1
|
Norris DO. Thyroid and reproduction in amphibians and reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:869-877. [PMID: 37522483 DOI: 10.1002/jez.2737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
The relationship between the thyroid gland and reproduction in amphibians and reptiles has been studied for more than 100 years. Most studies suggest a positive involvement of thyroid hormones with some aspects of reproduction, but some studies support a negative role for thyroid hormones at certain life stages. Comprehensive studies of gene activation/suppression by thyroid hormones and their absence at various levels of the hypothalamo-pituitary-gonadal axis coupled with observations of adrenocorticoid activity, reproductive performance, and metabolic involvement are needed to understand this complex relationship.
Collapse
Affiliation(s)
- David O Norris
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
2
|
Haigis AC, Vergauwen L, LaLone CA, Villeneuve DL, O'Brien JM, Knapen D. Cross-species applicability of an adverse outcome pathway network for thyroid hormone system disruption. Toxicol Sci 2023; 195:1-27. [PMID: 37405877 DOI: 10.1093/toxsci/kfad063] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Thyroid hormone system disrupting compounds are considered potential threats for human and environmental health. Multiple adverse outcome pathways (AOPs) for thyroid hormone system disruption (THSD) are being developed in different taxa. Combining these AOPs results in a cross-species AOP network for THSD which may provide an evidence-based foundation for extrapolating THSD data across vertebrate species and bridging the gap between human and environmental health. This review aimed to advance the description of the taxonomic domain of applicability (tDOA) in the network to improve its utility for cross-species extrapolation. We focused on the molecular initiating events (MIEs) and adverse outcomes (AOs) and evaluated both their plausible domain of applicability (taxa they are likely applicable to) and empirical domain of applicability (where evidence for applicability to various taxa exists) in a THSD context. The evaluation showed that all MIEs in the AOP network are applicable to mammals. With some exceptions, there was evidence of structural conservation across vertebrate taxa and especially for fish and amphibians, and to a lesser extent for birds, empirical evidence was found. Current evidence supports the applicability of impaired neurodevelopment, neurosensory development (eg, vision) and reproduction across vertebrate taxa. The results of this tDOA evaluation are summarized in a conceptual AOP network that helps prioritize (parts of) AOPs for a more detailed evaluation. In conclusion, this review advances the tDOA description of an existing THSD AOP network and serves as a catalog summarizing plausible and empirical evidence on which future cross-species AOP development and tDOA assessment could build.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlie A LaLone
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
3
|
Abstract
Iodothyronine deiodinases are enzymes capable of activating and inactivating thyroid hormones (THs) and have an important role in regulating TH action in tissues throughout the body. Three types of deiodinases (D1, D2, and D3) were originally defined based on their biochemical characteristics. Cloning of the first complementary DNAs in the 1990s (Dio1 in rat and dio2 and dio3 in frog) allowed to confirm the existence of 3 distinct enzymes. Over the years, increasing genomic information revealed that deiodinases are present in all chordates, vertebrates, and nonvertebrates and that they can even be found in some mollusks and annelids, pointing to an ancient origin. Research in nonmammalian models has substantially broadened our understanding of deiodinases. In relation to their structure, we discovered for instance that biochemical properties such as inhibition by 6-propyl-2-thiouracil, stimulation by dithiothreitol, and temperature optimum are subject to variation. Data from fish, amphibians, and birds were key in shifting our view on the relative importance of activating and inactivating deiodination pathways and in showing the impact of D2 and D3 not only in local but also whole body T3 availability. They also led to the discovery of new local functions such as the acute reciprocal changes in D2 and D3 in hypothalamic tanycytes upon photostimulation, involved in seasonal rhythmicity. With the present possibilities for rapid and precise gene silencing in any species of interest, comparative research will certainly further contribute to a better understanding of the importance of deiodinases for adequate TH action, also in humans.
