1
|
Zawiślak A, Woźniak K, Tartaglia G, Agirre X, Gupta S, Kawala B, Znamirowska-Bajowska A, Grocholewicz K, Prosper F, Lubiński J, Jakubowska A. Single-Nucleotide Polymorphisms in WNT Genes in Patients with Non-Syndromic Orofacial Clefts in a Polish Population. Diagnostics (Basel) 2024; 14:1537. [PMID: 39061674 PMCID: PMC11275573 DOI: 10.3390/diagnostics14141537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Non-syndromic orofacial cleft (OFC) is the most common facial developmental defect in the global population. The etiology of these birth defects is complex and multifactorial, involving both genetic and environmental factors. This study aimed to determine if SNPs in the WNT gene family (rs1533767, rs708111, rs3809857, rs7207916, rs12452064) are associated with OFCs in a Polish population. The study included 627 individuals: 209 children with OFCs and 418 healthy controls. DNA was extracted from saliva for the study group and from umbilical cord blood for the control group. Polymorphism genotyping was conducted using quantitative PCR. No statistically significant association was found between four variants and clefts, with odds ratios for rs708111 being 1.13 (CC genotype) and 0.99 (CT genotype), for rs3809857 being 1.05 (GT genotype) and 0.95 (TT genotype), for rs7207916 being 0.86 (AA genotype) and 1.29 (AG genotype) and for rs12452064 being 0.97 (AA genotype) and 1.24 (AG genotype). However, the rs1533767 polymorphism in WNT showed a statistically significant increase in OFC risk for the GG genotype (OR = 1.76, p < 0.001). This research shows that the rs1533767 polymorphism in the WNT gene is an important risk marker for OFC in the Polish population.
Collapse
Affiliation(s)
- Alicja Zawiślak
- Department of Interdisciplinary Dentistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
- Department of Maxillofacial Orthopaedics and Orthodontics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Krzysztof Woźniak
- Department of Orthodontics, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Gianluca Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy;
| | - Xabier Agirre
- Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain; (X.A.); (F.P.)
| | - Satish Gupta
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (S.G.); (J.L.)
| | - Beata Kawala
- Department of Dentofacial Orthopaedics and Orthodontics, Wrocław Medical University, 50-425 Wrocław, Poland; (B.K.); (A.Z.-B.)
| | - Anna Znamirowska-Bajowska
- Department of Dentofacial Orthopaedics and Orthodontics, Wrocław Medical University, 50-425 Wrocław, Poland; (B.K.); (A.Z.-B.)
| | - Katarzyna Grocholewicz
- Department of Interdisciplinary Dentistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Felipe Prosper
- Centro de Investigación Médica Aplicada, IDISNA, Universidad de Navarra, Avenida Pío XII-55, 31008 Pamplona, Spain; (X.A.); (F.P.)
| | - Jan Lubiński
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (S.G.); (J.L.)
| | - Anna Jakubowska
- Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 70-111 Szczecin, Poland;
| |
Collapse
|
2
|
Association of the WNT3 polymorphisms and non-syndromic cleft lip with or without cleft palate: evidence from a meta-analysis. Biosci Rep 2018; 38:BSR20181676. [PMID: 30355643 PMCID: PMC6250811 DOI: 10.1042/bsr20181676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 11/25/2022] Open
Abstract
Objective: This meta-analysis was conducted with the aim of investigating the association between WNT3 gene polymorphisms and non-syndromic cleft lip (CL) with or without cleft palate (NSCL/P) predisposition. Methods: A comprehensive literature search was performed in six online databases including PubMed, Embase, ISI Web of Science, CENTRAL, CNKI, and Wanfang from inception up to June 2018 without language restriction. Pooled odds ratios (ORs) and corresponding 95% confidence intervals (95%CIs) were calculated under allele model of inheritance to indicate the association between WNT3 polymorphisms and NSCL/P. Risk of bias was assessed through the Newcastle–Ottawa scale (NOS). Predetermined stratified and sensitivity analyses were performed using the RevMan 5.3 software, publication bias were evaluated by Egger’s and Begg’s tests. Results: Seven case–control studies comprising 1617 NSCL/P patients and 2143 healthy controls were identified and included in the present study, a total of eight loci were investigated in the present study: rs3809857 was significantly associated with NSCL/P vulnerability (G compared with T, OR = 1.34, 95%CI: 1.15–1.56, P=0.0001), a significant association between rs9890413 polymorphism and NSCL/P susceptibility (A compared with G, OR = 1.25, 95%CI: 1.06–1.47, P=0.007) was detected as well. Since only few studies reported detailed data about the association between rs142167, rs7207916, rs199498, rs111769, rs12452064, rs11653738, and NSCL/P risk, these results were not combined using meta-analysis. Conclusion: Based on the findings of our current study, the rs3809857 and rs9890413 polymorphisms of WNT3 appeared to be associated with NSCL/P. Limited evidence is found to support the association between other WNT3 polymorphisms and risk of NSCL/P.
