1
|
Islam SI, Mou MJ, Sanjida S. Application of reverse vaccinology to design a multi-epitope subunit vaccine against a new strain of Aeromonas veronii. J Genet Eng Biotechnol 2022; 20:118. [PMID: 35939149 PMCID: PMC9358925 DOI: 10.1186/s43141-022-00391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Aeromonas veronii is one of the most common pathogens of freshwater fishes that cause sepsis and ulcers. There are increasing numbers of cases showing that it is a significant zoonotic and aquatic agent. Epidemiological studies have shown that A. veronii virulence and drug tolerance have both increased over the last few years as a result of epidemiological investigations. Cadaverine reverse transporter (CadB) and maltoporin (LamB protein) contribute to the virulence of A. veronii TH0426. TH0426 strain is currently showing severe cases on fish species, and its resistance against therapeutic has been increasing. Despite these devastating complications, there is still no effective cure or vaccine for this strain of A.veronii. RESULTS In this regard, an immunoinformatic method was used to generate an epitope-based vaccine against this pathogen. The immunodominant epitopes were identified using the CadB and LamB protein of A. veronii. The final constructed vaccine sequence was developed to be immunogenic, non-allergenic as well as have better solubility. Molecular dynamic simulation revealed significant binding stability and structural compactness. Finally, using Escherichia coli K12 as a model, codon optimization yielded ideal GC content and a higher CAI value, which was then included in the cloning vector pET2+ (a). CONCLUSION Altogether, our outcomes imply that the proposed peptide vaccine might be a good option for A. veronii TH0426 prophylaxis.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- The International Graduate Program of Veterinary Science and Technology (VST), Department of Veterinary Microbiology, Faculty of Veterinary Science and Technology, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Moslema Jahan Mou
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
2
|
Grimholt U, Lukacs M. Fate of MHCII in salmonids following 4WGD. Immunogenetics 2020; 73:79-91. [PMID: 33225379 PMCID: PMC7862078 DOI: 10.1007/s00251-020-01190-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022]
Abstract
Major histocompatibility complex (MHC) genes are key players in the adaptive immunity providing a defense against invading pathogens. Although the basic structures are similar when comparing mammalian and teleost MHC class II (MHCII) molecules, there are also clear-cut differences. Based on structural requirements, the teleosts non-classical MHCII molecules do not comply with a function similar to the human HLA-DM and HLA-DO, i.e., assisting in peptide loading and editing of classical MHCII molecules. We have previously studied the evolution of teleost class II genes identifying various lineages and tracing their phylogenetic occurrence back to ancient ray-finned fishes. We found no syntenic MHCII regions shared between cyprinids, salmonids, and neoteleosts, suggesting regional instabilities. Salmonids have experienced a unique whole genome duplication 94 million years ago, providing them with the opportunity to experiment with gene duplicates. Many salmonid genomes have recently become available, and here we set out to investigate how MHCII has evolved in salmonids using Northern pike as a diploid sister phyla, that split from the salmonid lineage prior to the fourth whole genome duplication (4WGD) event. We identified 120 MHCII genes in pike and salmonids, ranging from 11 to 20 genes per species analyzed where DB-group genes had the most expansions. Comparing the MHC of Northern pike with that of Atlantic salmon and other salmonids species provides a tale of gene loss, translocations, and genome rearrangements.
Collapse
Affiliation(s)
- Unni Grimholt
- Norwegian Veterinary Institute, P.O. Box 8146 Dep, 0033, Oslo, Norway.
| | - Morten Lukacs
- Norwegian Veterinary Institute, P.O. Box 8146 Dep, 0033, Oslo, Norway
| |
Collapse
|
3
|
Hou J, Chen SN, Gan Z, Li N, Huang L, Huo HJ, Yang YC, Lu Y, Yin Z, Nie P. In Primitive Zebrafish, MHC Class II Expression Is Regulated by IFN-γ, IRF1, and Two Forms of CIITA. THE JOURNAL OF IMMUNOLOGY 2020; 204:2401-2415. [DOI: 10.4049/jimmunol.1801480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/13/2020] [Indexed: 12/21/2022]
|
4
|
Liu R, Hu X, Lü A, Song Y, Lian Z, Sun J, Sung YY. Proteomic Profiling of Zebrafish Challenged by Spring Viremia of Carp Virus Provides Insight into Skin Antiviral Response. Zebrafish 2020; 17:91-103. [PMID: 32176570 DOI: 10.1089/zeb.2019.1843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Spring viremia of carp virus (SVCV) causes the skin hemorrhagic disease in cyprinid species, but its molecular mechanism of skin immune response remains unclear at the protein level. In the present study, the differential proteomics of the zebrafish (Danio rerio) skin in response to SVCV infection were examined by isobaric tags for relative and absolute quantitation and quantitative polymerase chain reaction (qPCR) assays. A total of 3999 proteins were identified, of which 320 and 181 proteins were differentially expressed at 24 and 96 h postinfection, respectively. The expression levels of 16 selected immune-related differentially expressed proteins (DEPs) were confirmed by qPCR analysis. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that DEPs were significantly associated with complement, inflammation, and antiviral response. The protein-protein interaction network of cytoskeleton-associated proteins, ATPase-related proteins, and parvalbumins from DEPs was shown to be involved in skin immune response. This is first report on the skin proteome profiling of zebrafish against SVCV infection, which will contribute to understand the molecular mechanism of local mucosal immunity in fish.
Collapse
Affiliation(s)
- Rongrong Liu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Xiucai Hu
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Aijun Lü
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Yajiao Song
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Zhengyi Lian
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, China
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, University Malaysia Terengganu, Terengganu, Malaysia
| |
Collapse
|
5
|
Sundaram AYM, Garseth ÅH, Maccari G, Grimholt U. An Illumina approach to MHC typing of Atlantic salmon. Immunogenetics 2020; 72:89-100. [PMID: 31713647 PMCID: PMC6970960 DOI: 10.1007/s00251-019-01143-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/09/2023]
Abstract
The IPD-MHC Database represents the official repository for non-human major histocompatibility complex (MHC) sequences, overseen and supported by the Comparative MHC Nomenclature Committee, providing access to curated MHC data and associated analysis tools. IPD-MHC gathers allelic MHC class I and class II sequences from classical and non-classical MHC loci from various non-human animals including pets, farmed and experimental model animals. So far, Atlantic salmon and rainbow trout are the only teleost fish species with MHC class I and class II sequences present. For the remaining teleost or ray-finned species, data on alleles originating from given classical locus is scarce hampering their inclusion in the database. However, a fast expansion of sequenced genomes opens for identification of classical loci where high-throughput sequencing (HTS) will enable typing of allelic variants in a variety of new teleost or ray-finned species. HTS also opens for large-scale studies of salmonid MHC diversity challenging the current database nomenclature and analysis tools. Here we establish an Illumina approach to identify allelic MHC diversity in Atlantic salmon, using animals from an endangered wild population, and alter the salmonid MHC nomenclature to accommodate the expected sequence expansions.
Collapse
Affiliation(s)
- Arvind Y M Sundaram
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, 0450, Oslo, Norway
| | - Åse Helen Garseth
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway
| | - Giuseppe Maccari
- The Pirbright Institute, Woking, UK
- Anthony Nolan Research Institute, London, UK
| | - Unni Grimholt
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway.
| |
Collapse
|
6
|
Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell Microbiol 2020; 22:e13152. [PMID: 31872937 DOI: 10.1111/cmi.13152] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
The zebrafish (Danio rerio) has become a widely used vertebrate model for bacterial, fungal, viral, and protozoan infections. Due to its genetic tractability, large clutch sizes, ease of manipulation, and optical transparency during early life stages, it is a particularly useful model to address questions about the cellular microbiology of host-microbe interactions. Although its use as a model for systemic infections, as well as infections localised to the hindbrain and swimbladder having been thoroughly reviewed, studies focusing on host-microbe interactions in the zebrafish gastrointestinal tract have been neglected. Here, we summarise recent findings regarding the developmental and immune biology of the gastrointestinal tract, drawing parallels to mammalian systems. We discuss the use of adult and larval zebrafish as models for gastrointestinal infections, and more generally, for studies of host-microbe interactions in the gut.
Collapse
Affiliation(s)
- Erika M Flores
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Anh T Nguyen
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Max A Odem
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - George T Eisenhoffer
- M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
7
|
Major Histocompatibility Complex (MHC) Genes and Disease Resistance in Fish. Cells 2019; 8:cells8040378. [PMID: 31027287 PMCID: PMC6523485 DOI: 10.3390/cells8040378] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022] Open
Abstract
Fascinating about classical major histocompatibility complex (MHC) molecules is their polymorphism. The present study is a review and discussion of the fish MHC situation. The basic pattern of MHC variation in fish is similar to mammals, with MHC class I versus class II, and polymorphic classical versus nonpolymorphic nonclassical. However, in many or all teleost fishes, important differences with mammalian or human MHC were observed: (1) The allelic/haplotype diversification levels of classical MHC class I tend to be much higher than in mammals and involve structural positions within but also outside the peptide binding groove; (2) Teleost fish classical MHC class I and class II loci are not linked. The present article summarizes previous studies that performed quantitative trait loci (QTL) analysis for mapping differences in teleost fish disease resistance, and discusses them from MHC point of view. Overall, those QTL studies suggest the possible importance of genomic regions including classical MHC class II and nonclassical MHC class I genes, whereas similar observations were not made for the genomic regions with the highly diversified classical MHC class I alleles. It must be concluded that despite decades of knowing MHC polymorphism in jawed vertebrate species including fish, firm conclusions (as opposed to appealing hypotheses) on the reasons for MHC polymorphism cannot be made, and that the types of polymorphism observed in fish may not be explained by disease-resistance models alone.