Collapse
Affiliation(s)
- Veerle M Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
- Correspondence: Veerle Darras, PhD, Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamsestraat 61, PB 2464, B-3000 Leuven, Belgium.
| |
Collapse
|
4
|
Ávila-Mendoza J, Carranza M, Villalobos P, Olvera A, Orozco A, Luna M, Arámburo C. Differential responses of the somatotropic and thyroid axes to environmental temperature changes in the green iguana. Gen Comp Endocrinol 2016; 230-231:76-86. [PMID: 27044512 DOI: 10.1016/j.ygcen.2016.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 03/23/2016] [Accepted: 04/01/2016] [Indexed: 11/26/2022]
Abstract
Growth hormone (GH), together with thyroid hormones (TH), regulates growth and development, and has critical effects on vertebrate metabolism. In ectotherms, these physiological processes are strongly influenced by environmental temperature. In reptiles, however, little is known about the direct influences of this factor on the somatotropic and thyroid axes. Therefore, the aim of this study was to describe the effects of both acute (48h) and chronic (2weeks) exposure to sub-optimal temperatures (25 and 18°C) upon somatotropic and thyroid axis function of the green iguana, in comparison to the control temperature (30-35°C). We found a significant increase in GH release (2.0-fold at 25°C and 1.9-fold at 18°C) and GH mRNA expression (up to 3.7-fold), mainly under chronic exposure conditions. The serum concentration of insulin-like growth factor-I (IGF-I) was significantly greater after chronic exposure (18.5±2.3 at 25°C; 15.92±3.4 at 18°C; vs. 9.3±1.21ng/ml at 35°C), while hepatic IGF-I mRNA expression increased up to 6.8-fold. Somatotropic axis may be regulated, under acute conditions, by thyrotropin-releasing hormone (TRH) that significantly increased its hypothalamic concentration (1.45 times) and mRNA expression (0.9-fold above control), respectively; and somatostatin (mRNA expression increased 1.0-1.2 times above control); and under chronic treatment, by pituitary adenylate cyclase-activating peptide (PACAP mRNA expression was increased from 0.4 to 0.6 times). Also, it was shown that, under control conditions, injection of TRH stimulated a significant increase in circulating GH. On the other hand, while there was a significant rise in the hypothalamic content of TRH and its mRNA expression, this hormone did not appear to influence the thyroid axis activity, which showed a severe diminution in all conditions of cold exposure, as indicated by the decreases in thyrotropin (TSH) mRNA expression (up to one-eight of the control), serum T4 (from 11.6±1.09 to 5.3±0.58ng/ml, after 2weeks at 18°C) and T3 (from 0.87±0.09 to 0.05±0.01ng/ml, under chronic conditions at 25°C), and Type-2 deiodinase (D2) activity (from 992.5±224 to 213.6±26.4fmolI(125)T4/mgh). The reduction in thyroid activity correlates with the down-regulation of metabolism as suggested by the decrease in the serum glucose and free fatty acid levels. These changes apparently were independent of a possible stress response, at least under acute exposure to both temperatures and in chronic treatment to 25°C, since serum corticosterone had no significant changes in these conditions, while at chronic 18°C exposure, a slight increase (0.38 times above control) was found. Thus, these data suggest that the reptilian somatotropic and thyroid axes have differential responses to cold exposure, and that GH and TRH may play important roles associated to adaptation mechanisms that support temperature acclimation in the green iguana.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Laboratorio de Bioquímica de Hormonas, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Martha Carranza
- Laboratorio de Bioquímica de Hormonas, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Patricia Villalobos
- Laboratorio de Fisiología Evolutiva, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Aurora Olvera
- Laboratorio de Fisiología Evolutiva, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Aurea Orozco
- Laboratorio de Fisiología Evolutiva, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Maricela Luna
- Laboratorio de Bioquímica de Hormonas, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Carlos Arámburo
- Laboratorio de Bioquímica de Hormonas, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico.