Collapse
|
3
|
Rafighdoost H, Hashemi M, Asadi H, Bahari G. Association of single nucleotide polymorphisms in WNT genes with the risk of nonsyndromic cleft lip with or without cleft palate. Congenit Anom (Kyoto) 2018; 58:130-135. [PMID: 29356097 DOI: 10.1111/cga.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/14/2022]
Abstract
Nonsyndromic cleft lip with or without cleft palate is a common congenital deformity worldwide with multifaceted etiology. Interaction of genes and environmental factors has been indicated to be related with susceptibility to nonsyndromic cleft lip with or without cleft palate. Some WNT genes which are involved in craniofacial embryogenesis may play a key role in the pathogenesis of nonsyndromic cleft lip with or without cleft palate. In the present study, we aimed to inspect the relationship between WNT3 (rs3809857 and rs9890413), WNT3A (rs752107 and rs3121310), and WNT10a rs201002930 (c.392 C>T) polymorphisms and nonsyndromic cleft lip with or without cleft palate in an Iranian population. The present case-control study was carried out on 120 unrelated nonsyndromic cleft lip with or without cleft palate patients and 112 healthy subjects. The variants were genotyped by polymerase chain reaction-restriction fragment length polymorphism method. The findings suggest that the rs3809857 polymorphism significantly decreased the risk of nonsyndromic cleft lip with or without cleft palate in codominant (odds ratio = 0.16, 95% confidence interval = 0.03-0.75, P = 0.020, TT vs GG), recessive (odds ratio = 0.16, 95% confidence interval = 0.03-0.72, P = 0.009, TT vs GG + GT) inheritance models. The rs9890413 variant marginally decreased the risk of nonsyndromic cleft lip with or without cleft palate in codominant (odds ratio = 0.41, 95% confidence interval = 0.17-0.99, P = 0.047, AG vs AA) model. Regarding C392T variant, the findings revealed that this variant significantly decreased the risk of nonsyndromic cleft lip with or without cleft palate in codominant (odds ratio = 0.24, 95% confidence interval = 0.10-0.58, P = 0.002, CT vs CC) and allele (odds ratio = 0.26, 95% confidence interval = 0.11-0.62, P = 0.002, T vs C) models. No significant association was observed between the rs752107 and rs3121310 variants and risk/protection of nonsyndromic cleft lip with or without cleft palate. Stratified analysis showed that WNT10a rs201002930 (c.392 C>T) significantly decreased the risk of cleft lip with cleft palate and cleft palate only. In summary, the results suggest an association between WNT genes polymorphisms and the risk nonsyndromic cleft lip with or without cleft palate in a sample of the southeast Iranian population.