Collapse
|
8
|
Gao FY, Zhang D, Lu MX, Cao JM, Liu ZG, Ke XL, Wang M, Zhang DF. MHC Class IIB gene polymorphisms associated with resistance/susceptibility to Streptococcus agalactiae in Nile tilapia Oreochromis niloticus. DISEASES OF AQUATIC ORGANISMS 2019; 133:253-261. [PMID: 31187732 DOI: 10.3354/dao03349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Genetic variation in the major histocompatibility complex (MHC) Class IIB was tested in Nile tilapia Oreochromis niloticus, and the association between the MHC IIB alleles and disease resistance was also studied. F3 fry offspring (n = 1200) from 12 full-sib families were challenged with Streptococcus agalactiae, which caused significantly different mortalities in different Nile tilapia families (11.00-81.10%). Twenty fry (F1) from each of the 12 families were selected to study the polymorphisms of the MHC Class IIB gene using PCR followed by cloning and sequencing methods. The results showed that the size of the amplified fragment was 770-797 bp. Thirty-seven sequences from 240 individuals revealed 22 different alleles, which belonged to 9 major allele types. Up to 63.58% of nucleotide positions were variable, while the proportion of the amino acid variable positions was up to 68.73%. According to the survival rate of offspring (F3) from 12 full-sib families, we deduced that the alleles Orni-DAB*0107, Orni-DAB*0201 and Orni-DAB*0302 were highly associated with resistance to S. agalactiae, while the allele Orni-DAB*0701 was associated with susceptibility to S. agalactiae. In addition, our previous study found that the allele Orni-DAB*0201 was more frequently distributed in the disease-resistant groups. Therefore, the allele Orni-DAB*0201 could be used as an S. agalactiae resistance-related MHC marker in molecular marker-assisted selective breeding programs for S. agalactiae-resistant Nile tilapia.
Collapse
Affiliation(s)
- Feng-Ying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, PR China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abram QH, Fujiki K, Booman M, Chin-Dixon E, Wei G, Dixon B. Characterization of cDNA clones encoding major histocompatibility class II receptors from walleye (Sander vitreus). Mol Immunol 2018; 103:106-114. [PMID: 30245265 DOI: 10.1016/j.molimm.2018.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 01/28/2023]
Abstract
The teleost major histocompatibility (MH) class II receptor presents peptides from exogenous sources to CD4+ T cells, leading to the initiation of the adaptive immune response. The genes encoding MH class II have been identified in a number of teleost species, but not in walleye, an important recreational fish and commercial fishery in North America. In this study, we cloned and characterized the sequences encoding walleye MH class II α and β chains. These sequences contained all of the domains typical for functional MH class II α and β chain proteins, and aligned with other teleost sequences of MH class II. The walleye MH class II α amino acid sequence, along with other members of the Supraorder Percomorpharia, contains a high concentration of methionine residues in the beginning of the leader peptide. Southern blotting indicated that there is more than one gene copy for both MH class II α and β, while northern blotting analysis of both genes showed that expression of these genes is greatest in lymphoid tissues and at potential entry points for pathogens. These results help to further the understanding of MH class II receptors in teleosts, and could prove useful in the study of disease issues in walleye such as dermal sarcoma virus.
Collapse
Affiliation(s)
- Quinn H Abram
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Kazuhiro Fujiki
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Marije Booman
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Emily Chin-Dixon
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Guang Wei
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
10
|
Li C, Jiang J, Zhang Q, Wang X. Duplicated major histocompatibility complex class II genes in the tongue sole (Cynoglossus semilaevis
). Int J Immunogenet 2018; 45:210-224. [DOI: 10.1111/iji.12368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/25/2018] [Accepted: 03/22/2018] [Indexed: 12/26/2022]
Affiliation(s)
- C. Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - J. Jiang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - Q. Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - X. Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding; College of Marine Life Sciences; Ocean University of China; Qingdao China
| |
Collapse
|
11
|
Wu XM, Hu YW, Xue NN, Ren SS, Chen SN, Nie P, Chang MX. Role of zebrafish NLRC5 in antiviral response and transcriptional regulation of MHC related genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:58-68. [PMID: 27876605 DOI: 10.1016/j.dci.2016.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Intracellular NOD-like receptors (NLRs) are emerging as critical regulators of innate and adaptive immune responses. Although the NLR family member NLRC5 is functionally defined, the role of NLRC5 in regulating innate immune signaling has been controversial in mammals, and is poorly understood in teleost fish. In the present study, we report the functional characterization of zebrafish NLRC5. The cloned NLRC5 consists of 6435 bp which encodes 1746 amino acids. The N-terminal effector-binding domain of zebrafish NLRC5 is absent which is different from all other human NLRs. Fluorescence microscopy showed that zebrafish NLRC5 is located throughout the entire cell. The higher expression of zebrafish NLRC5 in embryo than in larvae was observed, suggesting the action phase of NLRC5 in zebrafish ontogenetic stages. When the modulation of NLRC5 in pathogen infection was analyzed, it was found that zebrafish NLRC5 was upregulated by both bacterial and viral infection. Overexpression of zebrafish NLRC5 resulted in significant inhibition of SVCV replication in vivo and in vitro, but failed to activate interferon (IFN) promoters and type I IFN signaling pathway. Interestingly, NLRC5 overexpression could activate mhc2dab promoter, and induce the expression of MHC class II genes. All together, these results demonstrate that zebrafish NLRC5 is involved in IFN-independent antiviral response, and also functions as a transcriptional regulator of MHC class II genes.
Collapse
Affiliation(s)
- Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Na Na Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shi Si Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China.
| |
Collapse
|
12
|
Grimholt U. MHC and Evolution in Teleosts. BIOLOGY 2016; 5:biology5010006. [PMID: 26797646 PMCID: PMC4810163 DOI: 10.3390/biology5010006] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/18/2022]
Abstract
Major histocompatibility complex (MHC) molecules are key players in initiating immune responses towards invading pathogens. Both MHC class I and class II genes are present in teleosts, and, using phylogenetic clustering, sequences from both classes have been classified into various lineages. The polymorphic and classical MHC class I and class II gene sequences belong to the U and A lineages, respectively. The remaining class I and class II lineages contain nonclassical gene sequences that, despite their non-orthologous nature, may still hold functions similar to their mammalian nonclassical counterparts. However, the fact that several of these nonclassical lineages are only present in some teleost species is puzzling and questions their functional importance. The number of genes within each lineage greatly varies between teleost species. At least some gene expansions seem reasonable, such as the huge MHC class I expansion in Atlantic cod that most likely compensates for the lack of MHC class II and CD4. The evolutionary trigger for similar MHC class I expansions in tilapia, for example, which has a functional MHC class II, is not so apparent. Future studies will provide us with a more detailed understanding in particular of nonclassical MHC gene functions.
Collapse
Affiliation(s)
- Unni Grimholt
- Department of Virology, Norwegian Veterinary Institute, Ullevaalsveien 68, Oslo N-0106, Norway.
| |
Collapse
|
13
|
Jiang J, Li C, Zhang Q, Wang X. Locus number estimation of MHC class II B in stone flounder and Japanese flounder. Int J Mol Sci 2015; 16:6000-17. [PMID: 25782161 PMCID: PMC4394517 DOI: 10.3390/ijms16036000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/22/2014] [Accepted: 12/25/2014] [Indexed: 01/19/2023] Open
Abstract
Members of major histocompatibility complex (MHC) family are important in immune systems. Great efforts have been made to reveal their complicated gene structures. But many existing studies focus on partial sequences of MHC genes. In this study, by gene cloning and sequencing, we identified cDNA sequences and DNA sequences of the MHC class II B in two flatfishes, stone flounder (Kareius bicoloratus) and homozygous diploid Japanese flounder (Paralichthys olivaceus). Eleven cDNA sequences were acquired from eight stone flounder individuals, and most of the polymorphic sites distributed in exons 2 and 3. Twenty-eight alleles were identified from the DNA fragments in these eight individuals. It could be deduced from their Bayesian inference phylogenetic tree that at least four loci of MHC class II B exist in stone flounder. The detailed whole-length DNA sequences in one individual were analyzed, revealing that the intron length varied among different loci. Four different cDNA sequences were identified from one homozygous diploid Japanese flounder individual, implying the existence of at least four loci. Comparison of the cDNA sequences to the DNA sequence confirmed that six exons existed in this gene of Japanese flounder, which was a common feature shared by Pleuronectiformes fishes. Our results proved the multi-locus feature of MHC class II B. The sequences we obtained would provide detailed and systematic data for further research.