| |
Collapse
|
5
|
Abstract
Iodothyronine deiodinases are important mediators of thyroid hormone (TH) action. They are present in tissues throughout the body where they catalyse 3,5,3'-triiodothyronine (T(3)) production and degradation via, respectively, outer and inner ring deiodination. Three different types of iodothyronine deiodinases (D1, D2 and D3) have been identified in vertebrates from fish to mammals. They share several common characteristics, including a selenocysteine residue in their catalytic centre, but show also some type-specific differences. These specific characteristics seem very well conserved for D2 and D3, while D1 shows more evolutionary diversity related to its Km, 6-n-propyl-2-thiouracil sensitivity and dependence on dithiothreitol as a cofactor in vitro. The three deiodinase types have an impact on systemic T(3) levels and they all contribute directly or indirectly to intracellular T(3) availability in different tissues. The relative contribution of each of them, however, varies amongst species, developmental stages and tissues. This is especially true for amphibians, where the impact of D1 may be minimal. D2 and D3 expression and activity respond to thyroid status in an opposite and conserved way, while the response of D1 is variable, especially in fish. Recently, a number of deiodinases have been cloned from lower chordates. Both urochordates and cephalochordates possess selenodeiodinases, although they cannot be classified in one of the three vertebrate types. In addition, the cephalochordate amphioxus also expresses a non-selenodeiodinase. Finally, deiodinase-like sequences have been identified in the genome of non-deuterostome organisms, suggesting that deiodination of externally derived THs may even be functionally relevant in a wide variety of invertebrates.
Collapse
Affiliation(s)
- Veerle M Darras
- Animal Physiology and Neurobiology Section, Department of Biology, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium.
| | | |
Collapse
|
6
|
Villalobos P, Orozco A, Valverde-R C. Molecular cloning and characterization of a type 3 iodothyronine deiodinase in the pine snake Pituophis deppei. Gen Comp Endocrinol 2010; 169:167-73. [PMID: 20709065 DOI: 10.1016/j.ygcen.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 08/03/2010] [Accepted: 08/06/2010] [Indexed: 11/18/2022]
Abstract
The three distinct but related isotypes of the iodothyronine deiodinase family: D1, D2, and D3, have been amply studied in vertebrate homeotherms and to a lesser extent in ectotherms, particularly in reptiles. Here, we report the molecular and kinetic characteristics of both the native and the recombinant hepatic D3 from the pine snake Pituophis deppei (PdD3). The complete PdD3 cDNA (1680 bp) encodes a protein of 287 amino acids (aa), which is the longest type 3 deiodinase so far cloned. PdD3 shares 78% identity with chicken and 71% with its other orthologs. Interestingly, the hinge domain in D3s, including PdD3, is rich in proline. This structural feature is shared with D1s, the other inner-ring deiodinases, and deserves further study. The kinetic characteristics of both native and recombinant PdD3 were similar to those reported for D3 in other vertebrates. True K(m) values for T(3) IRD were 9 and 11 nM for native and recombinant PdD3, respectively. Both exhibited a requirement for a high concentration of cofactor (40 mM DTT), insensitivity to inhibition by PTU (>2 mM), and bisubstrate, sequential-type reaction kinetics. In summary, the present data demonstrate that the liver of the adult pine snake P. deppei expresses D3. Furthermore, this is the first report of the cloning and expression of a reptilian D3 cDNA. The finding of hepatic D3 expression in the adult pine snake P. deppei is consistent with results in adult piscine species in which the dietary T(3) content seems to regulate liver deiodinase expression. Thus, our present results support the proposal that hepatic D3 in adult vertebrates plays a sentinel role in avoiding an inappropriate overload of exogenous T(3) secondary to feeding in those species that devour the whole prey.
