1
|
Su L, Li G, Chow BKC, Cardoso JCR. Neuropeptides and receptors in the cephalochordate: A crucial model for understanding the origin and evolution of vertebrate neuropeptide systems. Mol Cell Endocrinol 2024; 592:112324. [PMID: 38944371 DOI: 10.1016/j.mce.2024.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Genomes and transcriptomes from diverse organisms are providing a wealth of data to explore the evolution and origin of neuropeptides and their receptors in metazoans. While most neuropeptide-receptor systems have been extensively studied in vertebrates, there is still a considerable lack of understanding regarding their functions in invertebrates, an extraordinarily diverse group that account for the majority of animal species on Earth. Cephalochordates, commonly known as amphioxus or lancelets, serve as the evolutionary proxy of the chordate ancestor. Their key evolutionary position, bridging the invertebrate to vertebrate transition, has been explored to uncover the origin, evolution, and function of vertebrate neuropeptide systems. Amphioxus genomes exhibit a high degree of sequence and structural conservation with vertebrates, and sequence and functional homologues of several vertebrate neuropeptide families are present in cephalochordates. This review aims to provide a comprehensively overview of the recent findings on neuropeptides and their receptors in cephalochordates, highlighting their significance as a model for understanding the complex evolution of neuropeptide signaling in vertebrates.
Collapse
Affiliation(s)
- Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
2
|
Wang Y, Liu X, Zheng Y, Yang Y, Chen M. Endocrine regulation of reproductive biology in echinoderms: An evolutionary perspective from closest marine invertebrate relatives to chordates. Mol Cell Endocrinol 2024; 580:112105. [PMID: 37952726 DOI: 10.1016/j.mce.2023.112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/27/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Echinoderms are a phylum of invertebrate deuterostomes, which contain echinoids, asteroids, holothuroids, crinoids, and ophiuroids. Echinoderms have special evolutionary position and unique characteristics, including pentamerous radial body structure, elaborate calcareous endoskeletons, and versatile water vascular system. Echinoderms exhibit extraordinarily diverse reproductive modes: asexual reproduction, sexual reproduction, sexual reversal, etc. Endocrine regulation plays important well-known roles in sex differentiation, gonadal development and maturation, gametogenesis, and reproductive behavior in vertebrates. However, the entire picture of reproductive endocrinology in echinoderms as an evolutionary model of the closest marine invertebrate relatives to chordates has not been revealed. Here, we reviewed previous and recent research progress on reproductive endocrinology in echinoderms, mainly including two sections: Sex steroids in echinoderms and neuropeptide regulation in echinoderm reproduction. This review introduces a variety of endocrine regulatory mechanisms in reproductive biology of echinoderms. It discusses the vertebrate-like sex steroids, putative steroidogenic pathway and metabolism, and reproduction-related neuropeptides. The review will provide a deeper understanding about endocrine regulatory mechanisms of gonadal development in lower deuterostomes and the application of endocrine control in economic echinoderm species in aquaculture.
Collapse
Affiliation(s)
- Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xinghai Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yujia Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
3
|
Piñon Gonzalez VM, Feng Y, Egertová M, Elphick MR. Neuropeptide expression and action in the reproductive system of the starfish Asterias rubens. J Comp Neurol 2024; 532:e25585. [PMID: 38289190 DOI: 10.1002/cne.25585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Reproductive processes are regulated by a variety of neuropeptides in vertebrates and invertebrates. In starfish (phylum Echinodermata), relaxin-like gonad-stimulating peptide triggers oocyte maturation and spawning. However, little is known about other neuropeptides as potential regulators of reproduction in starfish. To address this issue, here, we used histology and immunohistochemistry to analyze the reproductive system of the starfish Asterias rubens at four stages of the seasonal reproductive cycle in male and female animals, investigating the expression of eight neuropeptides: the corticotropin-releasing hormone-type neuropeptide ArCRH, the calcitonin-type neuropeptide ArCT, the pedal peptide-type neuropeptides ArPPLN1b and ArPPLN2h, the vasopressin/ocytocin-type neuropeptide asterotocin, the gonadotropin-releasing hormone-type neuropeptide ArGnRH, and the somatostatin/allatostatin-C-type neuropeptides ArSS1 and ArSS2. The expression of five neuropeptides, ArCRH, ArCT, ArPPLN1b, ArPPLN2h, and asterotocin, was detected in the gonoducts and/or gonads. For example, extensive ArPPLN2h expression was revealed in the coelomic epithelial layer of the gonads throughout the seasonal reproductive cycle in both males and females. However, seasonal and/or sexual differences in the patterns of neuropeptide expression were also observed. Informed by these findings, the in vitro pharmacological effects of neuropeptides on gonad preparations from male and female starfish were investigated. This revealed that ArSS1 causes gonadal contraction and that ArPPLN2h causes gonadal relaxation, with both neuropeptides being more effective on ovaries than testes. Collectively, these findings indicate that multiple neuropeptide signaling systems are involved in the regulation of reproductive function in starfish, with some neuropeptides exerting excitatory or inhibitory effects on gonad contractility that may be physiologically relevant when gametes are expelled during spawning.
Collapse
Affiliation(s)
| | - Yuling Feng
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| | - Michaela Egertová
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| | - Maurice R Elphick
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Luo BY, Fang X, Wang CZ, Yao CJ, Li Z, He XY, Xiong XY, Xie CZ, Lai XL, Zhang ZH, Qiu GF. Identification of GnRH-like peptide and its potential signaling pathway involved in the oocyte meiotic maturation in the Chinese mitten crab, Eriocheir sinensis. Int J Biol Macromol 2023; 239:124326. [PMID: 37011757 DOI: 10.1016/j.ijbiomac.2023.124326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a pivotal role in reproductive regulation in vertebrates. However, GnRH was rarely isolated and its function remains poorly characterized in invertebrates. The existence of GnRH in ecdysozoa has been controversial for a long. Here, we isolated and identified two GnRH-like peptides from brain tissues in Eriocheir sinensis. Immunolocalization showed that the presence of EsGnRH-like peptide in brain, ovary and hepatopancreas. Synthetic EsGnRH-like peptides can induce germinal vesicle breakdown (GVBD) of oocyte. Similar to vertebrates, ovarian transcriptomic analysis revealed a GnRH signaling pathway in the crab, in which most genes exhibited dramatically high expression at GVBD. RNAi knockdown of EsGnRHR suppressed the expression of most genes in the pathway. Co-transfection of the expression plasmid pcDNA3.1-EsGnRHR with reporter plasmid CRE-luc or SRE-luc into 293T cells showed that EsGnRHR transduces its signal via cAMP and Ca2+ signaling transduction pathways. In vitro incubation of the crab oocyte with EsGnRH-like peptide confirmed the cAMP-PKA cascade and Ca2+ mobilization signaling cascade but lack of a PKC cascade. Our data present the first direct evidence of the existence of GnRH-like peptides in the crab and demonstrated its conserved role in the oocyte meiotic maturation as a primitive neurohormone.
Collapse
Affiliation(s)
- Bi-Yun Luo
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang Fang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Cheng-Zhi Wang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Cheng-Jie Yao
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen Li
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xue-Ying He
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xin-Yi Xiong
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Chi-Zhen Xie
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xing-Lin Lai
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhen-Hua Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Gao-Feng Qiu
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
5
|
Satake H. Kobayashi Award 2021: Neuropeptides, receptors, and follicle development in the ascidian, Ciona intestinalis Type A: New clues to the evolution of chordate neuropeptidergic systems from biological niches. Gen Comp Endocrinol 2023; 337:114262. [PMID: 36925021 DOI: 10.1016/j.ygcen.2023.114262] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Ciona intestinalis Type A (Ciona robusta) is a cosmopolitan species belonging to the phylum Urochordata, invertebrate chordates that are phylogenetically the most closely related to the vertebrates. Therefore, this species is of interest for investigation of the evolution and comparative physiology of endocrine, neuroendocrine, and nervous systems in chordates. Our group has identified>30 Ciona neuropeptides (80% of all identified ascidian neuropeptides) primarily using peptidomic approaches combined with reference to genome sequences. These neuropeptides are classified into two groups: homologs or prototypes of vertebrate neuropeptides and novel (Ciona-specific) neuropeptides. We have also identified the cognate receptors for these peptides. In particular, we elucidated multiple receptors for Ciona-specific neuropeptides by a combination of a novel machine learning system and experimental validation of the specific interaction of the predicted neuropeptide-receptor pairs, and verified unprecedented phylogenies of receptors for neuropeptides. Moreover, several neuropeptides were found to play major roles in the regulation of ovarian follicle development. Ciona tachykinin facilitates the growth of vitellogenic follicles via up-regulation of the enzymatic activities of proteases. Ciona vasopressin stimulates oocyte maturation and ovulation via up-regulation of maturation-promoting factor- and matrix metalloproteinase-directed collagen degradation, respectively. Ciona cholecystokinin also triggers ovulation via up-regulation of receptor tyrosine kinase signaling and the subsequent activation of matrix metalloproteinase. These studies revealed that the neuropeptidergic system plays major roles in ovarian follicle growth, maturation, and ovulation in Ciona, thus paving the way for investigation of the biological roles for neuropeptides in the endocrine, neuroendocrine, nervous systems of Ciona, and studies of the evolutionary processes of various neuropeptidergic systems in chordates.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| |
Collapse
|
6
|
Ogawa S, Pfaff DW, Parhar IS. Fish as a model in social neuroscience: conservation and diversity in the social brain network. Biol Rev Camb Philos Soc 2021; 96:999-1020. [PMID: 33559323 DOI: 10.1111/brv.12689] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Mechanisms for fish social behaviours involve a social brain network (SBN) which is evolutionarily conserved among vertebrates. However, considerable diversity is observed in the actual behaviour patterns amongst nearly 30000 fish species. The huge variation found in socio-sexual behaviours and strategies is likely generated by a morphologically and genetically well-conserved small forebrain system. Hence, teleost fish provide a useful model to study the fundamental mechanisms underlying social brain functions. Herein we review the foundations underlying fish social behaviours including sensory, hormonal, molecular and neuroanatomical features. Gonadotropin-releasing hormone neurons clearly play important roles, but the participation of vasotocin and isotocin is also highlighted. Genetic investigations of developing fish brain have revealed the molecular complexity of neural development of the SBN. In addition to straightforward social behaviours such as sex and aggression, new experiments have revealed higher order and unique phenomena such as social eavesdropping and social buffering in fish. Finally, observations interpreted as 'collective cognition' in fish can likely be explained by careful observation of sensory determinants and analyses using the dynamics of quantitative scaling. Understanding of the functions of the SBN in fish provide clues for understanding the origin and evolution of higher social functions in vertebrates.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY, 10065, U.S.A
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| |
Collapse
|
7
|
Invertebrate Gonadotropin-Releasing Hormone Receptor Signaling and Its Relevant Biological Actions. Int J Mol Sci 2020; 21:ijms21228544. [PMID: 33198405 PMCID: PMC7697785 DOI: 10.3390/ijms21228544] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproduction via the hypothalamus-pituitary-gonad axis (HPG axis) in vertebrates. GnRHs and their receptors (GnRHRs) are also conserved in invertebrates lacking the HPG axis, indicating that invertebrate GnRHs do not serve as “gonadotropin-releasing factors” but, rather, function as neuropeptides that directly regulate target tissues. All vertebrate and urochordate GnRHs comprise 10 amino acids, whereas amphioxus, echinoderm, and protostome GnRH-like peptides are 11- or 12-residue peptides. Intracellular calcium mobilization is the major second messenger for GnRH signaling in cephalochordates, echinoderms, and protostomes, while urochordate GnRHRs also stimulate cAMP production pathways. Moreover, the ligand-specific modulation of signal transduction via heterodimerization between GnRHR paralogs indicates species-specific evolution in Ciona intestinalis. The characterization of authentic or putative invertebrate GnRHRs in various tissues and their in vitro and in vivo activities indicate that invertebrate GnRHs are responsible for the regulation of both reproductive and nonreproductive functions. In this review, we examine our current understanding of and perspectives on the primary sequences, tissue distribution of mRNA expression, signal transduction, and biological functions of invertebrate GnRHs and their receptors.