Collapse
Affiliation(s)
- Jiajun Jiang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Chunmei Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
14
|
Lewis KL, Del Cid N, Traver D. Perspectives on antigen presenting cells in zebrafish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:63-73. [PMID: 24685511 PMCID: PMC4158852 DOI: 10.1016/j.dci.2014.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/18/2014] [Accepted: 03/19/2014] [Indexed: 05/29/2023]
Abstract
Antigen presentation is a critical step in the activation of naïve T lymphocytes. In mammals, dendritic cells (DCs), macrophages, and B lymphocytes can all function as antigen presenting cells (APCs). Although APCs have been identified in zebrafish, it is unclear if they fulfill similar roles in the initiation of adaptive immunity. Here we review the characterization of zebrafish macrophages, DCs, and B cells and evidence of their function as true APCs. Finally, we discuss the conservation of APC activity in vertebrates and the use of zebrafish to provide a new perspective on the evolution of these functions.
Collapse
Affiliation(s)
- Kanako L Lewis
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Natasha Del Cid
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - David Traver
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
15
|
Kubota H, Watanabe K. Loss of genetic diversity at an MHC locus in the endangered Tokyo bitterling Tanakia tanago (Teleostei: Cyprinidae). Zoolog Sci 2014; 30:1092-101. [PMID: 24320188 DOI: 10.2108/zsj.30.1092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetic diversity at a major histocompatibility complex (MHC) class II B gene was examined for two wild and three captive populations of the endangered Tokyo bitterling Tanakia tanago. A specific primer set was first developed to amplify the MHC II B exon 2 locus. Using single strand conformation polymorphism (SSCP) and sequencing analysis, 16 DAB3 alleles were detected with 56 nucleotide substitutions in the 276-bp region. In the putative antigen-binding sites of exon 2, the rate of nonsynonymous substitutions was significantly higher than that of synonymous substitutions (dN/dS = 2.79), indicating positive selection on the retention of polymorphism. The population from the Handa Natural Habitat Conservation Area and that from the Tone River system exhibited low variation (one and three alleles, respectively), whereas the captive population that originated from a mix of three distinct populations had the highest amounts of variation (14 alleles). The levels of heterozygosity at the MHC varied considerably among populations and showed significant correlations with those at putative neutral microsatellite markers, suggesting that genetic drift following a bottleneck has affected MHC variability in some populations. Comparisons between endangered and non-endangered fish species in previous reports and the present results indicate that the number of MHC alleles per population is on average 70% lower in endangered species than non-endangered species. Considering the functional consequence of this locus, attention should be paid to captive and wild endangered fish populations in terms of further loss of MHC alleles.
Collapse
Affiliation(s)
- Hitoshi Kubota
- 1 Tochigi PrefecturaI Fisheries Experimental Station, Sarado, Ohtawara, Tochigi 324-0404, Japan
| | | |
Collapse
|
16
|
Molecular cloning, genomic structure, polymorphism and expression analysis of major histocompatibility complex class IIA gene of swamp eel Monopterus albus. Biologia (Bratisl) 2014; 69:236-246. [PMID: 32214413 PMCID: PMC7089440 DOI: 10.2478/s11756-013-0307-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 10/26/2013] [Indexed: 11/20/2022]
Abstract
Major histocompatibility complex (MHC) class II molecules play an important role in the immune response of vertebrates. In this paper, full-length MHC IIA cDNA was isolated from swamp eel (Monopterus albus) by rapid amplification of cDNA ends PCR. The genomic structure, molecular polymorphism, tissue distribution, and immune response of the MHC IIA gene to bacterial challenge were investigated. The full-length cDNA (GenBank accession No.: KC616308) is 1,509 bp in length including an 83 bp-long 5' untranslated region (UTR) and a 709 bp-long 3' UTR, which encoded a 238 amino acids protein. In the 2,339 bp-long MHC IIA genomic DNA, four exons and three introns were identified. Sequence comparison exhibited that the deduced amino acid sequence shared 27.1-66.3% identity with those of other species. Seven alleles were identified from five healthy individuals. Number of alleles per individual diversified from two to five. Five different 5' UTR sequences and two different 3' UTR sequences from one individual may infer the existence of five loci at least. Real-time quantitative PCR demonstrated that swamp eel MHC IIA transcripts were ubiquitously expressed in ten tissues, but the expression level was distinctly different. Significant changes were observed in liver, spleen, kidney and intestine after challenged with pathogenic bacteria Aeromonas hydrophilia.
Collapse
|
17
|
Yu H, Yan QG, Wang ZB, Lu YJ, Xu MJ, Li H, Zhu XQ. MH II-DAB gene expression in grass carp Ctenopharyngodon idella (Valenciennes) after infection with the ciliate parasite, Ichthyophthirius multifiliis. JOURNAL OF FISH DISEASES 2014; 37:43-50. [PMID: 24131264 DOI: 10.1111/j.1365-2761.2012.01442.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/25/2012] [Accepted: 04/30/2012] [Indexed: 06/02/2023]
Abstract
The grass carp, Ctenopharyngodon idella (Valenciennes), is one of the most extensively aquacultured freshwater fish in China. However, because of the lack of effective control measures and the high-density culture environment, considerable economic losses are caused by infection of C. idella with the parasitic ciliate, Ichthyophthirius multifiliis. The major histocompatibility (MH) DAB gene belongs to antigen-presented genes in the class II genomic region, which is associated with parasite resistance. To understand the relationship of the DAB gene with I. multifiliis infection in grass carp, the expression profiles of MH II-DAB were studied in tissues using real-time quantitative polymerase chain reaction. The results showed that expression of the MH II-DAB gene was up-regulated in head kidney after I. multifiliis infection, and the expression peak appeared earlier in the study (case) group than in the control group. The obvious up-regulation peak of MH II-DAB gene was found at days 2 and 4 in skin; at 12 h to day 4 in spleen; at 12 h and days 1 and 6 in gill; and at day 10 in blood, whereas the MH II-DAB gene was down-regulated in liver and intestines after I. multifiliis infection. These results have implications for better understanding C. idella resistance to I. multifiliis infection.
Collapse
Affiliation(s)
- H Yu
- College of Life Science, Foshan University, Foshan, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Zebrafish model for allogeneic hematopoietic cell transplantation not requiring preconditioning. Proc Natl Acad Sci U S A 2013; 110:4327-32. [PMID: 23431192 DOI: 10.1073/pnas.1219847110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent work on vertebrate hematopoiesis has uncovered the presence of deeply rooted similarities between fish and mammals at molecular and cellular levels. Although small animal models such as zebrafish are ideally suited for genetic and chemical screens, the study of cellular aspects of hematopoietic development in lower vertebrates is severely hampered by the complex nature of their histocompatibility-determining genes. Hence, even when hosts are sublethally irradiated before hematopoietic cell transplantation, stable and long-term reconstitution by allogeneic stem cells often fails. Here, we describe the unexpected observation that transplantation and maintenance of allogeneic hematopoietic stem cells in zebrafish homozygous for the c-myb(t25127) allele, carrying a missense mutation (Ile181Asn) in the DNA binding domain can be achieved without prior conditioning. Using this model, we examined several critical parameters of zebrafish hematopoiesis in a near-physiological setting. Limiting dilution analysis suggests that the kidney marrow of adult zebrafish harbors about 10 transplantable hematopoietic stem cells; this tissue also contains thymus-settling precursors that colonize the thymic rudiment within days after transplantation and initiate robust T-cell development. We also demonstrate that c-myb mutants can be stably reconstituted with hematopoietic cells carrying specific genetic defects in lymphocyte development, exemplifying one of the many potential uses of this model in experimental hematology.
Collapse
|
19
|
Pang JC, Gao FY, Lu MX, Ye X, Zhu HP, Ke XL. Major histocompatibility complex class IIA and IIB genes of Nile tilapia Oreochromis niloticus: genomic structure, molecular polymorphism and expression patterns. FISH & SHELLFISH IMMUNOLOGY 2013; 34:486-496. [PMID: 23261509 DOI: 10.1016/j.fsi.2012.11.048] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 11/15/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
Major histocompatibility complex (MHC) is a large genomic region characterized by extremely high polymorphism, and it plays an important role in the immune response of vertebrates. In the present study, we isolated MHC class II genes from Nile tilapia in order to investigate the immune mechanism in tilapia and develop better strategies for disease prevention. Moreover, we cloned the full-length cDNA sequences of MHC IIA and IIB from Nile tilapia by the RACE approach. In addition, the genomic structure, molecular polymorphism and expression patterns of MHC II genes in Nile tilapia were also examined. Compared with that of other teleosts, Nile tilapia MHC class IIA contained four exons and three introns. The deduced amino acid sequence of the MHC IIA molecule shared 25.4-64.5% similarity with those of other teleosts and mammals. Six exons and five introns were identified from Nile tilapia MHC IIB, and the deduced amino acid sequence shared 26.9-74.7% similarity with those of other teleosts and mammals. All the characteristic features of MHC class II chain structure could be identified in the deduced sequences of MHC IIA and IIB molecules, including the leader peptide, α1/β1 and α2/β2 domains, connecting peptide and transmembrane and cytoplasmic regions, as well as conserved cysteines and N-glycosylation site. A total of 12 MHC IIA alleles were identified from six individuals. Four alleles originating from a single individual suggested that at least four MHC IIA loci existed. Moreover, 10 MHC IIB alleles were identified, among which four were detected in a single individual, suggesting that at least four MHC IIB loci existed. The expression of MHC IIA and IIB at the mRNA level in 10 types of normal tissues was determined using quantitative real-time PCR analysis. The highest expression level was detected in stomach and gill, whereas the lowest expression was detected in muscle and brain. Furthermore, MHC IIA and IIB were probably two candidate immune molecules involved in the resistance against streptococcosis, because their expression was significantly up-regulated in gill, kidney, intestine and spleen after the intraperitoneal injection of Streptococcus agalactiae.