Collapse
Affiliation(s)
- Patricia Villalobos
- Instituto de Neurobiología, Departamento de Neurobiología Celular y Molecular, Universidad Nacional Autónoma de México, Campus UNAM, Juriquilla, Querétaro, Qro 76230, Mexico
| | | | | |
Collapse
|
7
|
Kuiper GGJM, Klootwijk W, Morvan Dubois G, Destree O, Darras VM, Van der Geyten S, Demeneix B, Visser TJ. Characterization of recombinant Xenopus laevis type I iodothyronine deiodinase: substitution of a proline residue in the catalytic center by serine (Pro132Ser) restores sensitivity to 6-propyl-2-thiouracil. Endocrinology 2006; 147:3519-29. [PMID: 16601143 DOI: 10.1210/en.2005-0711] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In frogs such as Rana and Xenopus, metamorphosis does not occur in the absence of a functional thyroid gland. Previous studies indicated that coordinated development in frogs requires tissue and stage-dependent type II and type III iodothyronine deiodinase expression patterns to obtain requisite levels of intracellular T(3) in tissues at the appropriate stages of metamorphosis. No type I iodothyronine deiodinase (D1), defined as T(4) or reverse T(3) (rT3) outer-ring deiodinase (ORD) activity with Michaelis constant (K(m)) values in the micromolar range and sensitivity to 6-propyl-2-thiouracil (6-PTU), could be detected in tadpoles so far. We obtained a X. laevis D1 cDNA clone from brain tissue. The complete sequence of this clone (1.1 kb, including poly A tail) encodes an ORF of 252 amino acid residues with high homology to other vertebrate D1 enzymes. The core catalytic center includes a UGA-encoded selenocysteine residue, and the 3' untranslated region (about 300 nt) contains a selenocysteine insertion sequence element. Transfection of cells with an expression vector containing the full-length cDNA resulted in generation of significant deiodinase activity in the homogenates. The enzyme displayed ORD activity with T(4) (K(m) 0.5 microm) and rT3 (K(m) 0.5 microm) and inner-ring deiodinase activity with T(4) (K(m) 0.4 microm). Recombinant Xenopus D1 was essentially insensitive to inhibition by 6-PTU (IC(50) > 1 mm) but was sensitive to gold thioglucose (IC(50) 0.1 mum) and iodoacetate (IC(50) 10 microm). Because the residue 2 positions downstream from the selenocysteine is Pro in Xenopus D1 but Ser in all cloned PTU-sensitive D1 enzymes, we prepared the Pro132Ser mutant of Xenopus D1. The mutant enzyme showed strongly increased ORD activity with T(4) and rT3 (K(m) about 4 microm) and was highly sensitive to 6-PTU (IC(50) 2 microm). Little native D1 activity could be detected in Xenopus liver, kidney, brain, and gut, but significant D1 mRNA expression was observed in juvenile brain and adult liver and kidney. These results indicate the existence of a 6-PTU-insensitive D1 enzyme in X. laevis tissues, but its role during tadpole metamorphosis remains to be defined.
Collapse
Affiliation(s)
- George G J M Kuiper
- Department of Internal Medicine, Room Ee 502, Erasmus Medical Center, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sutija M, Joss JMP. Thyroid hormone deiodinases revisited: insights from lungfish: a review. J Comp Physiol B 2005; 176:87-92. [PMID: 16151818 DOI: 10.1007/s00360-005-0018-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 06/16/2005] [Accepted: 06/28/2005] [Indexed: 11/27/2022]
Abstract
In vertebrates, hormones released from the thyroid gland travel in the circulation to target tissues where they may be processed by deiodinating enzymes into more active or inactive iodothyronines. In mammals, there are three deiodinating enzymes described. Type1 (D1), which primarily occurs in the liver, converts reverse T3 into T2 for clearance. It also converts T4 into T3. This production of T3 is believed to contribute to the bulk of circulating T3 in mammals. The type2 (D2) enzyme may be found in many other tissues where it converts T4 to T3, which is then transferred to the receptors in the nucleus of the same cell, i.e. does not contribute to the circulating T3. The type3 (D3) enzyme converts T3 into T2. The expression of the genes for these three enzymes and/or the activity of the enzymes have been studied in several non-mammalian groups of vertebrates. From agnathans to birds, D2 and D3 appear to occur universally, with the possible exception of squamate reptiles (lack D2?). D1 has not been found in amphibians, lungfish or agnathans. All three enzymes are selenoproteins, in which a selenocysteine is found in the active centre. The nucleotide code for translation of a selenocysteine is UGA, which under normal circumstances is a stop codon. In order for UGA to code for selenocysteine, there must be a SECIS element in the 3'UTR of the mRNA. Any disruption of the SECIS will result in a truncated protein in the region of its active centre. It is suggested that such alternative splicing may be a mode of altering the expression of deiodinases in particular tissues to change the response of such tissues to thyroid hormones under differing circumstances such as stages of development.