Collapse
|
8
|
Peacey L, Peacey C, Gutzinger A, Jones CE. Copper(II) Binding by the Earliest Vertebrate Gonadotropin-Releasing Hormone, the Type II Isoform, Suggests an Ancient Role for the Metal. Int J Mol Sci 2020; 21:ijms21217900. [PMID: 33114333 PMCID: PMC7663483 DOI: 10.3390/ijms21217900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
In vertebrate reproductive biology copper can influence peptide and protein function both in the pituitary and in the gonads. In the pituitary, copper binds to the key reproductive peptides gonadotropin-releasing hormone I (GnRH-I) and neurokinin B, to modify their structure and function, and in the male gonads, copper plays a role in testosterone production, sperm morphology and, thus, fertility. In addition to GnRH-I, most vertebrates express a second isoform, GnRH-II. GnRH-II can promote testosterone release in some species and has other non-reproductive roles. The primary sequence of GnRH-II has remained largely invariant over millennia, and it is considered the ancestral GnRH peptide in vertebrates. In this work, we use a range of spectroscopic techniques to show that, like GnRH-I, GnRH-II can bind copper. Phylogenetic analysis shows that the proposed copper-binding ligands are retained in GnRH-II peptides from all vertebrates, suggesting that copper-binding is an ancient feature of GnRH peptides.
Collapse
|
9
|
Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis. Proc Natl Acad Sci U S A 2019; 117:1097-1106. [PMID: 31843923 PMCID: PMC6969523 DOI: 10.1073/pnas.1910262116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gonadotropin Releasing Hormone (GnRH) acts as a key regulator of sexual maturation in vertebrates, and is required for the integration of environmental stimuli to orchestrate breeding cycles. Whether this integrative function is conserved across phyla remains unclear. We characterized GnRH-type signaling systems in the marine worm Platynereis dumerilii, in which both metabolic state and lunar cycle regulate reproduction. We find gnrh-like (gnrhl) genes upregulated in sexually mature animals, after feeding, and in specific lunar phases. Animals in which the corazonin1/gnrhl1 gene has been disabled exhibit delays in growth, regeneration, and maturation. Molecular analyses reveal glycoprotein turnover/energy homeostasis as targets of CRZ1/GnRHL1. These findings point at an ancestral role of GnRH superfamily signaling in coordinating energy demands dictated by environmental and developmental cues. The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand–receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm’s monthly cycle.
Collapse
|
10
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
11
|
Lu K, Wang Y, Chen X, Zhang X, Li W, Cheng Y, Li Y, Zhou J, You K, Song Y, Zhou Q, Zeng R. Adipokinetic Hormone Receptor Mediates Trehalose Homeostasis to Promote Vitellogenin Uptake by Oocytes in Nilaparvata lugens. Front Physiol 2019; 9:1904. [PMID: 30687120 PMCID: PMC6338042 DOI: 10.3389/fphys.2018.01904] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Adipokinetic hormones (AKHs) are well known to mobilize lipids and carbohydrates for energy-consuming activities in insects. These neuropeptides exert their functions by interacting with AKH receptors (AKHRs) located on the plasma membrane of fat body cells, which regulates energy mobilization by stimulating lipolysis of triacylglycerols (TAG) to diacylglycerols (DAG) and conversion of glycogen into trehalose. Here, we investigated the roles of AKH/AKHR signaling system in trehalose metabolism and vitellogenesis during female reproduction in the brown planthopper, Nilaparvata lugens. Knockdown of AKHR expression by RNA interference (RNAi) resulted in a decrease of the circulating trehalose in hemolymph and significantly increased levels of two trehalases in fat bodies, indicating that the modulation of hemolymph trehalose levels by AKHR may be mediated by regulating trehalose degradation. In addition, adult females that had been injected with double-stranded RNA (dsRNA) for AKHR exhibited delayed oocyte maturation, prolonged pre-oviposition period, as well as decline in egg number and reduction in fecundity. Considering that these phenotypes resulting from AKHR silencing are similar to those of vitellogenin receptor (VgR) RNAi, we further analyzed a possible connection between AKHR and vitellogenesis. Knockdown of AKHR showed no effects on the Vg synthesis in fat bodies, whereas it significantly reduced the levels of VgR in ovaries. With RNAi-females, we observed an increase of Vg accumulation in hemolymph and a decrease of Vg deposition in ovaries. Moreover, the decrease in VgR expression and Vg incorporation by developing oocytes could be partially rescued by injection of trehalose into AKHR RNAi females. The present study has implicated trehalose in the AKH/AKHR signaling-mediated control of reproduction and provided new insight into mechanisms of AKH/AKHR regulation of trehalose metabolism in insect vitellogenesis, oocyte maturation and fecundity.
Collapse
Affiliation(s)
- Kai Lu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xia Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenru Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yibei Cheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinming Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keke You
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Song
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rensen Zeng
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Abstract
Gonadotropin-releasing hormone (GnRH) was first discovered in mammals on account of its effect in triggering pituitary release of gonadotropins and the importance of this discovery was recognized forty years ago in the award of the 1977 Nobel Prize for Physiology or Medicine. Investigation of the evolution of GnRH revealed that GnRH-type signaling systems occur throughout the chordates, including agnathans (e.g. lampreys) and urochordates (e.g. sea squirts). Furthermore, the discovery that adipokinetic hormone (AKH) is the ligand for a GnRH-type receptor in the arthropod Drosophila melanogaster provided evidence of the antiquity of GnRH-type signaling. However, the occurrence of other AKH-like peptides in arthropods, which include corazonin and AKH/corazonin-related peptide (ACP), has complicated efforts to reconstruct the evolutionary history of this family of related neuropeptides. Genome/transcriptome sequencing has revealed that both GnRH-type receptors and corazonin-type receptors occur in lophotrochozoan protostomes (annelids, mollusks) and in deuterostomian invertebrates (cephalochordates, hemichordates, echinoderms). Furthermore, peptides that act as ligands for GnRH-type and corazonin-type receptors have been identified in mollusks. However, what has been lacking is experimental evidence that distinct GnRH-type and corazonin-type peptide-receptor signaling pathways occur in deuterostomes. Importantly, we recently reported the identification of two neuropeptides that act as ligands for either a GnRH-type receptor or a corazonin-type receptor in an echinoderm species - the common European starfish Asterias rubens. Discovery of distinct GnRH-type and corazonin-type signaling pathways in this deuterostomian invertebrate has demonstrated for the first time that the evolutionarily origin of these paralogous systems can be traced to the common ancestor of protostomes and deuterostomes. Furthermore, lineage-specific losses of corazonin signaling (in vertebrates, urochordates and nematodes) and duplication of the GnRH signaling system in arthropods (giving rise to the AKH and ACP signaling systems) and quadruplication of the GnRH signaling system in vertebrates (followed by lineage-specific losses or duplications) accounts for the phylogenetic distribution of GnRH/corazonin-type peptide-receptor pathways in extant animals. Informed by these new insights, here we review the history of research on the evolution of GnRH/corazonin-type neuropeptide signaling. Furthermore, we propose a standardized nomenclature for GnRH/corazonin-type neuropeptides wherein peptides are either named "GnRH" or "corazonin", with the exception of the paralogous GnRH-type peptides that have arisen by gene duplication in the arthropod lineage and which are referred to as "AKH" (or red pigment concentrating hormone, "RCPH", in crustaceans) and "ACP".