Collapse
Affiliation(s)
- Ji-cai Pang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, Guangdong 510380, PR China
| | | | | | | | | | | |
Collapse
|
20
|
The research of W.E. Mayer (1953-2012): a spectrum of immune systems. Immunogenetics 2012; 64:849-54. [PMID: 23053060 DOI: 10.1007/s00251-012-0654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/23/2012] [Indexed: 10/27/2022]
Abstract
Over a period of some 20 years, Werner Eugen Mayer played a significant role in establishing a framework for molecular studies of Mhc genes in multiple vertebrates. His work largely concerned gene isolation, sequencing, and related bioinformatic analyses both for the Mhc and for immune system genes of about 200 species, ranging from apes, monkeys, rodents, and marsupials, through to birds, bony fishes, and lampreys. In addition to his exploration of diverse Mhc genes, Werner is remembered for playing a critical role in the development of two important insights into the evolution of immune systems. His was among the first published DNA sequence-based descriptions of trans-species evolution of Mhc alleles, including the first description of the long-lived polymorphisms shared by humans and chimpanzees. This research opened the way for using Mhc polymorphisms in demographic analyses. The second important insight in which he played a prominent role involved the characterization of immune cells and their expressed genes in the lamprey, a jawless vertebrate. His findings helped to indicate the considerable degree to which extant immune mechanisms were co-opted in the creation of the adaptive immune system of jawed vertebrates.
Collapse
|
21
|
Lu DQ, Yi SB, Yao M, Li YW, Liu XC, Zhang Y, Lin HR. Identification and expression analysis of major histocompatibility complex IIB gene in orange-spotted grouper Epinephelus coioides. JOURNAL OF FISH BIOLOGY 2012; 81:165-180. [PMID: 22747811 DOI: 10.1111/j.1095-8649.2012.03321.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, complementary DNA (cDNA) and DNA sequences of major histocompatibility complex (MHC) class IIB genes (mhcIIB) were cloned from orange-spotted grouper Epinephelus coioides. The gene structure of E. coioides mhcIIB consists of five exons and four introns, and its deduced amino acid sequence length is 249 amino acids, including a signal peptide, a peptide-binding region, an IGC1 domain, a transmembrane region and a cytoplasmic tail. A phylogenetic study showed that E. coioides mhcIIB shared 32.0-79.1% identity with those of other teleosts and mammals. Real-time reverse transcriptase (RT)-PCR was performed to detect the class IIB gene expression in eight different tissues. To characterize the relationship between E. coioides mhcIIB gene and pathogens, in vivo and in vitro studies were performed. Challenge of Cryptocaryon irritans revealed that class IIB genes were down-regulated after 24 and 48 h of challenge, and their expression was later restored at 72 h. Stimulation of isolated E. coioides leukocytes with lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (PolyI:C) significantly increased peripheral blood and spleen mhcIIB expression, while head kidney mhcIIB expression remained constant.
Collapse
Affiliation(s)
- D Q Lu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, 135 Xingang West Street, Guangzhou 510275, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Histocompatibility and hematopoietic transplantation in the zebrafish. Adv Hematol 2012; 2012:282318. [PMID: 22778744 PMCID: PMC3388487 DOI: 10.1155/2012/282318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/01/2012] [Indexed: 12/14/2022] Open
Abstract
The zebrafish has proven to be an excellent model for human disease, particularly hematopoietic diseases, since these fish make similar types of blood cells as humans and other mammals. The genetic program that regulates the development and differentiation of hematopoietic cells is highly conserved. Hematopoietic stem cells (HSCs) are the source of all the blood cells needed by an organism during its lifetime. Identifying an HSC requires a functional assay, namely, a transplantation assay consisting of multilineage engraftment of a recipient and subsequent serial transplant recipients. In the past decade, several types of hematopoietic transplant assays have been developed in the zebrafish. An understanding of the major histocompatibility complex (MHC) genes in the zebrafish has lagged behind transplantation experiments, limiting the ability to perform unbiased competitive transplantation assays. This paper summarizes the different hematopoietic transplantation experiments performed in the zebrafish, both with and without immunologic matching, and discusses future directions for this powerful experimental model of human blood diseases.
Collapse
|
23
|
Bahr A, Wilson AB. The evolution of MHC diversity: evidence of intralocus gene conversion and recombination in a single-locus system. Gene 2012; 497:52-7. [PMID: 22301266 DOI: 10.1016/j.gene.2012.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 11/29/2022]
Abstract
Gene conversion, the unidirectional exchange of genetic material between homologous sequences, is thought to strongly influence patterns of genetic diversity. The high diversity of major histocompatibility complex (MHC) genes in many species is thought to reflect a long history of gene conversion events both within and among loci. Theoretical work suggests that intra- and interlocus gene conversion leave characteristic signatures of nucleotide diversity, but empirical studies of MHC variation have rarely been able to analyze the effects of conversion events in isolation, due to the presence of multiple gene copies in most species. The potbellied seahorse (Hippocampus abdominalis), a species with a single copy of the MH class II beta-chain gene (MHIIb), provides an ideal system in which to explore predictions on the effects of intralocus gene conversion on patterns of genetic diversity. The genetic diversity of the MHIIb peptide binding region (PBR) is high in the seahorse, similar to other vertebrate species. In contrast, the remainder of the gene shows a total absence of synonymous variation and low levels of intronic sequence diversity, concentrated in 3 short repetitive regions and 1-12 SNPs per intron. The distribution of substitutions across the gene results in a patchwork pattern of shared polymorphism between otherwise divergent sequences. The pattern of nucleotide diversity observed in the seahorse MHIIb gene is congruent with theoretical expectations for intralocus gene conversion, indicating that this evolutionary mechanism has played an important role in MHC gene evolution, contributing to both the high diversity in the PBR and the low diversity outside this region. Neutral variation at this locus may be further reduced due to biases in nucleotide composition and functional constraints.
Collapse
Affiliation(s)
- Angela Bahr
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
24
|
Li H, Jiang L, Han J, Su H, Yang Q, He C. Major histocompatibility complex class IIA and IIB genes of the spotted halibut Verasper variegatus: genomic structure, molecular polymorphism, and expression analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:767-780. [PMID: 21424758 DOI: 10.1007/s10695-011-9476-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/03/2011] [Indexed: 05/30/2023]
Abstract
The major histocompatibility complex (MHC) is a large genomic region characterized by extremely high polymorphism and its association with resistance/susceptibility to disease in vertebrates. In this study, the full lengths of MHC IIA and IIB cDNA were obtained from spotted halibut (Verasper variegates) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The genomic structure, molecular polymorphism, and expression patterns were examined to study MHC II gene functions in fish. As in other teleosts, the genomic structure of the spotted halibut MHC IIA contained 4 exons and 3 introns. The deduced amino acid sequence of the class IIA molecule shared 28-79% similarity with those of teleosts and mammals. Nine class IIA alleles were identified from five individuals. Three alleles originating from a single individual suggested the existence of at least two class IIA loci in the genome. Six exons and 5 introns were identified from spotted halibut MHC IIB, and the deduced amino acid sequence shared 33-79% similarity with those of teleosts and mammals. Twelve alleles were identified, among which five were observed in a single individual, which suggested at least three class IIB loci. Quantitative real-time PCR analysis revealed the presence of class IIA and IIB transcripts in nine normal tissues with high expression level in kidney and gill. Furthermore, MHC IIA and IIB are probably two candidates of immune molecules involved in the acute-phase response in spotted halibut, because their transcriptional levels were significantly up-regulated in blood and liver after bacterial challenge.
Collapse
Affiliation(s)
- Hongjun Li
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Institute, Dalian, China
| | | | | | | | | | | |
Collapse
|
25
|
Osborne MJ, Turner TF. Isolation and characterization of major histocompatibility class IIβ genes in an endangered North American cyprinid fish, the Rio Grande silvery minnow (Hybognathus amarus). FISH & SHELLFISH IMMUNOLOGY 2011; 30:1275-1282. [PMID: 21463692 DOI: 10.1016/j.fsi.2011.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/25/2011] [Accepted: 03/27/2011] [Indexed: 05/30/2023]
Abstract
The major histocompatibility complex (MHC) is a critical component of the adaptive immune response in vertebrates. Due to the role that MHC plays in immunity, absence of variation within these genes may cause species to be vulnerable to emerging diseases. The freshwater fish family Cyprinidae comprises the most diverse and species-rich group of freshwater fish in the world, but some are imperiled. Despite considerable species richness and the long evolutionary history of the family, there are very few reports of MHC sequences (apart from a few model species), and no sequences are reported from endemic North American cyprinids (subfamily Leuciscinae). Here we isolate and characterize the MH Class II beta genes from complementary DNA and genomic DNA of the non-model, endangered Rio Grande silvery minnow (Hybognathus amarus), a North American cyprinid. Phylogenetic reconstruction revealed two groups of divergent MH alleles that are paralogous to previously described loci found in deeply divergent cyprinid taxa including common carp, zebrafish, African large barb and bream. Both groups of alleles were under the influence of diversifying selection yet not all individuals had alleles belonging to both allelic groups. We concluded that the general organization and pattern of variation of MH class II genes in Rio Grande silvery minnow is similar to that identified in other cyprinid fishes studied to date, despite distant evolutionary relationships and evidence of a severe genetic bottleneck.