Collapse
Affiliation(s)
- M Sutija
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | |
Collapse
|
9
|
Abstract
We review the experimental evidence accumulated within the past decade regarding the physiologic, biochemical, and molecular characterization of iodothyronine deiodinases (IDs) in piscine species. Agnathans, chondrichthyes, and teleosts express the three isotypes of IDs: ID1, ID2, and ID3, which are responsible for the peripheral fine-tuning of thyroid hormone (TH) bioactivity. At the molecular and operational level, fish IDs share properties with their corresponding vertebrate counterparts. However, fish IDs also exhibit discrete features that seem to be distinctive for piscine species. Indeed, teleostean ID1 is conspicuously resistant to propylthiouracil (PTU) inhibition, and its response to thyroidal status differs from that exhibited by other ID1s. Moreover, both the high level of ID2 activity and its expression in the liver of teleosts are unique among vertebrates. The physiologic role of iodothyronine deiodination in functions regulated by TH in fish is not entirely clear. Nevertheless, current experimental evidence suggests that IDs may coordinate and facilitate, in a tissue-specific fashion, the action of iodothyronines and other hormones involved in such processes.
Collapse
Affiliation(s)
- Aurea Orozco
- Laboratorio de Fisiología Evolutiva, Instituto de Neurobiología, Campus UNAM-UAQ, Juriquilla, Querétaro, México.
| | | |
Collapse
|
10
|
Valverde C, Orozco A, Becerra A, Jeziorski MC, Villalobos P, Solís JC. Halometabolites and cellular dehalogenase systems: an evolutionary perspective. ACTA ACUST UNITED AC 2004; 234:143-99. [PMID: 15066375 DOI: 10.1016/s0074-7696(04)34004-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
We review the role of iodothyronine deiodinases (IDs) in the evolution of vertebrate thyroidal systems within the larger context of biological metabolism of halogens. Since the beginning of life, the ubiquity of organohalogens in the biosphere has provided a major selective pressure for the evolution and conservation of cellular mechanisms specialized in halogen metabolism. Among naturally available halogens, iodine emerged as a critical component of unique developmental and metabolic messengers. Metabolism of iodinated compounds occurs in the three major domains of life, and invertebrate deuterostomes possess several biochemical traits and molecular homologs of vertebrate thyroidal systems, including ancestral homologs of IDs identified in urochordates. The finely tuned cellular regulation of iodometabolite uptake and disposal is a remarkable event in evolution and might have been decisive for the explosive diversification of ontogenetic strategies in vertebrates.
Collapse
Affiliation(s)
- Carlos Valverde
- Instituto de Neurobiologia, Campus UNAM-UAQ Juriquilla, Querétaro 76230 Mexico
| | | | | | | | | | | |
Collapse
|
11
|
Shepherdley CA, Klootwijk W, Makabe KW, Visser TJ, Kuiper GGJM. An ascidian homolog of vertebrate iodothyronine deiodinases. Endocrinology 2004; 145:1255-68. [PMID: 14657009 DOI: 10.1210/en.2003-1248] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In all classes of vertebrates, the deiodination of the prohormone T(4) to T(3) represents an essential activation step in thyroid hormone action. The possible presence of iodothyronine deiodinase activity in protochordates has been demonstrated in vivo. Recent molecular cloning of the genomes and transcripts of several ascidian species allows further investigation into thyroid-related processes in ascidians. A cDNA clone from Halocynthia roretzi (hrDx) was found to have significant homology (30% amino acid identity) with the iodothyronine deiodinase gene sequences from vertebrates, including the presence of an in-frame UGA codon that might encode a selenocysteine (SeC) in the active site. Because it was not certain that the 3' untranslated region (UTR) contained a SeC insertion sequence (SECIS) element essential for SeC incorporation, a chimeric expression vector of the hrDx coding sequence and the rat deiodinase SECIS element was produced, as well as an expression vector containing the intact hrDx cDNA. COS, CHO, and HEK cells were transfected with these vectors, and deiodinase activity was measured in cell homogenates. Outer-ring deiodinase activity was detected using both T(4) and reverse T(3) as substrates, and activity was enhanced by the presence of the reductive cofactor dithiothreitol. The enzyme activity was optimal during incubation between 20 and 30 C (pH 6-7) and was strongly inhibited by gold-thioglucose. The Halocynthia deiodinase appears to be a high Michaelis-Menten constant (K(m)) enzyme (K(m) reverse T(3), 2 microM; and K(m) T(4), 4 microM). Deiodinase activity was completely lost upon the substitution of the SeC residue in the putative catalytic center by either cysteine or alanine. Transfection of the full-length hrDx cDNA produced deiodinase activity confirming the presence of a SECIS element in the 3'UTR, as revealed by the SECISearch program. In conclusion, our results show, for the first time, the existence of an ascidian iodothyronine outer-ring deiodinase. This raises the hypothesis that, in protochordates, the prohormone T(4) is activated by enzymatic outer-ring deiodination to T(3).