Collapse
Affiliation(s)
- Meet Zandawala
- Stockholm University, Department of Zoology, Stockholm, Sweden
| | - Shi Tian
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
13
|
The nervous system of the adult ascidian Ciona intestinalis Type A (Ciona robusta): Insights from transgenic animal models. PLoS One 2017. [PMID: 28651020 PMCID: PMC5484526 DOI: 10.1371/journal.pone.0180227] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nervous system of ascidians is an excellent model system to provide insights into the evolutionary process of the chordate nervous system due to their phylogenetic positions as the sister group of vertebrates. However, the entire nervous system of adult ascidians has yet to be functionally and anatomically investigated. In this study, we have revealed the whole dorsal and siphon nervous system of the transgenic adult ascidian of Ciona intestinalis Type A (Ciona robusta) in which a Kaede reporter gene is expressed in a pan-neuronal fashion. The fluorescent signal of Kaede revealed the innervation patterns and distribution of neurons in the nervous system of Ciona. Precise microscopic observation demonstrated the clear innervation of the anterior and posterior main nerves to eight and six lobes of the oral and atrial siphons, respectively. Moreover, visceral nerves, previously identified as unpaired nerves, were found to be paired; one nerve was derived from the posterior end of the cerebral ganglion and the other from the right posterior nerve. This study further revealed the full trajectory of the dorsal strand plexus and paired visceral nerves on either side from the cerebral ganglion to the ovary, and precise innervation between the cerebral ganglion and the peripheral organs including the gonoduct, cupular organ, rectum and ovary. The differential innervation patterns of visceral nerves and the dorsal strand plexus indicate that the peripheral organs including the ovary undergo various neural regulations. Collectively, the present anatomical analysis revealed the major innervation of the dorsal and siphon nervous systems of adult Ciona.
Collapse
|
14
|
Tian S, Egertová M, Elphick MR. Functional Characterization of Paralogous Gonadotropin-Releasing Hormone-Type and Corazonin-Type Neuropeptides in an Echinoderm. Front Endocrinol (Lausanne) 2017; 8:259. [PMID: 29033898 PMCID: PMC5626854 DOI: 10.3389/fendo.2017.00259] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Homologs of the vertebrate neuropeptide gonadotropin-releasing hormone (GnRH) have been identified in invertebrates, including the insect neuropeptide corazonin (CRZ). Recently, we reported the discovery of GnRH-type and CRZ-type signaling systems in an echinoderm, the starfish Asterias rubens, demonstrating that the evolutionary origin of paralogous GnRH-type and CRZ-type neuropeptides can be traced back to the common ancestor of protostomes and deuterostomes. Here, we have investigated the physiological roles of the GnRH-type (ArGnRH) and the CRZ-type (ArCRZ) neuropeptides in A. rubens, using mRNA in situ hybridization, immunohistochemistry and in vitro pharmacology. ArGnRH precursor (ArGnRHP)-expressing cells and ArGnRH-immunoreactive cells and/or processes are present in the radial nerve cords, circumoral nerve ring, digestive system (e.g., cardiac stomach and pyloric stomach), body wall-associated muscle (apical muscle), and appendages (tube feet, terminal tentacle). The general distribution of ArCRZ precursor (ArCRZP)-expressing cells is similar to that of ArGnRHP, but with specific local differences. For example, cells expressing ArGnRHP are present in both the ectoneural and hyponeural regions of the radial nerve cords and circumoral nerve ring, whereas cells expressing ArCRZP were only observed in the ectoneural region. In vitro pharmacological experiments revealed that both ArGnRH and ArCRZ cause contraction of cardiac stomach, apical muscle, and tube foot preparations. However, ArGnRH was more potent/effective than ArCRZ as a contractant of the cardiac stomach, whereas ArCRZ was more potent/effective than ArGnRH as a contractant of the apical muscle. These findings demonstrate that both ArGnRH and ArCRZ are myoexcitatory neuropeptides in starfish, but differences in their expression patterns and pharmacological activities are indicative of distinct physiological roles. This is the first study to investigate the physiological roles of both GnRH-type and CRZ-type neuropeptides in a deuterostome, providing new insights into the evolution and comparative physiology of these paralogous neuropeptide signaling systems in the Bilateria.
Collapse
Affiliation(s)
- Shi Tian
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Michaela Egertová
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Maurice R. Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- *Correspondence: Maurice R. Elphick,
| |
Collapse
|
15
|
Sakai T, Shiraishi A, Kawada T, Matsubara S, Aoyama M, Satake H. Invertebrate Gonadotropin-Releasing Hormone-Related Peptides and Their Receptors: An Update. Front Endocrinol (Lausanne) 2017; 8:217. [PMID: 28932208 PMCID: PMC5592718 DOI: 10.3389/fendo.2017.00217] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproductive functions via the hypothalamus, pituitary, and gonad axis, namely, HPG axis in vertebrates. GnRHs and their receptors (GnRHRs) are likely to be conserved in invertebrate deuterostomes and lophotrochozoans. All vertebrate and urochordate GnRHs are composed of 10 amino acids, whereas protostome, echinoderm, and amphioxus GnRH-like peptides are 11- or 12-residue peptide containing two amino acids after an N-terminal pyro-Glu. In urochordates, Halocynthia roretzi GnRH gene encodes two GnRH peptide sequences, whereas two GnRH genes encode three different GnRH peptides in Ciona intestinalis. These findings indicate the species-specific diversification of GnRHs. Intriguingly, the major signaling pathway for GnRHRs is intracellular Ca2+ mobilization in chordates, echinoderms, and protostomes, whereas Ciona GnRHRs (Ci-GnRHRs) are endowed with multiple GnRHergic cAMP production pathways in a ligand-selective manner. Moreover, the ligand-specific modulation of signal transduction via heterodimerization among Ci-GnRHR paralogs suggests the species-specific development of fine-tuning of gonadal functions in ascidians. Echinoderm GnRH-like peptides show high sequence differences compared to those of protostome counterparts, leading to the difficulty in classification of peptides and receptors. These findings also show both the diversity and conservation of GnRH signaling systems in invertebrates. The lack of the HPG axis in invertebrates indicates that biological functions of GnRHs are not release of gonadotropins in current invertebrates and common ancestors of vertebrates and invertebrates. To date, authentic or putative GnRHRs have been characterized from various echinoderms and protostomes as well as chordates and the mRNAs have been found to be distributed not only reproductive organs but also other tissues. Collectively, these findings further support the notion that invertebrate GnRHs have biological roles other than the regulation of reproductive functions. Moreover, recent molecular phylogenetic analysis suggests that adipokinetic hormone (AKH), corazonin (CRZ), and AKH/CRZ-related peptide (ACP) belong to the GnRH superfamily but has led to the different classifications of these peptides and receptors using different datasets including the number of sequences and structural domains. In this review, we provide current knowledge of, and perspectives in, molecular basis and evolutionary aspects of the GnRH, AKH, CRZ, and ACP.
Collapse
Affiliation(s)
- Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Masato Aoyama
- Faculty of Science, Department of Biological Sciences, Nara Women’s University, Nara, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
- *Correspondence: Honoo Satake,
| |
Collapse
|
16
|
Kusakabe TG. Identifying Vertebrate Brain Prototypes in Deuterostomes. DIVERSITY AND COMMONALITY IN ANIMALS 2017. [DOI: 10.1007/978-4-431-56469-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
The pre-vertebrate origins of neurogenic placodes. Nature 2015; 524:462-5. [PMID: 26258298 DOI: 10.1038/nature14657] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/09/2015] [Indexed: 11/09/2022]
Abstract
The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.
Collapse
|
18
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
19
|
Kamiya C, Ohta N, Ogura Y, Yoshida K, Horie T, Kusakabe TG, Satake H, Sasakura Y. Nonreproductive role of gonadotropin-releasing hormone in the control of ascidian metamorphosis. Dev Dyn 2014; 243:1524-35. [PMID: 25130398 DOI: 10.1002/dvdy.24176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gonadotropin-releasing hormones (GnRHs) are neuropeptides that play central roles in the reproduction of vertebrates. In the ascidian Ciona intestinalis, GnRHs and their receptors are expressed in the nervous systems at the larval stage, when animals are not yet capable of reproduction, suggesting that the hormones have non-reproductive roles. RESULTS We showed that GnRHs in Ciona are involved in the animal's metamorphosis by regulating tail absorption and adult organ growth. Absorption of the larval tail and growth of the adult organs are two major events in the metamorphosis of ascidians. When larvae were treated with GnRHs, they completed tail absorption more frequently than control larvae. cAMP was suggested to be a second messenger for the induction of tail absorption by GnRHs. tGnRH-3 and tGnRH-5 (the "t" indicates "tunicate") inhibited the growth of adult organs by arresting cell cycle progression in parallel with the promotion of tail absorption. CONCLUSIONS This study provides new insights into the molecular mechanisms of ascidian metamorphosis conducted by non-reproductive GnRHs.
