by RT-PCR analysis using specific primers for the amplification of trout IgM heavy chain constant region (CH1), T cell receptor alpha chain (TCRalpha), CD8alpha and major histocompatibility complex (MHC) class I gene fragments. Most importantly, CD8alpha was expressed only by the sIgM(-) population. Combined with the requirement for sensitization to detect CMC, this strongly suggests T cell involvement in fish as in higher vertebrates. The involvement of CD8alpha-positive cytotoxic T cells in allograft rejection was supported by additional in vivo and in vitro observations. CD8alpha expression was barely detectable in the blood of unsensitized trout or trout that received xenografts, but was easily detected in the blood of allogeneically stimulated trout. Furthermore, CD8alpha expression in sIgM(-) lymphocytes from immunized trout was secondarily enhanced by addition of allogeneic targets in vitro. Collectively, these functional and genetic data suggest that fish possess specific cytotoxic cells with phenotype and gene expression pattern similar to those of cytotoxic T cells in higher vertebrates.
Collapse
Affiliation(s)
- Uwe Fischer
- Institute of Infectiology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Insel Riems, Germany.
| | | | | | | | | |
Collapse
|
16
|
Dijkstra JM, Yoshiura Y, Kiryu I, Aoyagi K, Köllner B, Fischer U, Nakanishi T, Ototake M. The promoter of the classical MHC class I locus in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2003; 14:177-185. [PMID: 12526881 DOI: 10.1006/fsim.2002.0431] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In rainbow trout only a single classical major histocompatibility complex (MHC) class I locus has been identified. In previous studies it was shown that this locus, Onmy-UBA, is characterised by extensive polymorphism and ubiquitous expression. In the present study the sequence of the promoter region of Onmy-UBA was analysed. Within this region several fragments for transcription regulation could be detected, including interferon-sensitive enhancer elements. The promoter region is very similar to that of classical MHC class I in higher vertebrates. In agreement with the interferon sensitive elements identified in its promoter, Onmy-UBA expression in rainbow trout gonad cells (RTG-2 cell line) was up-regulated after infection with infectious haematopoietic necrosis virus (IHNV).
Collapse
Affiliation(s)
- Johannes Martinus Dijkstra
- Inland Station/National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, Mie, 519-0423, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Fujiwara A, Kiryu I, Dijkstra JM, Yoshiura Y, Nishida-Umehara C, Ototake M. Chromosome mapping of MHC class I in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2003; 14:171-175. [PMID: 12526880 DOI: 10.1006/fsim.2002.0426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The major histocompatibility complex (MHC) is well-studied in mammals. Much research has addressed the genomic organisation of MHC genes and it is well established that human MHC class I genes are located on chromosome 6. However, information on the organisation of the MHC complex in rainbow trout is only beginning to become available. In the present study it was determined that rainbow trout MHC class I sequences are located on chromosome 18. This is the first reported use of fluorescence in situ hybridisation (FISH) to identify the chromosomal location of genes involved in the immune system of fish.
Collapse
Affiliation(s)
- Atushi Fujiwara
- Department of Aquatic Biosciences, Tokyo University of Fisheries, Konan 4, Minato-ku, Tokyo, 108-8477, Japan
| | | | | | | | | | | |
Collapse
|