Collapse
Affiliation(s)
- Megan J Osborne
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, MSC 03-2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | |
Collapse
|
26
|
Shen T, Xu S, Yang M, Pang S, Yang G. Molecular cloning, expression pattern, and 3D structural analysis of the MHC class IIB gene in the Chinese longsnout catfish (Leiocassis longirostris). Vet Immunol Immunopathol 2011; 141:33-45. [PMID: 21377740 DOI: 10.1016/j.vetimm.2011.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 01/25/2011] [Accepted: 02/07/2011] [Indexed: 11/19/2022]
Affiliation(s)
- Tong Shen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | | | | | | | | |
Collapse
|
27
|
Abstract
The evolutionarily conserved immune system of the zebrafish (Danio rerio), in combination with its genetic tractability, position it as an excellent model system in which to elucidate the origin and function of vertebrate immune cells. We recently reported the existence of antigen-presenting mononuclear phagocytes in zebrafish, namely macrophages and dendritic cells (DCs), but have been impaired in further characterizing the biology of these cells by the lack of a specific transgenic reporter line. Using regulatory elements of a class II major histocompatibility gene, we generated a zebrafish reporter line expressing green fluorescent protein (GFP) in all APCs, macrophages, DCs, and B lymphocytes. Examination of mhc2dab:GFP; cd45:DsRed double-transgenic animals demonstrated that kidney mhc2dab:GFP(hi); cd45:DsRed(hi) cells were exclusively mature monocytes/macrophages and DCs, as revealed by morphologic and molecular analyses. Mononuclear phagocytes were found in all hematolymphoid organs, but were most abundant in the intestine and spleen, where they up-regulate the expression of inflammatory cytokines upon bacterial challenge. Finally, mhc2dab:GFP and cd45:DsRed transgenes mark mutually exclusive cell subsets in the lymphoid fraction, enabling the delineation of the major hematopoietic lineages in the adult zebrafish. These findings suggest that mhc2dab:GFP and cd45:DsRed transgenic lines will be instrumental in elucidating the immune response in the zebrafish.
Collapse
|
28
|
Seifertová M, Šimková A. Structure, diversity and evolutionary patterns of expressed MHC class IIB genes in chub (Squalius cephalus), a cyprinid fish species from Europe. Immunogenetics 2010; 63:167-81. [DOI: 10.1007/s00251-010-0495-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/03/2010] [Indexed: 11/30/2022]
|
29
|
Gómez D, Conejeros P, Marshall SH, Consuegra S. MHC evolution in three salmonid species: a comparison between class II alpha and beta genes. Immunogenetics 2010; 62:531-42. [PMID: 20521040 DOI: 10.1007/s00251-010-0456-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/15/2010] [Indexed: 11/26/2022]
Abstract
The genes of the major histocompatibility complex (MHC) are amongst the most variable in vertebrates and represent some of the best candidates to study processes of adaptive evolution. However, despite the number of studies available, most of the information on the structure and function of these genes come from studies in mammals and birds in which the MHC class I and II genes are tightly linked and class II alpha exhibits low variability in many cases. Teleost fishes are among the most primitive vertebrates with MHC and represent good organisms for the study of MHC evolution because their class I and class II loci are not physically linked, allowing for independent evolution of both classes of genes. We have compared the diversity and molecular mechanisms of evolution of classical MH class II alpha and class II beta loci in farm populations of three salmonid species: Oncorhynchus kisutch, Oncorhynchus mykiss and Salmo salar. We found single classical class II loci and high polymorphism at both class II alpha and beta genes in the three species. Mechanisms of evolution were common for both class II genes, with recombination and point mutation involved in generating diversity and positive selection acting on the peptide-binding residues. These results suggest that the maintenance of variability at the class IIalpha gene could be a mechanism to increase diversity in the MHC class II in salmonids in order to compensate for the expression of one single classical locus and to respond to a wider array of parasites.
Collapse
Affiliation(s)
- Daniela Gómez
- Instituto de Biología, Facultad de Ciencias Básicas y Matemáticas, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | | | |
Collapse
|
30
|
Yu S, Ao J, Chen X. Molecular characterization and expression analysis of MHC class II alpha and beta genes in large yellow croaker (Pseudosciaena crocea). Mol Biol Rep 2009; 37:1295-307. [PMID: 19301143 DOI: 10.1007/s11033-009-9504-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 03/04/2009] [Indexed: 11/25/2022]
Abstract
MHC class II molecules play an important role in the activation of CD4(+) T cells, which are the central orchestrating cells of an immune response. Here, we report the cloning of MHC class II alpha and beta cDNAs from large yellow croaker (Pscr-DAAs and Pscr-DAB) by expressed sequence tags analysis and RACE-PCR techniques. Three different class II alpha and two class II beta sequences were obtained from spleens of two individual fish. Each of the three class II alpha sequences encodes a polypeptide of 239 amino acids while the two class II beta cDNA sequences encode for a protein of 249 aa. All the characteristic features of MHC class II chain structure could be identified in the deduced proteins of three class II alpha and two class II beta sequences, including the leader peptide, alpha1/beta1 and alpha2/beta2 domains, connecting peptide and transmembrane and cytoplasmic regions, as well as conserved cysteines and N-glycosylation site. RT-PCR analysis showed that MHC class II alpha and beta mRNAs were broadly expressed in various tissues examined, although at different levels. Upon stimulation with inactivated trivalent bacterial vaccine or polyinosinic polycytidylic acid (poly(I:C)), the expression levels of both alpha and beta genes were obviously up-regulated in intestine, kidney and spleen. Real-time PCR analysis demonstrated that the expression levels of class II alpha and beta were quickly up-regulated in spleen, kidney, and intestine at 12 h after induction with poly(I:C), while their expression levels significantly increased at 48 h upon immunization with bacterial vaccine, indicating that the up-regulation of both class II alpha and beta expression was induced by bacterial vaccine or poly(I:C) at the early phase of induction, and that class II alpha and beta transcripts were quicker up-regulated by poly I:C than by bacterial vaccine.
Collapse
Affiliation(s)
- Suhong Yu
- Department of Biology, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | | | | |
Collapse
|
31
|
Harstad H, Lukacs MF, Bakke HG, Grimholt U. Multiple expressed MHC class II loci in salmonids; details of one non-classical region in Atlantic salmon (Salmo salar). BMC Genomics 2008; 9:193. [PMID: 18439319 PMCID: PMC2386828 DOI: 10.1186/1471-2164-9-193] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 04/28/2008] [Indexed: 11/18/2022] Open
Abstract
Background In teleosts, the Major Histocompatibility Complex (MHC) class I and class II molecules reside on different linkage groups as opposed to tetrapods and shark, where the class I and class II genes reside in one genomic region. Several teleost MHC class I regions have been sequenced and show varying number of class I genes. Salmonids have one major expressed MHC class I locus (UBA) in addition to varying numbers of non-classical genes. Two other more distant lineages are also identifyed denoted L and ZE. For class II, only one major expressed class II alpha (DAA) and beta (DAB) gene has been identified in salmonids so far. Results We sequenced a genomic region of 211 kb encompassing divergent MHC class II alpha (Sasa-DBA) and beta (Sasa-DBB) genes in addition to NRGN, TIPRL, TBCEL and TECTA. The region was not linked to the classical class II genes and had some synteny to genomic regions from other teleosts. Two additional divergent and expressed class II sequences denoted DCA and DDA were also identified in both salmon and trout. Expression patterns and lack of polymorphism make these genes non-classical class II analogues. Sasa-DBB, Sasa-DCA and Sasa-DDA had highest expression levels in liver, hindgut and spleen respectively, suggestive of distinctive functions in these tissues. Phylogenetic studies revealed more yet undescribed divergent expressed MHC class II molecules also in other teleosts. Conclusion We have characterised one genomic region containing expressed non-classical MHC class II genes in addition to four other genes not involved in immune function. Salmonids contain at least two expressed MHC class II beta genes and four expressed MHC class II alpha genes with properties suggestive of new functions for MHC class II in vertebrates. Collectively, our data suggest that the class II is worthy of more elaborate studies also in other teleost species.