Collapse
Affiliation(s)
- Houshang Rafighdoost
- Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Asadi
- Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
4
|
O'Connell MP, Weeraratna AT. Hear the Wnt Ror: how melanoma cells adjust to changes in Wnt. Pigment Cell Melanoma Res 2009; 22:724-39. [PMID: 19708915 DOI: 10.1111/j.1755-148x.2009.00627.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interplay between canonical and non-canonical Wnt pathways in development and tumorigenesis is tightly regulated. In this review we will describe the yin and the yang of canonical and non-canonical Wnt signaling pathways during melanocyte development, and melanoma genesis. Canonical Wnt signaling, represented by Wnts such as Wnt1 and Wnt3A, signals via beta-catenin to promote melanocyte differentiation and tumor development. Non-canonical Wnt signaling, specifically Wnt5A, regulates canonical pathways, and signals to induce melanoma metastasis. This review will focus on the role of Wnt5A during melanoma progression, and its relationship to canonical Wnt signaling.
Collapse
Affiliation(s)
- Michael P O'Connell
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore MD, USA
| | | |
Collapse
|
5
|
Kim M, Lee HC, Tsedensodnom O, Hartley R, Lim YS, Yu E, Merle P, Wands JR. Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/beta-catenin signaling pathway in hepatocellular carcinoma cells. J Hepatol 2008; 48:780-91. [PMID: 18313787 PMCID: PMC2390890 DOI: 10.1016/j.jhep.2007.12.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 11/29/2007] [Accepted: 12/17/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS The canonical Wnt signaling is frequently activated in human hepatocellular carcinoma (HCC). We previously demonstrated that upregulation of Frizzled-7 receptor (FZD7) in HCC was associated with nuclear accumulation of wild-type beta-catenin. Here, we investigated Wnt ligand(s) that may activate the Wnt/beta-catenin pathway through FZD7 in HCC cells. METHODS To identify Wnt ligand expression, RT-PCR was performed in HCC cells. To evaluate the function of Wnt3 and FZD7 in HCC, we utilized Wnt3 overexpressing FOCUS HCC cells (FOCUS-Wnt3) and human tumors. RESULTS In hepatitis B virus (HBV)-induced HCC, Wnt3 was upregulated in tumor and peritumoral tissues compared to normal liver and downstream beta-catenin target genes were also increased in these samples. Activation of the Wnt/beta-catenin pathway in FOCUS-Wnt3 cells was demonstrated by beta-catenin accumulation, enhanced TCF transcriptional activity and proliferation rate. The activation of Wnt/beta-catenin signaling in FOCUS-Wnt3 was abolished by a knockdown of FZD7 expression by siRNA. More important, a specific Wnt3-FZD7 interaction was observed by co-immunoprecipitation experiments, which suggest that the action of Wnt3 was mediated via FZD7. CONCLUSIONS These findings demonstrate a functional interaction between Wnt3 and FZD7 leading to activation of the Wnt/beta-catenin signaling pathway in HCC cells and may play a role during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Miran Kim
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, 55 Claverick Street, Providence, RI 02903, USA.
| | - Han Chu Lee
- Liver Research Center, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island, USA
| | - Orkhontuya Tsedensodnom
- Liver Research Center, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island, USA
| | - Rochelle Hartley
- Liver Research Center, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island, USA
| | - Young-Suk Lim
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunsil Yu
- Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Philippe Merle
- Laboratory of Research on Hepatitis Virus and Associated Diseases, INSERM U271, 151 Cours A. Thomas, Lyon, France
| | - Jack R Wands
- Liver Research Center, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island, USA
| |
Collapse
|
6
|
Echevarría D, Vieira C, Gimeno L, Martínez S. Neuroepithelial secondary organizers and cell fate specification in the developing brain. ACTA ACUST UNITED AC 2003; 43:179-91. [PMID: 14572913 DOI: 10.1016/j.brainresrev.2003.08.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In vertebrates, elaborate cellular interactions regulate the establishment of the complex structural pattern of the developing central nervous system. Distinct neural and glial identities are acquired by neuroepithelial cells, through progressive restriction of histogenetic potential under the influence of local environmental signals. The localization of the sources of such morphogenetic signals in discrete domains of the developing neural primordium has led to the concept of secondary organizers which refine the identity and polarity of neighboring neuroepithelial regions. Thus, these organizers, secondary to those that operate throughout the embryo during gastrulation, act to pattern the anterior neural plate and tube giving rise to the forebrain, midbrain and hindbrain vesicles. Important progress has recently been made in understanding their genesis and function.