Collapse
Affiliation(s)
- Chisato Kamiya
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Patthey C, Schlosser G, Shimeld SM. The evolutionary history of vertebrate cranial placodes--I: cell type evolution. Dev Biol 2014; 389:82-97. [PMID: 24495912 DOI: 10.1016/j.ydbio.2014.01.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
Vertebrate cranial placodes are crucial contributors to the vertebrate cranial sensory apparatus. Their evolutionary origin has attracted much attention from evolutionary and developmental biologists, yielding speculation and hypotheses concerning their putative homologues in other lineages and the developmental and genetic innovations that might have underlain their origin and diversification. In this article we first briefly review our current understanding of placode development and the cell types and structures they form. We next summarise previous hypotheses of placode evolution, discussing their strengths and caveats, before considering the evolutionary history of the various cell types that develop from placodes. In an accompanying review, we also further consider the evolution of ectodermal patterning. Drawing on data from vertebrates, tunicates, amphioxus, other bilaterians and cnidarians, we build these strands into a scenario of placode evolutionary history and of the genes, cells and developmental processes that underlie placode evolution and development.
Collapse
Affiliation(s)
- Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Gerhard Schlosser
- Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, University Road, Galway, Ireland
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
21
|
Nuurai P, Primphon J, Seangcharoen T, Tinikul Y, Wanichanon C, Sobhon P. Immunohistochemical detection of GnRH-like peptides in the neural ganglia and testis of Haliotis asinina. Microsc Res Tech 2014; 77:110-9. [PMID: 24446352 DOI: 10.1002/jemt.22304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/13/2013] [Accepted: 10/08/2013] [Indexed: 11/11/2022]
Abstract
Gonadotropin releasing hormone (GnRH) is a peptide that is conserved in both vertebrate and invertebrate species. In this study, we have demonstrated the distribution pattern of two isoforms of GnRH-like peptides in the neural ganglia and testis of reproductively mature male abalone, H. asinina, by immunohistochemistry and whole mount immunofluorescence. We found octopus (oct) GnRH and tunicate-I (t) GnRH-I immunoreactivities (ir) in type 1 neurosecretory cells (NS1) and they were expressed mostly within the ventral horn of the cerebral ganglion, whereas in pleuropedal ganglia they were localized primarily in the dorsal horn. Furthermore, tGnRH-I-ir were strongly detected in fibers at the caudal part of the cerebral ganglia and both ventral and dorsal horns of the pleuropedal ganglia. In the testis, only octGnRH-ir was found primarily in the granulated cell and central capillaries within the trabeculae. These results suggest that multiple GnRH-like peptides are present in the neural ganglia which could be the principal source of their production, whereas GnRH may also be synthesized locally in the testis and act as the paracrine control of testicular maturation.
Collapse
Affiliation(s)
- Parinyaporn Nuurai
- Faculty of Allied Health Sciences, Burapha University, Chonburi, 20131, Thailand
| | | | | | | | | | | |
Collapse
|
22
|
Matsumoto T, Masaoka T, Fujiwara A, Nakamura Y, Satoh N, Awaji M. Reproduction-related genes in the pearl oyster genome. Zoolog Sci 2013; 30:826-50. [PMID: 24125647 DOI: 10.2108/zsj.30.826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Molluscan reproduction has been a target of biological research because of the various reproductive strategies that have evolved in this phylum. It has also been studied for the development of fisheries technologies, particularly aquaculture. Although fundamental processes of reproduction in other phyla, such as vertebrates and arthropods, have been well studied, information on the molecular mechanisms of molluscan reproduction remains limited. The recently released draft genome of the pearl oyster Pinctada fucata provides a novel and powerful platform for obtaining structural information on the genes and proteins involved in bivalve reproduction. In the present study, we analyzed the pearl oyster draft genome to screen reproduction-related genes. Analysis was mainly conducted for genes reported from other molluscs for encoding orthologs of reproduction-related proteins in other phyla. The gene search in the P. fucata gene models (version 1.1) and genome assembly (version 1.0) were performed using Genome Browser and BLAST software. The obtained gene models were then BLASTP searched against a public database to confirm the best-hit sequences. As a result, more than 40 gene models were identified with high accuracy to encode reproduction-related genes reported for P. fucata and other molluscs. These include vasa, nanos, doublesex- and mab-3-related transcription factor, 5-hydroxytryptamine (5-HT) receptors, vitellogenin, estrogen receptor, and others. The set of reproduction-related genes of P. fucata identified in the present study constitute a new tool for research on bivalve reproduction at the molecular level.
Collapse
Affiliation(s)
- Toshie Matsumoto
- 1 Aquaculture Technology Division, National Research Institute of Aquaculture, Fisheries Research Agency, Minami-lse, Watarai, Mie 516-0193, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Hasunuma I, Terakado K. Two novel gonadotropin-releasing hormones (GnRHs) from the urochordate ascidian, Halocynthia roretzi: implications for the origin of vertebrate GnRH isoforms. Zoolog Sci 2013; 30:311-8. [PMID: 23537242 DOI: 10.2108/zsj.30.311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three forms of gonadotropin-releasing hormone (GnRH) are found in vertebrates; these differ in amino acid sequence, localization, distribution, and embryological origin. We used northern blot analysis, and in situ hybridization to detect GnRH transcripts in various tissues in the large ascidian Halocynthia roretzi. We cloned a cDNA encoding two novel GnRHs, termed tGnRH-10 and tGnRH-11, from H. roretzi, with deduced amino acid sequences of QHWSYGFSPG and QHWSYGFLPG, respectively. Both GnRHs are highly similar to those of teleosts and tetrapods. For example, the tGnRH-10 sequence is 90% identical to seabream GnRH1, and tGnRH-11 is 90% identical to salmon GnRH3. The primary structure of the deduced preprotein is similar to that of chordate GnRHs and consists of a signal peptide, two decapeptides, up- and downstream processing sequences (containing lysine and arginine), and a GnRH-associated peptide. The transcripts of the H. roretzi GnRH gene were expressed in all tissues examined. Comparison of the signal peptide of the lamprey GnRH-II precursor with those of three forms from representative vertebrates revealed homology to GnRH2 precursors. These novel ascidian GnRHs offer a new perspective on the origin of vertebrate GnRH subtypes. We hypothesize that gnathostome GnRH2 was derived only from lamprey GnRH-II and that ancestral gnathostome GnRH, which produces neurons that originate in peripheral organs, gave rise to vertebrate GnRH1 and GnRH3 through whole-genome duplication.
Collapse
Affiliation(s)
- Itaru Hasunuma
- Department of Biology, Toho University, Funabashi 274-8510, Japan
| | | |
Collapse
|
24
|
Saetan J, Senarai T, Tamtin M, Weerachatyanukul W, Chavadej J, Hanna PJ, Parhar I, Sobhon P, Sretarugsa P. Histological organization of the central nervous system and distribution of a gonadotropin-releasing hormone-like peptide in the blue crab, Portunus pelagicus. Cell Tissue Res 2013; 353:493-510. [PMID: 23733265 DOI: 10.1007/s00441-013-1650-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/22/2013] [Indexed: 12/24/2022]
Abstract
We present a detailed histological description of the central nervous system (CNS: brain, subesophageal ganglion, thoracic ganglia, abdominal ganglia) of the blue crab, Portunus pelagicus. Because the presence of gonadotropin-releasing hormone (GnRH) in crustaceans has been disputed, we examine the presence and localization of a GnRH-like peptide in the CNS of the blue crab by using antibodies against lamprey GnRH (lGnRH)-III, octopus GnRH (octGnRH) and tunicate GnRH (tGnRH)-I. These antibodies showed no cross-reactivity with red-pigment-concentrating hormone, adipokinetic hormone, or corazonin. In the brain, strong lGnRH-III immunoreactivity (-ir) was detected in small (7-17 μm diameter) neurons of clusters 8, 9 and 10, in medium-sized (21-36 μm diameter) neurons of clusters 6, 7 and 11 and in the anterior and posterior median protocerebral neuropils, olfactory neuropil, median and lateral antenna I neuropils, tegumentary neuropil and antenna II neuropil. In the subesophageal ganglion, lGnRH-III-ir was detected in medium-sized neurons and in the subesophageal neuropil. In the thoracic and abdominal ganglia, lGnRH-III-ir was detected in medium-sized and small neurons and in the neuropils. OctGnRH-ir was observed in neurons of the same clusters with moderate staining, particularly in the deutocerebrum, whereas tGnRH-I-ir was only detected in medium-sized neurons of cluster 11 in the brain. Thus, anti-lGnRH-III shows greater immunoreactivity in the crab CNS than anti-octGnRH and anti-tGnRH-I. Moreover, our functional bioassay demonstrates that only lGnRH-III has significant stimulatory effects on ovarian growth and maturation. We therefore conclude that, although the true identity of the crab GnRH eludes us, crabs possess a putative GnRH hormone similar to lGnRH-III. The identification and characterization of this molecule is part of our ongoing research.
Collapse
Affiliation(s)
- Jirawat Saetan
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rowe ML, Elphick MR. The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus. Gen Comp Endocrinol 2012; 179:331-44. [PMID: 23026496 DOI: 10.1016/j.ygcen.2012.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/03/2023]
Abstract
Neuronal secretion of peptide signaling molecules (neuropeptides) is an evolutionarily ancient feature of nervous systems. Here we report the identification of 20 cDNAs encoding putative neuropeptide precursors in the sea urchin Strongylocentrotus purpuratus (Phylum Echinodermata), providing new insights on the evolution and diversity of neuropeptides. Identification of a gonadotropin-releasing hormone-like peptide precursor (SpGnRHP) is consistent with the widespread phylogenetic distribution of GnRH-type neuropeptides in the bilateria. A protein (SpTRHLP) comprising multiple copies of peptides that share structural similarity with thyrotropin-releasing hormone (TRH) is the first TRH-like precursor to be identified in an invertebrate. SpCTLP is the first calcitonin-like peptide with two N-terminally located cysteine residues to be found in a non-chordate species. Discovery of two proteins (SpPPLNP1, SpPPLNP2) comprising homologs of molluscan pedal peptides and arthropod orcokinins indicates the existence of a bilaterian family of pedal peptide/orcokinin-type neuropeptides. Other proteins identified contain peptides that do not share apparent sequence similarity with known neuropeptides. These include Spnp5, which comprises multiple copies of C-terminally amidated peptides that have an N-terminal Ala-Asn motif (AN peptides), and Spnp9, Spnp10 and Spnp12, which contain putative neuropeptides with a C-terminal Phe-amide, Ser-amide or Pro-amide, respectively. Several proteins (Spnp11, 14, 15, 16, 17, 18, 19 and 20) contain putative neuropeptides with multiple cysteine residues (2, 6 or 8), which may mediate formation of intramolecular or intermolecular disulphide bridges. Looking ahead, the identification of these neuropeptide precursors in S. purpuratus has provided a strong basis for a comprehensive analysis of neuropeptide function in this model echinoderm species.