Collapse
Affiliation(s)
- Håvard Harstad
- Department of Basic Science and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | |
Collapse
|
32
|
Dijkstra JM, Katagiri T, Hosomichi K, Yanagiya K, Inoko H, Ototake M, Aoki T, Hashimoto K, Shiina T. A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes. Immunogenetics 2007; 59:305-21. [PMID: 17318646 DOI: 10.1007/s00251-007-0198-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
Most of the previously studied teleost MHC class I molecules can be classified into two broad lineages: "U" and "Z/ZE." However, database reports on genes in cyprinid and salmonid fishes show that there is a third major lineage, which lacks detailed analysis so far. We designated this lineage "L" because of an intriguing linkage characteristic. Namely, one zebrafish L locus is closely linked with MHC class II loci, despite the extensively documented nonlinkage of teleost class I with class II. The L lineage consists of highly variable, nonclassical MHC class I genes, and has no apparent orthologues outside teleost fishes. Characteristics that distinguish the L lineage from most other MHC class I are (1) absence of two otherwise highly conserved tryptophan residues W51 and W60 in the alpha1 domain, (2) a low GC content of the alpha1 and alpha2 exons, and (3) an HINLTL motif including a possible glycosylation site in the alpha3 domain. In rainbow trout (Oncorhynchus mykiss) we analyzed several intact L genes in detail, including their genomic organization and transcription pattern. The gene Onmy-LAA is quite different from the genes Onmy-LBA, Onmy-LCA, Onmy-LDA, and Onmy-LEA, while the latter four are similar and categorized as "Onmy-LBA-like." Whereas the Onmy-LAA gene is organized like a canonical MHC class I gene, the Onmy-LBA-like genes are processed and lack all introns except intron 1. Onmy-LAA is predominantly expressed in the intestine, while the Onmy-LBA-like transcripts display a rather homogeneous tissue distribution. To our knowledge, this is the first description of an MHC class I lineage with multiple copies of processed genes, which are intact and transcribed. The present study significantly improves the knowledge of MHC class I variation in teleosts.
Collapse
|
33
|
Zhang YX, Chen SL, Liu YG, Sha ZX, Liu ZJ. Major histocompatibility complex class IIB allele polymorphism and its association with resistance/susceptibility to Vibrio anguillarum in Japanese flounder (Paralichthys olivaceus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:600-10. [PMID: 16874444 DOI: 10.1007/s10126-005-6185-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 04/25/2006] [Indexed: 05/11/2023]
Abstract
The full length of major histocompatibility complex (MHC) class IIB cDNA was cloned from a Chinese population of Paralichthys olivaceus by homology cloning and rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The MHC IIB genomic sequence is 1,864 bp long and consists of 34-bp 5'UTR, 741-bp open reading frame, 407-bp 3'UTR, 96-bp intron1, 392-bp intron2, 85-bp intron3, and 109-bp intron4. Phylogenetic analysis showed that the putative MHC class IIB amino acid of the Chinese P. olivaceus shared 28.3% to 85.4% identity with that of the reported MHC class IIB in other species. A significant association between MHC IIB polymorphism and disease resistance/susceptibility was found in Chinese P. olivaceus. Thirteen different MHC IIB alleles were identified among 411 clones from 84 individuals. Among the 280 (268) nucleotides, 32 (11.4%) nucleotide positions were variable. Most alleles such as alleles a, b, c, d, e, f, j, k, i, m were commonly found in both resistant and susceptible stock. Via chi2 test, allele d was significantly more prevalent in individuals from susceptible stock than from resistant stock, and their percentages were 23.80% and 7.14%, respectively. In addition, allele g occurred in 9 and allele h in 4 of 42 resistant individuals that were not present in the susceptible stock; their percentages were 21.4% and 9.52%, respectively. Although allele l was found only in 8 individuals from the susceptible stock, its percentage is 19.05%.
Collapse
Affiliation(s)
- Y X Zhang
- Key Lab for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071, Qingdao, People's Republic of China
| | | | | | | | | |
Collapse
|
34
|
Sambrook JG, Figueroa F, Beck S. A genome-wide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish. BMC Genomics 2005; 6:152. [PMID: 16271140 PMCID: PMC1309616 DOI: 10.1186/1471-2164-6-152] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Accepted: 11/04/2005] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The genomic organisation of the Major Histocompatibility Complex (MHC) varies greatly between different vertebrates. In mammals, the classical MHC consists of a large number of linked genes (e.g. greater than 200 in humans) with predominantly immune function. In some birds, it consists of only a small number of linked MHC core genes (e.g. smaller than 20 in chickens) forming a minimal essential MHC and, in fish, the MHC consists of a so far unknown number of genes including non-linked MHC core genes. Here we report a survey of MHC genes and their paralogues in the zebrafish genome. RESULTS Using sequence similarity searches against the zebrafish draft genome assembly (Zv4, September 2004), 149 putative MHC gene loci and their paralogues have been identified. Of these, 41 map to chromosome 19 while the remaining loci are spread across essentially all chromosomes. Despite the fragmentation, a set of MHC core genes involved in peptide transport, loading and presentation are still found in a single linkage group. CONCLUSION The results extend the linkage information of MHC core genes on zebrafish chromosome 19 and show the distribution of the remaining MHC genes and their paralogues to be genome-wide. Although based on a draft genome assembly, this survey demonstrates an essentially fragmented MHC in zebrafish.
Collapse
Affiliation(s)
- Jennifer G Sambrook
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 ISA, UK
| | - Felipe Figueroa
- Max-Planck-Institut für Biologie, Abteilung Immunogenetik, 72076 Tübingen, Germany
| | - Stephan Beck
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 ISA, UK
| |
Collapse
|
35
|
Ottová E, Simková A, Martin JF, de Bellocq JG, Gelnar M, Allienne JF, Morand S. Evolution and trans-species polymorphism of MHC class IIbeta genes in cyprinid fish. FISH & SHELLFISH IMMUNOLOGY 2005; 18:199-222. [PMID: 15519540 DOI: 10.1016/j.fsi.2004.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 06/21/2004] [Accepted: 07/14/2004] [Indexed: 05/24/2023]
Abstract
The polymorphism of DAB genes encoding MHC IIbeta was investigated in 11 cyprinid species from central Europe. The species belonged to four subfamilies: Cyprininae, Tincinae, Gobioninae and Leuciscinae. Two paralogous groups of sequences, DAB1 and DAB3, were recognised according to the similarity of their nucleotide and amino-acid sequences and from phylogenetic analyses using either partial exon 2 or partial exon 3 sequences. A high allelic variability among species was found for exon 2, indicating extensive MHC polymorphism. Time divergence estimation supports the separation of DAB1 and DAB3 groups predating the separation into fish subfamilies, and a cyprinid origin of the DAB genes. Phylogenetic trees using exon 2 support the hypothesis of trans-species polymorphism, which appears to be limited to the subfamily level, i.e. the presence of sequences from different species in the same allelic group was more often recognised within subfamilies Cyprininae and Leuciscinae than between them. Phylogenetic trees using exon 3 reflect the phylogenetic patterns previously found for Cyprinidae systematics. Specific nucleotides and amino-acids in exon 3 that separate both subfamilies, as well as the species within the Cyprininae subfamily were observed. A lack of segregation in leuciscin species was recognised and the alleles of different leuciscin species tend to share similar motifs in exon 3. This could be explained by the ancient and complicated dispersion history of Cyprininae and the radiation of Leuciscinae. The effects of selective pressures were investigated: (1) within species, (2) among lineages, and (3) among sites. From intraspecific analyses, exon 2 sequences were identified as the targets of diversifying selection, whilst the evolution of exon 3 seems to be under the influence of purifying selection. The analyses among lineages indicate positive selection in many branches when using exon 2, therefore confirming trans-species polymorphism, whilst the DAB lineages of exon 3 are potentially submitted to purifying selection to some extent. Moreover, our results suggest the secondary acquisition of function of DAB1 group after duplication. The analyses among sites reveal that exon 2 exhibits sites under positive selection mostly corresponding to the putative PBR sites involved in the alpha-helix structure of the protein.
Collapse
Affiliation(s)
- Eva Ottová
- Department of Zoology and Ecology, Faculty of Science, Masaryk University, Kotlárská 2, 61137 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
36
|
Reusch TBH, Schaschl H, Wegner KM. Recent duplication and inter-locus gene conversion in major histocompatibility class II genes in a teleost, the three-spined stickleback. Immunogenetics 2004; 56:427-37. [PMID: 15322775 DOI: 10.1007/s00251-004-0704-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 07/05/2004] [Indexed: 11/24/2022]
Abstract
Using a bacterial artificial chromosome (BAC) library, we analysed a 99.5 kb genomic segment containing the major histocompatibility class II genes of a teleost, the three-spined stickleback Gasterosteus aculeatus. Experiments with G. aculeatus have provided direct evidence for balancing selection by pathogens and mate choice driving MH class II beta polymorphism. Two sets of paralogous class II alpha genes and beta genes in a tandem arrangement were identified, designated Gaac-DAA/DAB and Gaac-DBA/DBB. Expression analysis of the beta genes using single-strand conformation polymorphism revealed that both gene copies are expressed. Based on an analysis of pairwise nucleotide polymorphisms, we estimate that the duplication into two paralogous class II loci occurred only 1.2-2.4 million years ago, 1-2 orders of magnitude more recently than in other fish, bird or mammalian species. At the 3'-direction of the classical MH loci, we identified another seven genes or gene fragments, two of which (small inducible cytokine, complement regulatory factor) are related to immune function in other vertebrates. None of these genes were associated with MH class II genes in zebrafish, suggesting a markedly different organisation of the MH class II region in sticklebacks, and presumably, across bony fishes. When the nucleotide substitution pattern of the novel class II beta genes was analysed together with a representative sequence sample isolated from fish in northern Germany (n=27), we found that the peptide binding region of the Gaac-DAB and Gaac-DBB loci had undergone an inter-locus gene conversion (P=0.007). In accordance, we found a 10- to 20-fold higher frequency of CpG-islands on the MH class II segment compared to other species, a feature that may be conducive for inter-locus recombination.