Collapse
Affiliation(s)
- Diego Echevarría
- Fac. de Medicina, Instituto de Neurociencias UMH-CSIC, University Miguel Hernandez, Carretera de Valencia, N-332, Km 87, E-03550, San Juan Alicante, Spain.
| | | | | | | |
Collapse
|
7
|
Abstract
SUMMARY The Wnt genes encode a large family of secreted protein growth factors that have been identified in animals from hydra to humans. In humans, 19 WNT proteins have been identified that share 27% to 83% amino-acid sequence identity and a conserved pattern of 23 or 24 cysteine residues. Wnt genes are highly conserved between vertebrate species sharing overall sequence identity and gene structure, and are slightly less conserved between vertebrates and invertebrates. During development, Wnts have diverse roles in governing cell fate, proliferation, migration, polarity, and death. In adults, Wnts function in homeostasis, and inappropriate activation of the Wnt pathway is implicated in a variety of cancers.
Collapse
Affiliation(s)
- Jeffrey R Miller
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Callahan R, Smith GH. MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene 2000; 19:992-1001. [PMID: 10713682 DOI: 10.1038/sj.onc.1203276] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of the mouse mammary tumor virus (MMTV) has provided important insights into the mechanisms of gene transcription regulation by steroid hormones, the mode of action of heritable super antigens and the progressive nature of neoplastic transformation in the mammary gland. Here we describe the current situation with respect to the latter aspect of MMTV biology and the prospects for further advance in our understanding of breast cancer in humans that may be expected from a continued study of MMTV-induced mammary neoplasia. MMTV is a heritable somatic mutagen whose target range is limited. Commonly, the tumorigenic capacity of MMTV is restricted to mammary gland, whereas infection is found in a variety of cell types. In order to replicate, proviral DNA must be inserted into the cell DNA and cell division is required to fix the mutation. Yet only in the mammary epithelium does this lead to neoplastic transformation. This suggests a unique relationship between MMTV and mammary epithelium. In evaluating this relationship, we and others have discovered genes and potential gene pathways that are pertinent in mammary differentiation and neoplasia. In addition, the clonal nature of these progressive events from normal to malignant phenotype has become increasingly clear. The weight of these observations compel us to conclude that mammary neoplasms arise from multipotent mammary epithelial cells through a process of acquired mutations that are reflected in the increasingly malignant nature of the population of progeny produced by these damaged stem cells.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Disease Models, Animal
- Eukaryotic Initiation Factor-3
- Fibroblast Growth Factor 8
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Incidence
- Mammary Neoplasms, Experimental/epidemiology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/virology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/pathogenicity
- Mice
- Mice, Inbred Strains
- Peptide Initiation Factors/genetics
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor, Notch4
- Receptors, Cell Surface
- Receptors, Notch
- Signal Transduction
- Virus Replication
- Wnt Proteins
- Zebrafish Proteins
Collapse
Affiliation(s)
- R Callahan
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland, MD 20892, USA
| | | |
Collapse
|
9
|