Collapse
Affiliation(s)
- Matthew L Rowe
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | | |
Collapse
|
26
|
Parhar I, Ogawa S, Kitahashi T. RFamide peptides as mediators in environmental control of GnRH neurons. Prog Neurobiol 2012; 98:176-96. [DOI: 10.1016/j.pneurobio.2012.05.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 11/25/2022]
|
27
|
Kusakabe TG, Sakai T, Aoyama M, Kitajima Y, Miyamoto Y, Takigawa T, Daido Y, Fujiwara K, Terashima Y, Sugiuchi Y, Matassi G, Yagisawa H, Park MK, Satake H, Tsuda M. A conserved non-reproductive GnRH system in chordates. PLoS One 2012; 7:e41955. [PMID: 22848672 PMCID: PMC3407064 DOI: 10.1371/journal.pone.0041955] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/27/2012] [Indexed: 01/28/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a neuroendocrine peptide that plays a central role in the vertebrate hypothalamo-pituitary axis. The roles of GnRH in the control of vertebrate reproductive functions have been established, while its non-reproductive function has been suggested but less well understood. Here we show that the tunicate Ciona intestinalis has in its non-reproductive larval stage a prominent GnRH system spanning the entire length of the nervous system. Tunicate GnRH receptors are phylogenetically closest to vertebrate GnRH receptors, yet functional analysis of the receptors revealed that these simple chordates have evolved a unique GnRH system with multiple ligands and receptor heterodimerization enabling complex regulation. One of the gnrh genes is conspicuously expressed in the motor ganglion and nerve cord, which are homologous structures to the hindbrain and spinal cord of vertebrates. Correspondingly, GnRH receptor genes were found to be expressed in the tail muscle and notochord of embryos, both of which are phylotypic axial structures along the nerve cord. Our findings suggest a novel non-reproductive role of GnRH in tunicates. Furthermore, we present evidence that GnRH-producing cells are present in the hindbrain and spinal cord of the medaka, Oryzias latipes, thereby suggesting the deep evolutionary origin of a non-reproductive GnRH system in chordates.
Collapse
Affiliation(s)
- Takehiro G. Kusakabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Tsubasa Sakai
- Division of Biomolecular Research, Suntory Institute for Bioorganic Research, Shimamoto, Osaka, Japan
| | - Masato Aoyama
- Division of Biomolecular Research, Suntory Institute for Bioorganic Research, Shimamoto, Osaka, Japan
| | - Yuka Kitajima
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Yuki Miyamoto
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Toru Takigawa
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Yutaka Daido
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Kentaro Fujiwara
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Yasuko Terashima
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Yoko Sugiuchi
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
| | - Giorgio Matassi
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan
- Department of Agriculture and Environmental Sciences, University of Udine, Udine, Italy
| | - Hitoshi Yagisawa
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
| | - Min Kyun Park
- Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Tokyo, Japan
| | - Honoo Satake
- Division of Biomolecular Research, Suntory Institute for Bioorganic Research, Shimamoto, Osaka, Japan
| | - Motoyuki Tsuda
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo, Japan
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| |
Collapse
|
28
|
Huang JH, Lee HJ. RNA interference unveils functions of the hypertrehalosemic hormone on cyclic fluctuation of hemolymph trehalose and oviposition in the virgin female Blattella germanica. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:858-864. [PMID: 21439292 DOI: 10.1016/j.jinsphys.2011.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
Hypertrehalosemic hormone (HTH) is a neuropeptide within the adipokinetic hormone (AKH) family that induces a release of trehalose from fat body into hemolymph in a number of insects. In this study, we first showed that female adult German cockroach, Blattella germanica, displayed a cyclic fluctuation of hemolymph trehalose levels correlated to the maturation of oocytes in the reproductive cycle. After cloning the HTH cDNA from the German cockroach (Blage-HTH), expression studies indicated that Blage-HTH mRNA showed the cyclic changes during the first reproductive cycle, where peak values occurred in 8-day-old virgin female cockroaches, which were going to produce oothecae. The functions of Blage-HTH were studied using RNA interference (RNAi) to knockdown its expression. Adult virgin females of B. germanica injected with Blage-HTH dsRNA increased hemolymph trehalose levels in the late period of vitellogenesis more slowly than control. Furthermore, RNAi of Blage-HTH delayed oviposition time and some (10%) individuals did not produce the first ootheca until 15 days after eclosion, whereas the control group produced ootheca before 9 days in all cases.
Collapse
Affiliation(s)
- Jia-Hsin Huang
- Department of Entomology, National Taiwan University, Taipei 106, Taiwan
| | | |
Collapse
|
29
|
Hamada M, Shimozono N, Ohta N, Satou Y, Horie T, Kawada T, Satake H, Sasakura Y, Satoh N. Expression of neuropeptide- and hormone-encoding genes in the Ciona intestinalis larval brain. Dev Biol 2011; 352:202-14. [PMID: 21237141 DOI: 10.1016/j.ydbio.2011.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/03/2010] [Accepted: 01/06/2011] [Indexed: 01/08/2023]
Abstract
Despite containing only approximately 330 cells, the central nervous system (CNS) of Ciona intestinalis larvae has an architecture that is similar to the vertebrate CNS. Although only vertebrates have a distinct hypothalamus-the source of numerous neurohormone peptides that play pivotal roles in the development, function, and maintenance of various neuronal and endocrine systems, it is suggested that the Ciona brain contains a region that corresponds to the vertebrate hypothalamus. To identify genes expressed in the brain, we isolated brain vesicles using transgenic embryos carrying Ci-β-tubulin(promoter)::Kaede, which resulted in robust Kaede expression in the larval CNS. The associated transcriptome was investigated using microarray analysis. We identified 565 genes that were preferentially expressed in the larval brain. Among these genes, 11 encoded neurohormone peptides including such hypothalamic peptides as gonadotropin-releasing hormone and oxytocin/vasopressin. Six of the identified peptide genes had not been previously described. We also found that genes encoding receptors for some of the peptides were expressed in the brain. Interestingly, whole-mount in situ hybridization showed that most of the peptide genes were expressed in the ventral brain. This catalog of the genes expressed in the larval brain should help elucidate the evolution, development, and functioning of the chordate brain.
Collapse
Affiliation(s)
- Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, Onna, Okinawa 904-0412, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
The existence of gonadotropin-releasing hormone-like peptides in the neural ganglia and ovary of the abalone, Haliotis asinina L. Acta Histochem 2010; 112:557-66. [PMID: 19604545 DOI: 10.1016/j.acthis.2009.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 11/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a neuropeptide that is conserved in both vertebrate and invertebrate species. In this study, we have demonstrated the presence and distribution of two isoforms of GnRH-like peptides in neural ganglia and ovary of reproductively mature female abalone, Haliotis asinina, using immunohistochemistry. We found significant immunoreactivities (ir) of anti-lamprey(l) GnRH-III and anti-tunicate(t) GnRH, but with variation of labeling intensity by each anti-GnRH type. lGnRH-III-ir was detected in numerous type 1 neurosecretory cells (NS1) throughout the cerebral and pleuropedal ganglia, whereas tGnRH-I-ir was detected in only a few NS1 cells in the dorsal region of cerebral and pleuropedal ganglia. In addition, a small number of type 2 neurosecretory cells (NS2) in cerebral ganglion showed lGnRH-III-ir. Long nerve fibers in the neuropil of ventral regions of the cerebral and pluropedal ganglia showed strong tGnRH-I-ir. In the ovary, lGnRH-III-ir was found primarily in oogonia and stage I oocytes, whereas tGnRH-ir was observed in stage I oocytes and some stage II oocytes. These results indicate that GnRH produced in neural ganglia may act in neural signaling. Alternatively, GnRH may also be synthesized locally in the ovary where it could induce oocyte development.