Collapse
Affiliation(s)
- Thorsten B H Reusch
- Max-Planck-Institut für Limnologie, August-Thienemann-Strasse 2, 24306 Plön, Germany.
| | | | | |
Collapse
|
37
|
Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2004; 28:9-28. [PMID: 12962979 DOI: 10.1016/s0145-305x(03)00103-4] [Citation(s) in RCA: 429] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development and maturation of the immune system in zebrafish was investigated using immune-related gene expression profiling by quantitative real-time polymerase chain reaction, in situ hybridization (ISH), immunoglobulin (Ig) detection by immuno-affinity purification and Western blotting as well as immersion immunization experiments. Ikaros expression was first detected at 1 day post-fertilization (dpf) and thereafter increased gradually to more than two-fold between 28 and 42dpf before decreasing to less than the initial 1dpf expression level in adult fish (aged 105dpf). Recombination activating gene-1 (Rag-1) expression levels increased rapidly (by 10-fold) between 3 and 17dpf, reaching a maximum between 21 and 28dpf before decreasing gradually. However, in adult fish aged 105dpf, the expression level of Rag-1 had dropped markedly, and was equivalent to the expression level at 3dpf. T-cell receptor alpha constant region and immunoglobulin light chain constant region (IgLC) isotype-1, 2 and 3 mRNAs were detected at low levels by 3dpf and their expression levels increased steadily to the adult range between 4 and 6 weeks post-fertilization (wpf). Using tissue-section ISH, Rag-1 expression was detected in head kidney by 2wpf while IgLC-1, 2 and 3 were detected in the head kidney and the thymus by 3wpf onwards. Secreted Ig was only detectable using immuno-affinity purification and Western blotting by 4wpf. Humoral response to T-independent antigen (formalin-killed Aeromonas hydrophila) and T-dependent antigen (human gamma globulin) was observed in zebrafish immunized at 4 and 6wpf, respectively, indicating that immunocompetence was achieved. The findings reveal that the zebrafish immune system is morphologically and functionally mature by 4-6wpf.
Collapse
Affiliation(s)
- S H Lam
- Department of Biological Sciences, The National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | | | | | | | | |
Collapse
|
38
|
Abstract
The Human Genome Project transformed the quest of more than 50 years to understand the major histocompatibility complex (Mhc). The sequence of the Mhc from human and mouse, together with a large amount of sequence and mapping information from several other species, allows us to draw general conclusions about the organization and origin of this crucial part of the immune system. The Mhc is a mosaic of stretches formed by conserved and nonconserved genes. Surprisingly, of the approximately 3.6-Mb Mhc, the stretches that encode the class I and class II genes, which epitomize the Mhc, are the least conserved part, whereas the approximately 1.7-Mb stretches that encode at least 115 other genes are highly conserved. We summarize the available data to answer the questions (a) What is the Mhc? and (b) How can we define it in a general, not species-specific, way? Knowing what is essential and what is incidental helps us understand the fundamentals of the Mhc, and defining the species differences makes the model organisms more useful.
Collapse
Affiliation(s)
- Attila Kumánovics
- Center for Immunology University of Texas Southwestern Medical Center, Dallas 75390-9050, USA.
| | | | | |
Collapse
|
39
|
Laurens V, Chapusot C, del Rosario Ordonez M, Bentrari F, Padros MR, Tournefier A. Axolotl MHC class II beta chain: predominance of one allele and alternative splicing of the beta1 domain. Eur J Immunol 2001; 31:506-15. [PMID: 11180116 DOI: 10.1002/1521-4141(200102)31:2<506::aid-immu506>3.0.co;2-p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The axolotl MHC is composed of multiple polymorphic class I loci linked to class II B loci. In this report, evidence of the existence of one class II B locus (Amme-DAB) that codes for two different transcripts is given. A 2.1-kb transcript is translated to a complete beta chain and a shorter transcript of 1.8 kb encodes a molecule lacking the beta1 domain. For two complete class II B mRNA synthesized, up to one mRNA devoid of the beta1 domain is synthesized. Alternative splicing involving a peptide binding domain at a class II B locus evidenced in axolotl (Ambystoma mexicanum) is also observed for A. tigrinum, the tiger salamander. Very little variability is found among various axolotl MHC class II B cDNA sequences, and the same allele is obtained from inbred and wild axolotls. The transcription of one MHC class B locus in two class II B isoforms in thymic cells and in splenic lymphocytes may shed new light on the well-known deficient immune responder state of the axolotl.
Collapse
Affiliation(s)
- V Laurens
- CNRS-UMR 5548, Développement et Communication Chimique, Groupe Immunologie Comparée, Université de Bourgogne, Dijon, France.
| | | | | | | | | | | |
Collapse
|
40
|
Sültmann H, Sato A, Murray BW, Takezaki N, Geisler R, Rauch GJ, Klein J. Conservation of Mhc class III region synteny between zebrafish and human as determined by radiation hybrid mapping. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6984-93. [PMID: 11120825 DOI: 10.4049/jimmunol.165.12.6984] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the HLA, H2, and other mammalian MHC:, the class I and II loci are separated by the so-called class III region comprised of approximately 60 genes that are functionally and evolutionarily unrelated to the class I/II genes. To explore the origin of this island of unrelated loci in the middle of the MHC: 19 homologues of HLA class III genes, we identified 19 homologues of HLA class III genes as well as 21 additional non-class I/II HLA homologues in the zebrafish and mapped them by testing a panel of 94 zebrafish-hamster radiation hybrid cell lines. Six of the HLA class III and eight of the flanking homologues were found to be linked to the zebrafish class I (but not class II) loci in linkage group 19. The remaining homologous loci were found to be scattered over 14 zebrafish linkage groups. The linkage group 19 contains at least 25 genes (not counting the class I loci) that are also syntenic on human chromosome 6. This gene assembly presumably represents the pre-MHC: that existed before the class I/II genes arose. The pre-MHC: may not have contained the complement and other class III genes involved in immune response.
Collapse
Affiliation(s)
- H Sültmann
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Harton JA, Ting JP. Class II transactivator: mastering the art of major histocompatibility complex expression. Mol Cell Biol 2000; 20:6185-94. [PMID: 10938095 PMCID: PMC86093 DOI: 10.1128/mcb.20.17.6185-6194.2000] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2000] [Accepted: 05/18/2000] [Indexed: 11/20/2022] Open
Affiliation(s)
- J A Harton
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
42
|
Godwin UB, Flores M, Quiniou S, Wilson MR, Miller NW, Clem LW, McConnell TJ. MHC class II A genes in the channel catfish (Ictalurus punctatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2000; 24:609-622. [PMID: 10831795 DOI: 10.1016/s0145-305x(00)00005-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to characterize the Major histocompatibility complex (MHC) class II A genes of the channel catfish (Ictalurus punctatus) a cDNA library was screened and PCR was performed. Four different full-length cDNA sequences for MHC class II A genes were obtained from a clonal B cell line derived from an outbred fish. Two different genomic sequences and corresponding cDNAs were obtained from a presumably homozygous gynogenetic catfish. The A genes have five exons and four phase one introns. The first exon encodes the 5' untranslated region (UTR) and leader peptide; the second and third exons encode the alpha1 and alpha2 domains, respectively. The connecting peptide, transmembrane and cytoplasmic domains, as well as part of the 3' UTR, are encoded by the fourth exon and the rest of the 3' UTR is encoded by the fifth exon. Southern blot analyses using an exon three probe revealed two to four hybridizing fragments with considerable restriction fragment length polymorphisms evident among randomly selected outbred channel catfish. These findings are consistent with the presence of at least two functional polymorphic MHC class II A gene loci. An unusual aspect of the channel catfish MHC class II alpha chain is its lack of N-linked glycosylation sites.
Collapse
Affiliation(s)
- U B Godwin
- N108 Howell Science Complex, Department of Biology, East Carolina University, Greenville, NC 27858-4353, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Takami K, Figueroa F, Mayer WE, Klein J. Ancient allelism at the cytosolic chaperonin-alpha-encoding gene of the zebrafish. Genetics 2000; 154:311-22. [PMID: 10628990 PMCID: PMC1460920 DOI: 10.1093/genetics/154.1.311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The T-complex protein 1, TCP1, gene codes for the CCT-alpha subunit of the group II chaperonins. The gene was first described in the house mouse, in which it is closely linked to the T locus at a distance of approximately 11 cM from the Mhc. In the zebrafish, Danio rerio, in which the T homolog is linked to the class I Mhc loci, the TCP1 locus segregates independently of both the T and the Mhc loci. Despite its conservation between species, the zebrafish TCP1 locus is highly polymorphic. In a sample of 15 individuals and the screening of a cDNA library, 12 different alleles were found, and some of the allelic pairs were found to differ by up to nine nucleotides in a 275-bp-long stretch of sequence. The substitutions occur in both translated and untranslated regions, but in the former they occur predominantly at synonymous codon sites. Phylogenetically, the alleles fall into two groups distinguished also by the presence or absence of a 10-bp insertion/deletion in the 3' untranslated region. The two groups may have diverged as long as 3.5 mya, and the polymorphic differences may have accumulated by genetic drift in geographically isolated populations.