Chance PF, Cavalier L, Satran D, Pellegrino JE, Koenig M, Dobyns WB. Clinical nosologic and genetic aspects of Joubert and related syndromes. J Child Neurol 1999; 14:660-6; discussion 669-72. [PMID: 10511339 DOI: 10.1177/088307389901401007] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Joubert syndrome is an autosomal-recessive disorder characterized by cerebellar hypoplasia, hypotonia, developmental delay, abnormal respiratory patterns, and abnormal eye movements. The biochemical and genetic basis of Joubert syndrome is unknown and a specific chromosomal locus for this disorder has not been identified. Review of this disorder and related syndromes suggests that (1) hypoplasia of the cerebellar vermis in Joubert syndrome is frequently associated with a complex brain stem malformation represented as the "molar tooth sign" on magnetic resonance imaging, (2) the "molar tooth sign" could be present in association with the Dandy-Walker malformation and occipital encephalocele, (3) cerebellar hypoplasia is present in conditions related to Joubert syndrome such as Arima syndrome; Senior-Loken syndrome; cerebellar vermian hypoplasia, oligophrenia, congenital ataxia, coloboma, and hepatic fibrosis syndrome; and juvenile nephronophthisis due to NPH1 mutations, and (4) the brainstem-vermis malformation spectrum is probably caused by at least two and probably several genetic loci. We have ascertained previously a cohort of 50 patients with a putative diagnosis of Joubert syndrome in order to evaluate the presence of associated malformations, and to initiate studies leading to the identification of genes causing Joubert and related syndromes. Among the associated malformations found in patients ascertained as having Joubert syndrome, 8% of patients had polydactyly, 4% had ocular colobomas, 2% had renal cysts, and 2% had soft-tissue tumors of the tongue. The WNT1 gene has been tested as a candidate gene for Joubert syndrome based on its expression in the developing cerebellum and an associated mutation in the swaying mouse. A search for mutations in WNT1 in a series of patients with Joubert syndrome did not detect mutations at this locus. This analysis suggested that mutations in WNT1 might not have a significant role in Joubert syndrome, and other functional candidate genes related to development of the cerebellum need to be examined. A genome-wide linkage analysis carried out in 10 Joubert syndrome pedigrees did not identify a specific chromosomal locus for this disorder. This observation, along with those from clinical studies, provides further evidence that Joubert and related syndromes are genetically heterogeneous.
Collapse
Affiliation(s)
- P F Chance
- Department of Pediatrics, University of Washington School of Medicine and Children's Hospital and Regional Medical Center, Seattle 98195, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A. Requirement for Wnt3 in vertebrate axis formation. Nat Genet 1999; 22:361-5. [PMID: 10431240 DOI: 10.1038/11932] [Citation(s) in RCA: 672] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several studies have implicated Wnt signalling in primary axis formation during vertebrate embryogenesis, yet no Wnt protein has been shown to be essential for this process. In the mouse, primitive streak formation is the first overt morphological sign of the anterior-posterior axis. Here we show that Wnt3 is expressed before gastrulation in the proximal epiblast of the egg cylinder, then is restricted to the posterior proximal epiblast and its associated visceral endoderm and subsequently to the primitive streak and mesoderm. Wnt3-/- mice develop a normal egg cylinder but do not form a primitive streak, mesoderm or node. The epiblast continues to proliferate in an undifferentiated state that lacks anterior-posterior neural patterning, but anterior visceral endoderm markers are expressed and correctly positioned. Our results suggest that regional patterning of the visceral endoderm is independent of primitive streak formation, but the subsequent establishment of anterior-posterior neural pattern in the ectoderm is dependent on derivatives of the primitive streak. These studies provide genetic proof for the requirement of Wnt3 in primary axis formation in the mouse.