Collapse
|
31
|
Kano S. Genomics and Developmental Approaches to an Ascidian Adenohypophysis Primordium. Integr Comp Biol 2010; 50:35-52. [DOI: 10.1093/icb/icq050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
32
|
Kawada T, Sekiguchi T, Sakai T, Aoyama M, Satake H. Neuropeptides, hormone peptides, and their receptors in Ciona intestinalis: an update. Zoolog Sci 2010; 27:134-53. [PMID: 20141419 DOI: 10.2108/zsj.27.134] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The critical phylogenetic position of ascidians leads to the presumption that neuropeptides and hormones in vertebrates are highly likely to be evolutionarily conserved in ascidians, and the cosmopolitan species Ciona intestinalis is expected to be an excellent deuterostome Invertebrate model for studies on neuropeptides and hormones. Nevertheless, molecular and functional characterization of Ciona neuropeptides and hormone peptides was restricted to a few peptides such as a cholecystokinin (CCK)/gastrin peptide, cionin, and gonadotropin-releasing hormones (GnRHs). In the past few years, mass spectrometric analyses and database searches have detected Ciona orthologs or prototypes of vertebrate peptides and their receptors, including tachykinin, insulin/relaxin, calcitonin, and vasopressin. Furthermore, studies have shown that several Ciona peptides, including vasopressin and a novel GnRH-related peptide, have acquired ascidian-specific molecular forms and/or biological functions. These findings provided indisputable evidence that ascidians, unlike other invertebrates (including the traditional protostome model animals), possess neuropeptides and hormone peptides structurally and functionally related to vertebrate counterparts, and that several peptides have uniquely diverged in ascidian evolutionary lineages. Moreover, recent functional analyses of Ciona tachykinin in the ovary substantiated the novel tachykininergic protease-assoclated oocyte growth pathway, which could not have been revealed in studies on vertebrates. These findings confirm the outstanding advantages of ascidians in understanding the neuroscience, endocrinology, and evolution of vertebrate neuropeptides and hormone peptides. This article provides an overview of basic findings and reviews new knowledge on ascidian neuropeptides and hormone peptides.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | | | | | | | | |
Collapse
|
33
|
Sakai T, Aoyama M, Kusakabe T, Tsuda M, Satake H. Functional diversity of signaling pathways through G protein-coupled receptor heterodimerization with a species-specific orphan receptor subtype. Mol Biol Evol 2009; 27:1097-106. [PMID: 20026483 DOI: 10.1093/molbev/msp319] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gonadotropin-releasing hormones (GnRHs) play pivotal roles in control of reproduction via a hypothalamic-pituitary-periphery endocrine system and nervous systems of not only vertebrates but also invertebrates. GnRHs trigger several signal transduction cascades via GnRH receptors (GnRHRs), members of the G protein-coupled receptor (GPCR) family. Recently, six GnRHs (tunicate GnRH [tGnRH]-3 to tGnRH-8) and four GnRHRs (Ciona intestinalis [Ci]-GnRHR1 to GnRHR-4), including a species-specific paralog, Ci-GnRHR4 (R4) regarded as an orphan receptor or nonfunctional receptor, were identified in the protochordate, C. intestinalis, which lacks the hypothalamic-pituitary system. Here, we show novel functional modulation of GnRH signaling pathways via GPCR heterodimerization. Immunohistochemical analysis showed colocalization of R1 and R4 in test cells of the ascidian ovary. The native R1-R4 heterodimerization was detected in the Ciona ovary by coimmunoprecipitation analysis. The heterodimerization in HEK293 cells cotransfected with R1 and R4 was also observed by coimmunoprecipitation and fluorescent energy transfer analyses. Binding assay revealed that R4 had no affinity for tGnRHs, and the heterodimerization did not alter the binding affinity of R1 to the ligands. The R1-R4 elicited 10-fold more potent Ca2+ mobilization than R1 exclusively by tGnRH-6, although R1-mediated cyclic AMP production was not affected by any of tGnRHs via the R1-R4 heterodimer. Moreover, the R1-R4 heterodimer potentiated translocation of both Ca2+-dependent protein kinase C-alpha (PKCalpha) by tGnRH-6 and Ca2+-independent PKCzeta by tGnRH-5 and tGnRH-6, eventually leading to the upregulation of extracellular signal-regulated kinase (ERK) phosphorylation compared with R1 alone. These results provide evidence that the species-specific GnRHR orphan paralog, R4, serves as an endogenous modulator for the fine-tuning of activation of PKC subtype-selective signal transduction via heterodimerization with R1 and that the species-specific GPCR heterodimerization, in concert with multiplication of tGnRHs and Ci-GnRHRs, participates in functional evolution of neuropeptidergic GnRH signaling pathways highly conserved throughout the animal kingdom.
Collapse
Affiliation(s)
- Tsubasa Sakai
- Division of Biomolecular Research, Suntory Institute for Bioorganic Research, Osaka, Japan
| | | | | | | | | |
Collapse
|
34
|
Terakado K. Placode formation and generation of gonadotropin-releasing hormone (GnRH) neurons in ascidians. Zoolog Sci 2009; 26:398-405. [PMID: 19583498 DOI: 10.2108/zsj.26.398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurogenic placodes, a chordate innovation, generate several neuronal populations, including gonadotropin-releasing hormone (GnRH) neurons which are crucial for vertebrate and solitary ascidian urochordate reproduction. The dorsal strand placode of ascidians Is derived from the anterior ridge of the embryonic neural plate and thus shares a common developmental origin and expression of various transcription factors with vertebrate placodes. Despite their importance for understanding vertebrate origins, the evolutionary and developmental origins of the neurogenic placode remain obscure. Here I demonstrate the formation of an elaborate neurogenic placode, which forms the dorsal strand, on part of the neural gland epithelium in a solitary ascidian urochordate, Halocynthia roretzi. Two modes of GnRH neurogenesis in the dorsal strand (a peripheral organ) and the migration of GnRH neurons into the brain along the visceral nerve are also described. Ontogenetically, GnRH neurons are first detected in the dorsal strand and cerebral ganglion of very young Juveniles at almost the same time, demonstrating that ascidians possess morphological and developmental features in common with vertebrates. These results further indicate that the onset of peripheral GnRH neurogenesis and the ability of neurons to migrate into the brain predate the divergence of ascidians and vertebrates. Thus, based on the generation of GnRH neurons, the dorsal strand in ascidians may be homologous to the vertebrate olfactory placode. These organs are derived from the anterior region of the embryonic neural plate, which expresses several transcription factors that invertebrate chordates and vertebrates have in common. These results provide unequivocal support for the clade Olfactories (tunicates + vertebrates).
Collapse
Affiliation(s)
- Kiyoshi Terakado
- Innovative Research Organization, Saitama University, Sakura-Ku, Saitama 338-8570, Japan.
| |
Collapse
|
35
|
Horie T, Nakagawa M, Sasakura Y, Kusakabe TG. Cell type and function of neurons in the ascidian nervous system. Dev Growth Differ 2009; 51:207-20. [PMID: 19379276 DOI: 10.1111/j.1440-169x.2009.01105.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ascidians, or sea squirts, are primitive chordates, and their tadpole larvae share a basic body plan with vertebrates, including a notochord and a dorsal tubular central nervous system (CNS). The CNS of the ascidian larva is formed through a process similar to vertebrate neurulation, while the ascidian CNS is remarkably simple, consisting of about 100 neurons. Recent identification of genes that are specifically expressed in a particular subtype of neurons has enabled us to reveal neuronal networks at single-cell resolution. Based on the information on neuron subtype-specific genes, different populations of neurons have been visualized by whole-mount in situ hybridization, immunohistochemical staining using specific antibodies, and fluorescence labeling of cell bodies and neurites by a fluorescence protein reporter driven by neuron-specific promoters. Neuronal populations that have been successfully visualized include glutamatergic, cholinergic, gamma-aminobutyric acid/glycinergic, and dopaminergic neurons, which have allowed us to propose functional regionalization of the CNS and a neural circuit for locomotion. Thus, the simple nervous system of the ascidian larva can serve as an attractive model system for studying the development, function, and evolution of the chordate nervous system.
Collapse
Affiliation(s)
- Takeo Horie
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan.
| | | | | | | |
Collapse
|
36
|
NGERNSOUNGNERN PIYADA, NGERNSOUNGNERN APICHART, SOBHON PRASERT, SRETARUGSA PRAPEE. Gonadotropin-releasing hormone (GnRH) and a GnRH analog induce ovarian maturation in the giant freshwater prawn,Macrobrachium rosenbergii. INVERTEBR REPROD DEV 2009. [DOI: 10.1080/07924259.2009.9652298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
The identification and distribution of gonadotropin-releasing hormone-like peptides in the central nervous system and ovary of the giant freshwater prawn, Macrobrachium rosenbergii. INVERTEBRATE NEUROSCIENCE 2008; 8:49-57. [PMID: 18288509 DOI: 10.1007/s10158-008-0067-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 02/06/2008] [Indexed: 11/26/2022]
Abstract
In the present study, we demonstrated the existence of GnRH-like peptides in the central nervous system (CNS) and ovary of the giant freshwater prawn, Macrobrachium rosenbergii using immunocytochemistry. The immunoreactivity (ir) of lamprey (l) GnRH-III was detected in the soma of medium-sized neurons located in neuronal cluster number 11 in the middle part of supraesophageal ganglion (deutocerebrum), whereas ir-octopus (oct) GnRH was observed in the soma of both medium-sized and large-sized neurons in thoracic ganglia, as well as in the fibers innervating the other medium-sized and large-sized neuronal cell bodies in the thoracic ganglia. In addition, ir-lGnRH-I was observed in the cytoplasm of late previtellogenic oocyte and early vitellogenic oocyte. These data suggest that M. rosenbergii contain at least three isoforms of GnRH: two GnRH isoforms closely related to lGnRH-III and octGnRH in the CNS, whereas another isoform, closely related to lGnRH-I, was localized in the ovary. This finding provides supporting data that ir-GnRH-like peptide(s) may exist in this decapod crustacean.