Collapse
Affiliation(s)
- Caroline A Shepherdley
- Department of Internal Medicine, Erasmus Medical Center, 3000 Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Shepherdley CA, Richardson SJ, Evans BK, Kühn ER, Darras VM. Characterization of outer ring iodothyronine deiodinases in tissues of the saltwater crocodile (Crocodylus porosus). Gen Comp Endocrinol 2002; 125:387-98. [PMID: 11884083 DOI: 10.1006/gcen.2001.7764] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution and characterization of outer ring deiodination (ORD) using reverse triiodothyronine (rT3) and thyroxine (T4) as substrates is reported in microsomes of liver, kidney, lung, heart, gut, and brain tissues from juvenile saltwater crocodiles (Crocodylus porosus). In lung and heart only small amounts of rT3 ORD and T4 ORD were detected, while in brain only a small amount of T4 ORD was detected. More detailed characterization studies could be performed on liver, kidney, and gut microsomes. Reverse T3 outer ring deiodination (rT3 ORD) was the predominant activity in liver and kidney microsomes. The properties of crocodile liver and kidney rT3 ORD, such as preference for rT3 as substrate, a dithiothreitol (DTT) requirement of 10 mM, inhibition by propylthiouracil (PTU), and Michaelis-Menten (Km) constant in the micromolar range, correspond to the properties previously reported for a type I deiodinase. The temperature optimum for rT3 ORD was between 30 and 35 degrees. There was also rT3 ORD activity in gut microsomes, along with what appeared to be a type II-like, low-Km deiodinase with a substrate preference for T4. There was also a small amount of T4 ORD activity in liver and kidney microsomes. Liver T4 ORD, like a type II deiodinase, had a preference for T4 as substrate at low substrate concentrations and a DTT requirement of 15 mM and was insensitive to PTU. However, at high substrate concentrations the predominant activity was of the type I deiodinase nature. T4 ORD in liver had an optimal incubation temperature of 30 to 35 degrees. Gut microsomal T4 ORD was also type II-like at low substrate concentrations and type I-like at high substrate concentrations. Gut T4 ORD had an optimal incubation temperature of 25 to 30 degrees and a DTT requirement of 20 mM DTT. Kidney microsomal T4 ORD had the same optimal temperature and DTT requirement as that in gut microsomes; however, there was no competition by low substrate concentrations. These results suggest that ORD in juvenile saltwater crocodile kidney is most likely exclusively catalyzed by a type I-like deiodinase. Liver and gut ORD, in contrast, is catalyzed by two enzymes, with a predominance of a type I-like deiodinase in liver and a type II-like deiodinase in gut. Low-Km T3 IRD activity could not be detected in any tissues of the juvenile saltwater crocodile.
Collapse
Affiliation(s)
- Caroline A Shepherdley
- Laboratory of Comparative Endocrinology, Zoological Institute, K.U. Leuven, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|