Collapse
Affiliation(s)
- P Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Bui TD, O'Brien T, Crew J, Cranston D, Harris AL. High expression of Wnt7b in human superficial bladder cancer vs invasive bladder cancer. Br J Cancer 1998; 77:319-24. [PMID: 9461004 PMCID: PMC2151239 DOI: 10.1038/bjc.1998.49] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aberrant Wnt gene expression is involved in the development of breast cancer, but its role in other tumours is unknown. Wnts regulate cadherin function, previously shown to be more commonly deregulated in invasive bladder cancer. This study investigated whether factors upstream of cadherins were aberrantly expressed in superficial bladder cancer. The expression of one transforming (Wnt7b) and one non-transforming (Wnt5a) Wnt gene in four human bladder carcinoma cell lines, and in normal human bladder tissues (n = 8) and bladder cancers (n = 48) were analysed by ribonuclease protection analysis. All cell lines expressed an approximately equal level of Wnt7b mRNA. Wnt5a and Wnt7b mRNAs were both expressed in normal bladder tissues and bladder tumours. The median expression of Wnt7b was fourfold higher in superficial tumours (n = 29) than in normal tissues (n = 8, P = 0.002) and five fold higher than in invasive tumours (n = 17, P = 0.003). There was no significant difference between normal tissues and invasive tumours (P = 0.3). The expression of Wnt5a did not vary significantly between normal tissues and superficial tumours (P = 0.4), normal tissues and invasive tumours (P = 0.3) or superficial tumours and invasive tumours (P = 0.2). The differential expression of Wnt7b suggests a role in the early events of superficial bladder tumorigenesis involving cell adhesion and provides further evidence of different pathways of evolution of superficial and invasive cancer.
Collapse
Affiliation(s)
- T D Bui
- Imperial Cancer Research Fund, University of Oxford, Institute of Molecular Medicine, John Radcliffe Hospital, UK
| | | | | | | | | |
Collapse
|
13
|
Bergstein I, Eisenberg LM, Bhalerao J, Jenkins NA, Copeland NG, Osborne MP, Bowcock AM, Brown AM. Isolation of two novel WNT genes, WNT14 and WNT15, one of which (WNT15) is closely linked to WNT3 on human chromosome 17q21. Genomics 1997; 46:450-8. [PMID: 9441749 DOI: 10.1006/geno.1997.5041] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Wnt gene family consists of at least 15 structurally related genes that encode secreted extracellular signaling factors. Wnt proteins function in a range of critical developmental processes in both vertebrates and invertebrates and are implicated in regulation of cell growth and differentiation in certain adult mammalian tissues, including the mammary gland. We have isolated a number of WNT sequences from human genomic DNA, two of which, designated WNT14 and WNT15, represent novel members of the Wnt gene family. We also isolated WNT sequences from human mammary cDNA and present evidence that WNT13 is expressed in human breast tissue, in addition to those previously described. WNT14 and WNT15 appear to have originated from an ancestral branch of the Wnt gene family that also includes the Wnt9 sequences found in jawless and cartilaginous fishes. A Wnt14 cDNA was also isolated from chicken and a partial Wnt15 sequence from mouse. We show that human WNT14 maps to chromosome 1 and that WNT15 maps distal to BRCA1 on chromosome 17q21, where it lies within 125 kb of another WNT family member, WNT3.
Collapse
Affiliation(s)
- I Bergstein
- Strang-Cornell Cancer Research Laboratory, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bui TD, Lako M, Lejeune S, Curtis AR, Strachan T, Lindsay S, Harris AL. Isolation of a full-length human WNT7A gene implicated in limb development and cell transformation, and mapping to chromosome 3p25. Gene 1997; 189:25-9. [PMID: 9161407 DOI: 10.1016/s0378-1119(96)00808-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Wnt gene family has a role in development as well as tumourigenesis. One mouse member, Wnt7a, is vital for limb development in vivo and also possesses transforming ability in vitro. This study reports the isolation of a full length of human homologue of mouse Wnt7a gene by library screening. Yeast artificial chromosome-fluorescence in situ hybridisation (YAC-FISH) mapped the WNT7A gene to chromosome 3p25. Human WNT7A had an ORF encoding a deduced protein of 349 aa that exhibited 97% and 92% identity to mouse Wnt7a at the aa and nucleic acid levels, respectively. It possessed the 22 conserved cysteine residues and 3 more at the amino terminus, and a putative poly A tail. This is the fifth human WNT gene in which a complete cDNA sequence had been determined.