Collapse
|
38
|
Kah O, Lethimonier C, Somoza G, Guilgur LG, Vaillant C, Lareyre JJ. GnRH and GnRH receptors in metazoa: a historical, comparative, and evolutive perspective. Gen Comp Endocrinol 2007; 153:346-64. [PMID: 17350014 DOI: 10.1016/j.ygcen.2007.01.030] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 01/21/2007] [Indexed: 11/20/2022]
Abstract
About 50years after Harris's first demonstration of its existence, GnRH has strongly stimulated the interest and imagination of scientists, resulting in a high number of studies in an increasing number of species. For the endocrinologist, GnRH, via its actions on the synthesis and release of pituitary gonadotrophins, is first an essential hormone for the initiation and maintenance of the reproductive axis, but recent data suggest that GnRH emerged in animals lacking a pituitary. In this context, this review intends to explore the current status of knowledge on GnRH and GnRH receptors in metazoa in order to see if it is possible to draw an evolutive scenario according to which GnRH actions progressively evolved from the control of simple basic functions in early metazoa to an indirect mean of controlling gonadal activity in vertebrates through a sophisticated network of finely tuned neurons developing in a rather fascinating way. This review also intends to provide an evolutive scenario based on the recent advances of whole genome sequencing possibly explaining the number of GnRH and GnRH receptor variants according to the 2R and 3R theories accompanied by gene losses.
Collapse
Affiliation(s)
- O Kah
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026, Campus de Beaulieu, 35042 Rennes Cedex, France.
| | | | | | | | | | | |
Collapse
|
39
|
Joly JS, Osório J, Alunni A, Auger H, Kano S, Rétaux S. Windows of the brain: Towards a developmental biology of circumventricular and other neurohemal organs. Semin Cell Dev Biol 2007; 18:512-24. [PMID: 17631396 DOI: 10.1016/j.semcdb.2007.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 06/05/2007] [Indexed: 11/25/2022]
Abstract
We review the anatomical and functional features of circumventricular organs in vertebrates and their homologous neurohemal organs in invertebrates. Focusing on cyclostomes (lamprey) and urochordates (ascidians), we discuss the evolutionary origin of these organs as a function of their cell type specification and morphogenesis.
Collapse
Affiliation(s)
- Jean-Stéphane Joly
- U1126/INRA Morphogenèse du système nerveux des chordés group, DEPSN, UPR2197, Institut Fessard, CNRS, 1 Avenue de la Terrasse, 91198 GIF SUR YVETTE, France.
| | | | | | | | | | | |
Collapse
|
40
|
Nozaki M, Shimotani T, Uchida K. Gonadotropin-like and adrenocorticotropin-like cells in the pituitary gland of hagfish, Paramyxine atami; immunohistochemistry in combination with lectin histochemistry. Cell Tissue Res 2007; 328:563-72. [PMID: 17347815 DOI: 10.1007/s00441-006-0349-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 09/19/2006] [Indexed: 10/23/2022]
Abstract
The pituitary system of the hagfish remains an enigma. The present study has aimed to detect possible adenohypophysial hormones in the pituitary gland of the brown hagfish, Paramyxine atami, by means of immunohistochemistry in combination with lectin histochemistry. Rabbit antisera raised against ovine luteinizing hormone (LH)beta, proopiomelanocortin (POMC)-related peptides, and the growth hormone/prolactin family of tetrapod and fish species were used, and 25 kinds of lectins were tested. Three different types of adenohypophysial cells were revealed in the pituitary of brown hagfish. The first was stained with both anti-ovine LH beta and several D-mannose-binding lectins, such as Lens culinaris agglutinin and Pisum sativum agglutinin. This cell type predominated in the adenohypophysis in adults with developing gonads and thus appeared to be involved in the regulation of gonadal functions. The second was negative for anti-ovine LH beta but was stained with several N-acetylglucosamine-binding lectins, such as wheat germ agglutinin and Lycopersicon esculentum lectin. This cell type exhibited a weak positive reaction with anti-lamprey adrenocorticotropin (ACTH) and thus appeared to be related to POMC-like cells. The second cell type was found in the adenohypophysis regardless of the developmental state of the gonads. The third cell type was negative for both antisera and lectins. Since this cell type was numerous in juveniles and adults without developing gonads, most cells of this type were probably undifferentiated. These findings suggest that GTH and ACTH are major adenohypophysial hormones in the hagfish.
Collapse
Affiliation(s)
- Masumi Nozaki
- Sado Marine Biological Station, Faculty of Science, Niigata University, Tassha, Sado, Niigata, 952-2135, Japan.
| | | | | |
Collapse
|
41
|
Sengupta A, Baker T, Chakrabarti N, Whittaker JA, Sridaran R. Localization of immunoreactive gonadotropin-releasing hormone and relative expression of its mRNA in the oviduct during pregnancy in rats. J Histochem Cytochem 2007; 55:525-34. [PMID: 17283369 DOI: 10.1369/jhc.6a7135.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to determine the cellular and ultrastructural distribution of the gonadotropin-releasing hormone (GnRH) and the relative expression of its mRNA in the oviduct of rats during different time points (days 7, 9, 16, and 20) of pregnancy. Immunofluorescent localization and confocal microscopic techniques were used to determine the cellular distribution of GnRH in the oviduct. Immunogold electron microscopy indicated its localization at the ultrastructural level, and real-time PCR was used to study the expression pattern of GnRH mRNA in the oviduct during pregnancy. In general, GnRH was localized within the epithelial cells lining the oviductal lumen at each selected time point. A strong correlation between the fluorescence intensity of GnRH-immunoreactive cells and the relative expression of GnRH mRNA was noted on days 7 and 16, followed by a plateau by day 20. At the ultrastructural level, uniform labeling of colloidal gold particles was observed in secretory vesicles and lamella of the luminal epithelium as well as the lumen of the oviduct. Collectively, these results demonstrate for the first time that the oviductal epithelium synthesizes and secretes the decapeptide GnRH during pregnancy in rats, which may have a possible role in postimplantation embryonic development and the maintenance of pregnancy.
Collapse
Affiliation(s)
- Anamika Sengupta
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA
| | | | | | | | | |
Collapse
|
42
|
Nakamura S, Osada M, Kijima A. Involvement of GnRH neuron in the spermatogonial proliferation of the scallop, Patinopecten yessoensiss. Mol Reprod Dev 2007; 74:108-15. [PMID: 16941661 DOI: 10.1002/mrd.20544] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this study was to quantitatively analyze a pattern of proliferation of gonial cells and to demonstrate neural involvement in spermatogonial proliferation of the scallop by the in vitro experiment. Immunocytochemistry for incorporated BrdU was used to identify mitotically active gonial cells. The pattern of proliferation of gonial cells was divided into two phases: phase I; oogonia and spermatogonia slowly proliferate through the growing stage: phase II; oogonia develop into oocytes and spermatogonia start to proliferate rapidly from the mature stage through the spawning stage. The neurons detected with anti-mammalian (m)GnRH antibody were distributed sparsely in the pedal ganglion and predominantly in the cerebral ganglion of both sexes at the growing stage. The extracts from the cerebral and pedal ganglion (CPG) of both sexes collected at the growing stage promoted proliferation of spermatogonia in the in vitro culture of the testicular tissue as well as mGnRH. However, CPG extract had no effect on oogonial proliferation. The increased mitotic activity induced by CPG and mGnRH was abolished by the addition of mGnRH antagonists and anti-mGnRH antibody, suggesting that the spermatogonial proliferation is regulated by GnRH-like peptide in CPG of the scallop. The same mitotic activity as CPG extract and mGnRH was observed in the hemocyte lysate, but not in the serum. These findings suggest that the spermatogonial proliferation at phase II in the scallop may be under the neuroendocrine control by GnRH neuron in CPG.
Collapse
Affiliation(s)
- Satoshi Nakamura
- Laboratory of Integrative Aquatic Biology, Field Science Center, Graduate School of Agricultural Science, Tohoku University, Onagawa, Oshika, Japan
| | | | | |
Collapse
|
43
|
Tsai PS. Gonadotropin-releasing hormone in invertebrates: structure, function, and evolution. Gen Comp Endocrinol 2006; 148:48-53. [PMID: 16256989 DOI: 10.1016/j.ygcen.2005.09.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/01/2005] [Accepted: 09/12/2005] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is central to the initiation and maintenance of reproduction in vertebrates. GnRH is found in all major groups of Phylum Chordata, including the protochordates. Studies on functional and structural evolution of GnRH have, in the past, focused exclusively on chordates. However, the recent structural elucidation of an octopus GnRH-like molecule and increasing evidence that GnRH-like substances are present in multiple invertebrate phyla suggest GnRH is an ancient peptide that arose prior to the divergence of protostomes and deuterostomes. The extraordinary conservation of GnRH structure and function raises interesting questions regarding the functional role assumed by GnRH over the course of evolution. This review will focus on the current understanding of GnRH structure and function in non-chordate invertebrates. Special emphasis will be placed upon the possible and speculated functions of GnRH in mollusks.
Collapse
Affiliation(s)
- Pei-San Tsai
- Department of Integrative Physiology and the Center for Neuroscience, University of Colorado, Boulder, CO 80309-0354, USA.
| |
Collapse
|
44
|
Sherwood NM, Tello JA, Roch GJ. Neuroendocrinology of protochordates: Insights from Ciona genomics. Comp Biochem Physiol A Mol Integr Physiol 2006; 144:254-71. [PMID: 16413805 DOI: 10.1016/j.cbpa.2005.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/07/2005] [Accepted: 11/10/2005] [Indexed: 11/17/2022]
Abstract
The genome for two species of Ciona is available making these tunicates excellent models for studies on the evolution of the chordates. In this review most of the data is from Ciona intestinalis, as the annotation of the C. savignyi genome is not yet available. The phylogenetic position of tunicates at the origin of the chordates and the nature of the genome before expansion in vertebrates allows tunicates to be used as a touchstone for understanding genes that either preceded or arose in vertebrates. A comparison of Ciona, a sea squirt, to other model organisms such as a nematode, fruit fly, zebrafish, frog, chicken and mouse shows that Ciona has many useful traits including accessibility for embryological, lineage tracing, forward genetics, and loss- or gain-of-function experiments. For neuroendocrine studies, these traits are important for determining gene function, whereas the availability of the genome is critical for identification of ligands, receptors, transcription factors and signaling pathways. Four major neurohormones and their receptors have been identified by cloning and to some extent by function in Ciona: gonadotropin-releasing hormone, insulin, insulin-like growth factor, and cionin, a member of the CCK/gastrin family. The simplicity of tunicates should be an advantage in searching for novel functions for these hormones. Other neuroendocrine components that have been annotated in the genome are a multitude of receptors, which are available for cloning, expression and functional studies.