Collapse
Affiliation(s)
- K Takami
- Max-Planck-Institut f]ur Biologie, Abteilung Immungenetik, D-72076 T]ubingen, Germany
| | | | | | | |
Collapse
|
44
|
Ristow SS, Grabowski LD, Thompson SM, Warr GW, Kaattari SL, de Avila JM, Thorgaard GH. Coding sequences of the MHC II beta chain of homozygous rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1999; 23:51-60. [PMID: 10220068 DOI: 10.1016/s0145-305x(98)00039-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Six lines of homozygous rainbow trout (Oncorhynchus mikiss) from different genetic and geographical backgrounds have been produced as aquatic models for biomedical research by the chromosome set manipulation techniques of androgenesis and gynogenesis. Messenger RNA from spleens was extracted. and the MHC II B cDNA sequences, amplified by RT PCR, were cloned into plasmids. Sequences of the MHC II beta2 domains were highly conserved between the different plasmids from the same and different lines of trout. Most of the variability among sequences was found in the amino terminal half of the beta1 domain, which corresponds with the peptide binding region of the MHC II molecule. This diversity suggests that the different lines of trout may exhibit differences in immune response. Rainbow trout MHC II B sequences were similar to the MHC II B sequences of the Pacific salmon (O. gorbuscha, O. tshawytscha, O. nerka, O. miasou, O. kisutch). Southern blot analysis performed on the restricted DNA of the OSU and Hot Creek trout, and the doubled haploid progeny produced by androgenesis from OSU x Hot Creek hybrids indicates that two distinct genes encode the MHC II B sequences and that these genes are unlinked.
Collapse
Affiliation(s)
- S S Ristow
- Department of Animal Sciences, Washington State University, Pullman 99164-6351, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
McConnell TJ, Godwin UB, Cuthbertson BJ. Expressed major histocompatibility complex class II loci in fishes. Immunol Rev 1998; 166:294-300. [PMID: 9914920 DOI: 10.1111/j.1600-065x.1998.tb01270.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides derived from parasites are presented to T helper cells by major histocompatibility complex (MHC) class II alpha beta heterodimeric cell-surface molecules. In mice and humans, the genes encoding these antigen-presenting molecules are known to be polymorphic and polygenic. Multiple loci for MHC class II A and B genes are proposed to allow for an increased peptide-binding repertoire. The multigenic nature of expressed MHC class II loci and the differences between these loci in fishes are the focus of this review. Particular emphasis is placed on an evolutionary comparison of class II B loci, especially two class II B loci that have undergone dramatic changes from one another suggesting an ancestral gene duplication event that took place at an early stage in the evolution of teleosts. The number of functional class II alpha beta heterodimers may have a profound impact on the organisms ability to battle constantly evolving parasitic infections.
Collapse
Affiliation(s)
- T J McConnell
- Department of Biology, East Carolina University, Greenville, North Carolina, USA.
| | | | | |
Collapse
|
46
|
Kasahara M. What do the paralogous regions in the genome tell us about the origin of the adaptive immune system? Immunol Rev 1998; 166:159-75. [PMID: 9914911 DOI: 10.1111/j.1600-065x.1998.tb01261.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last decade, our understanding of the immune system of ectothermic vertebrates has advanced significantly. It is now clear that all jawed vertebrates are equipped with the adaptive immune system characterized by the MHC molecules and the rearranging receptors. In contrast, there is no molecular evidence that suggests the existence of adaptive immunity in jawless vertebrates. How did the adaptive immune system emerge? Our recent work suggests that one of the driving forces that enabled the emergence of the adaptive immune system was one or more genome-wide or large-scale chromosomal duplications presumed to have taken place in a common ancestor of jawed vertebrates.
Collapse
Affiliation(s)
- M Kasahara
- Department of Biosystems Science, Graduate University for Advanced Studies, Hayama, Japan.
| |
Collapse
|
47
|
Stet RJ, Kruiswijk CP, Saeij JP, Wiegertjes GF. Major histocompatibility genes in cyprinid fishes: theory and practice. Immunol Rev 1998; 166:301-16. [PMID: 9914921 DOI: 10.1111/j.1600-065x.1998.tb01271.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first teleostean MHC sequences were described for carp. Subsequent studies in a number of cyprinid fishes showed that the class I sequences of these fishes are of particular interest. Two distinct lineages (Cyca-Z and Cyca-U) are found in the common and ginbuna crucian carp, but only the U lineage is present in zebrafish and other non-cyprinid species. The presence of the Z lineage is hypothesised to be the result of an allotetraploidisation event. Both phylogenetic analyses and amino acid sequence comparisons suggest that Cyca-Z sequences are non-classical class I sequences, probably similar to CD1. The comprehensive phylogenetic analyses of these sequences revealed different phylogenetic histories of the exons encoding the extracellular domains. The MHC genes were studied in laboratory and natural models. The natural model addressed the evolution of MHC genes in a Barbus species flock. Sequence analysis of class I and class II supported the species designation of the morphotypes present in the lake, and as a consequence the trans-species hypothesis of MHC polymorphism. The laboratory model involves the generation of gynogenetic clones, which can be divergently selected for traits such as high and low antibody response. The role of MHC molecules can be investigated further by producing a panel of isogenic lines.
Collapse
Affiliation(s)
- R J Stet
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University and Research Centre, The Netherlands.
| | | | | | | |
Collapse
|
48
|
McConnell TJ, Godwin UB, Norton SF, Nairn RS, Kazianis S, Morizot DC. Identification and mapping of two divergent, unlinked major histocompatibility complex class II B genes in Xiphophorus fishes. Genetics 1998; 149:1921-34. [PMID: 9691047 PMCID: PMC1460285 DOI: 10.1093/genetics/149.4.1921] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have isolated two major histocompatibility complex (MHC) class II B genes from the inbred fish strain Xiphophorus maculatus Jp 163 A. We mapped one of these genes, designated here as DXB, to linkage group III, linked to a malic enzyme locus, also syntenic with human and mouse MHC. Comparison of genomic and cDNA clones shows the gene consists of six exons and five introns. The encoded beta1 domain has three amino acids deleted and a cytoplasmic tail nine amino acids longer than in other teleost class II beta chains, more similar to HLA-DRB, clawed frog Xela-F3, and nurse shark Gici-B. Key residues for disulfide bonds, glycosylation, and interaction with alpha chains are conserved. These same features are also present in a swordtail (Xiphophorus helleri) genomic DXB PCR clone. A second type of class II B clone was amplified by PCR from X. maculatus and found to be orthologous to class II genes identified in other fishes. This DAB-like gene is 63% identical to the X. maculatus DXB sequence in the conserved beta2-encoding exon and was mapped to new unassigned linkage group LG U24. The DXB gene, then, represents an unlinked duplicated locus not previously identified in teleosts.
Collapse
Affiliation(s)
- T J McConnell
- Department of Biology, East Carolina University, Greenville, North Carolina 27858-4353, USA
| | | | | | | | | | | |
Collapse
|
49
|
Miller KM, Withler RE. Mhc diversity in Pacific salmon: population structure and trans-species allelism. Hereditas 1998; 127:83-95. [PMID: 9420474 DOI: 10.1111/j.1601-5223.1997.00083.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Geographic variation at an Mhc class I A1 exon was surveyed in 14 populations of coho salmon (Oncorhynchus kisutch) and 15 populations of chinook salmon (O. tshawytscha) inhabiting rivers of British Columbia, Canada. A total of 2,504 fish were sampled using denaturing gradient gel electrophoresis (DGGE), which distinguished 17 alleles in coho salmon and 20 alleles in chinook salmon. Heterozygosity at the A1 locus was moderately high for both coho (0.7) and chinook (0.6) salmon, but sequence divergence was low, with mean inter- and intraspecific nucleotide similarities of approximately 0.96. In a maximum parsimony tree, all of the observed alleles clustered into two trans-specific lineages. Within each lineage, coho and chinook alleles tended to fall into species-specific subclusters. Much of the intraspecific allelic variation within each lineage could be accounted for by nonsynonymous point mutation, indicative of balancing selection. The FST values for both coho (0.11) and chinook (0.13) salmon indicated that much of the allelic diversity was partitioned among populations. Neighbor-joining analyses of A1 allelic frequencies among coho and chinook salmon populations showed strong patterns of geographic differentiation similar to those based on neutral genetic markers such as microsatellite loci. Both natural selection and the salmonid zoogeographic history of frequent population bottlenecks have shaped the patterns of diversity observed at this and other Mhc exons in Pacific salmonids.
Collapse
Affiliation(s)
- K M Miller
- Department of Fisheries and Oceans, Pacific Biological Station, Nanaimo, B.C., Canada
| | | |
Collapse
|
50
|
|