Collapse
Affiliation(s)
- T D Bui
- Imperial Cancer Research Fund, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Bui TD, Zhang L, Rees MC, Bicknell R, Harris AL. Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br J Cancer 1997; 75:1131-6. [PMID: 9099960 PMCID: PMC2222778 DOI: 10.1038/bjc.1997.195] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Wnt genes are transforming to mouse breast epithelium and are hormonally regulated in vivo. To assess their role in another endocrine-responsive human cancer, the expression of seven Wnt genes (Wnt 2, 3, 4, 5a, 7a, 7b and 10b) in normal human endometrium and endometrial cells, and endometrial carcinoma tissues and cell lines was investigated by ribonuclease protection analysis. Wnt2, 3, 4 and 5a mRNAs but not Wnt7a, 7b or 10b mRNAs were expressed in primary culture of normal endometrial epithelial (NEE) and stromal (NES) cells. In contrast, in four endometrial carcinoma cell lines (RL95-2, HEC-1-A, AN3 CA and Ishikawa), Wnt2 and Wnt3 mRNAs were absent. Wnt4 was expressed in only one out of four cell lines (RL95-2), and Wnt5a was much lower. Wnt7a and Wnt7b mRNAs were expressed in three out of four cell lines (RL95-2, HEC-1-A and Ishikawa). Wnt10b mRNA was expressed in RL95-2 and AN3 CA. In fresh tissues, all Wnt genes apart from Wnt10b were expressed in normal endometrium and endometrial carcinoma. Similar to the cell lines, the level of Wnt4 mRNA expression was significantly higher in the normal endometrium than endometrial carcinoma. Wnt2, 3 and 5a mRNAs were also lower in endometrial carcinoma compared with normal endometrium. There was no difference in the level of Wnt2, 3, 4 and 5a mRNA expression between proliferative phase and secretory phase of the menstrual cycle, or between either menstrual phase and the first trimester of pregnancy. In vitro, progesterone and/or 17beta-oestradiol had no effect on Wnt2, 3, 4, 5a and 7b mRNA expression in NES and all endometrial carcinoma cell lines. The data indicate that all Wnt genes were expressed in vitro, six out of seven Wnt genes (Wnt 2, 3, 4, 5a, 7a and 7b) were expressed endogenously in the human endometrium, their mRNA expression was hormonally independent and Wnt4 gene down-regulation as well as down-regulation of Wnt 2, 3 and 5a may be associated with endometrial carcinoma.
Collapse
Affiliation(s)
- T D Bui
- Molecular Oncology Laboratory, University of Oxford, John Radcliffe Hospital, Headington, UK
| | | | | | | | | |
Collapse
|
16
|
Callahan R. MMTV-induced mutations in mouse mammary tumors: their potential relevance to human breast cancer. Breast Cancer Res Treat 1996; 39:33-44. [PMID: 8738604 DOI: 10.1007/bf01806076] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In mouse mammary tumor virus (MMTV) infected mice, three identifiable stages of mammary tumorigenesis can be biologically defined: preneoplastic hyperplastic nodules, malignant tumor, and distant metastatic lesions (primarily in the lung). MMTV is a biological carcinogen which induces somatic mutations as consequence of its integration into the host cellular genome. Each stage of mammary tumorigenesis appears to result from the clonal outgrowth of cells containing additional integrated proviral MMTV genomes. This phenomenon has provided the basis for an approach to identify genes which, when affected, may contribute to progression through the different stages of mammary tumorigenesis. Eight different genes (Wnt1, Wnt3, Wnt10b, Fgf3, Fgf4, Fgf8, Int3, and Int6) have been shown to be genetically altered in multiple mammary tumors as a consequence of MMTV integration. Although the significance of the human homologs of these genes as targets for somatic mutation during human breast carcinogenesis is only now being explored, it is clear that this work has led to a new appreciation of the complexity of the genetic circuitry that is involved in the control of normal mammary gland growth and development. It seems likely that some of the mutations induced by MMTV, and the signaling pathways in which these target genes take part, will be relevant to the progression from preneoplastic lesions to distant metastasis in human breast cancer.
Collapse
Affiliation(s)
- R Callahan
- Oncogenetics Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|