Collapse
Affiliation(s)
- Nancy M Sherwood
- Department of Biology, University of Victoria, Victoria, B.C., Canada V8W 3N5.
| | | | | |
Collapse
|
45
|
Twan WH, Hwang JS, Lee YH, Jeng SR, Yueh WS, Tung YH, Wu HF, Dufour S, Chang CF. The presence and ancestral role of gonadotropin-releasing hormone in the reproduction of scleractinian coral, Euphyllia ancora. Endocrinology 2006; 147:397-406. [PMID: 16195400 DOI: 10.1210/en.2005-0584] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objectives of this study were to investigate the presence of immunoreactive GnRH (irGnRH) in scleractinian coral, Euphyllia ancora, study its seasonal variation, and evaluate its biological activity. irGnRH was detected and quantified in coral polyps. The biological activity of coral irGnRH was tested on pituitary cells from black porgy by evaluating its ability to stimulate LH release. Coral extracts (10(-9)-10(-5) M irGnRH) as well as mammalian (m) GnRH agonist (10(-10)-10(-6) M) had a similar dose-dependent effect on LH release. Furthermore, GnRH receptor antagonist dose-dependently inhibited the stimulation of LH release in response to coral extracts (10(-5) M irGnRH) and mGnRH agonist (10(-6) M). Peak levels of irGnRH (10-fold increase) were observed during the spawning period in a 3-yr investigation. Significantly higher aromatase activity and estradiol (E2) levels were also detected during the period of spawning compared with the nonreproductive season. In in vivo experiments, mGnRH agonist time- and dose-dependently stimulated aromatase activity as well as the concentrations of testosterone and E2 in free and glucuronided forms in coral. In conclusion, our data indicate that irGnRH does exist in coral, with its ability to stimulate LH release in fish. Seasonal variations of coral irGnRH, with a dramatic increase during the spawning period, concomitant to that in aromatase and E2, as well as the ability of mGnRH agonist to stimulate coral aromatase, steroidogenesis, and steroid glucuronization suggest that irGnRH plays an important role in the control of oocyte growth and mass spawning in corals.
Collapse
Affiliation(s)
- Wen-Hung Twan
- Institute of Marine Biology, Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
47
|
Barran PE, Roeske RW, Pawson AJ, Sellar R, Bowers MT, Morgan K, Lu ZL, Tsuda M, Kusakabe T, Millar RP. Evolution of constrained gonadotropin-releasing hormone ligand conformation and receptor selectivity. J Biol Chem 2005; 280:38569-75. [PMID: 16157590 DOI: 10.1074/jbc.m503086200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the central regulator of reproduction in vertebrates. GnRHs have recently been identified in protochordates and retain the conserved N- and C-terminal domains involved in receptor binding and activation. GnRHs of the jawed vertebrates have a central achiral amino acid (glycine) that favors a type II' beta-turn such that the N- and C-terminal domains are closely apposed in binding the GnRH receptor. However, protochordate GnRHs have a chiral amino acid in this position, suggesting that they bind their receptors in a more extended form. We demonstrate here that a protochordate GnRH receptor does not distinguish GnRHs with achiral or chiral amino acids, whereas GnRH receptors of jawed vertebrates are highly selective for GnRHs with the central achiral glycine. The poor activity of the protochordate GnRH was increased >10-fold at vertebrate receptors by replacement of the chiral amino acid with glycine or a d-amino acid, which favor the type II' beta-turn. Structural analysis of the GnRHs using ion mobility-mass spectrometry and molecular modeling showed a greater propensity for a type II' beta-turn in GnRHs with glycine or a d-amino acid, which correlates with binding affinity at vertebrate receptors. These findings indicate that the substitution of glycine for a chiral amino acid in GnRH during evolution allows a more constrained conformation for receptor binding and that this subtle single amino acid substitution in a site remote from the ligand functional domains has marked effects on its structure and activity.
Collapse
Affiliation(s)
- Perdita E Barran
- School of Chemistry, The University of Edinburgh, Edinburgh EH9 3JJ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tello JA, Rivier JE, Sherwood NM. Tunicate gonadotropin-releasing hormone (GnRH) peptides selectively activate Ciona intestinalis GnRH receptors and the green monkey type II GnRH receptor. Endocrinology 2005; 146:4061-73. [PMID: 15961566 DOI: 10.1210/en.2004-1558] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vertebrates, GnRH binds to its receptor and stimulates predominantly G(q/11)-mediated signal transduction in gonadotropes. However, little is known about the GnRH receptor and its signaling pathway in tunicates, a group that arose before the vertebrates. Although tunicates have had duplications of a few genes in the last 600 million years, the early vertebrates had duplications of the full genome. Also unknown is the nature of GnRH signaling in the tunicate, which lacks both a pituitary gland and sex steroids. However, we know that tunicates have GnRH peptides because we previously reported six GnRH peptides encoded within the tunicate genome of Ciona intestinalis. Here we clone and sequence cDNAs for four putative GnRH receptors from C. intestinalis. These are the only invertebrate GnRH receptors found to date. Each Ciona GnRH receptor was expressed in COS-7 cells, incubated with each of the six C. intestinalis GnRHs and assayed for a signaling response. GnRH receptors 1, 2, and 3 responded to Ciona GnRH peptides to stimulate intracellular cAMP accumulation. In contrast, only GnRH receptor 1 activated inositol phosphate turnover in response to one of the Ciona GnRHs. The green monkey type II GnRH receptor cDNA was tested as a comparison and a positive control. In conclusion, the four GnRH receptors encoded within the C. intestinalis genome were all transcribed into messenger RNA, but only three of the Ciona GnRH receptors were biologically active in our assays. The Ciona GnRH receptors almost exclusively activated the cAMP pathway.
Collapse
Affiliation(s)
- Javier A Tello
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, British Columbia, Canada V8W 3N5
| | | | | |
Collapse
|
49
|
Kavanaugh SI, Root AR, Sower SA. Distribution of gonadotropin-releasing hormone (GnRH) by in situ hybridization in the tunicate Ciona intestinalis. Gen Comp Endocrinol 2005; 141:76-83. [PMID: 15707605 DOI: 10.1016/j.ygcen.2004.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 11/28/2004] [Accepted: 11/29/2004] [Indexed: 10/25/2022]
Abstract
Gonadotropin releasing hormone (GnRH) is the key hypothalamic neurohormone that is critical in its role of reproduction in all vertebrates. There are currently twenty-four known forms of GnRH that have been identified, 14 in vertebrates and 10 in invertebrates. In tunicates, the primary structure of nine forms have been identified, all of which have been shown to stimulate gamete release. However, the distribution and function of the various GnRH peptides in tunicates have not been fully examined. Therefore, the objective of this study was to determine tissue specific expression of Ci-gnrh-1 and Ci-gnrh-2 in an adult tunicate, Ciona intestinalis, using reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ hybridization. To examine the expression of the two GnRH genes, total RNA and genomic DNA were isolated from whole animals. Total RNA from neural tissue (cerebral ganglion and neural gland), testis, ovary, heart, and hepatic organ were also isolated. Results from RT-PCR indicated both forms are only expressed in the neural tissue. We extended these studies using fluorescent dual label in situ hybridization. GnRH expression was confirmed to be in the cerebral ganglion bordering the neural gland. These current data along with previous studies suggest that GnRH may be involved in reproduction in the protochordate.
Collapse
Affiliation(s)
- Scott I Kavanaugh
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824, USA
| | | | | |
Collapse
|
50
|
Mackie GO, Burighel P. The nervous system in adult tunicates: current research directions. CAN J ZOOL 2005. [DOI: 10.1139/z04-177] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review covers 25 years of progress on structural, functional, and developmental neurobiology of adult tunicates. The focus is on ascidians rather than pelagic species. The ascidian brain and peripheral nervous system are considered from the point of view of ultrastructure, neurotransmitters, regulatory peptides, and electrical activity. Sensory reception and effector control are stressed. Discussion of the dorsal strand plexus centres on its relationship with photoreceptors, the presence in it of gonadotropin-releasing hormone and its role in reproductive control. In addition to hydrodynamic sense organs based on primary sensory neurons (cupular organs), ascidians are now known to have coronal sense organs based on axonless hair cells resembling those of the vertebrate acustico-lateralis system. The peripheral nervous system is remarkable in that the motor neuron terminals are apparently interconnected synaptically, providing the equivalent of a nerve net. Development of the neural complex in ascidians is reviewed, highlighting recent embryological and molecular evidence for stomodeal, neurohypophyseal, and atrial placodes. The nervous system forms similarly during embryogenesis in the oozooid and blastogenesis in colonial forms. The regeneration of the brain in Ciona intestinalis (L., 1767) is discussed in relation to normal neurogenesis. Finally, the viviparous development of salps is considered, where recent work traces the early development of the brain, outgrowth of nerve roots, and the targetting of motor nerves to the appropriate muscles.
Collapse
|