1
|
Molica F, Meens MJP, Morel S, Kwak BR. Mutations in cardiovascular connexin genes. Biol Cell 2014; 106:269-93. [PMID: 24966059 DOI: 10.1111/boc.201400038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/20/2014] [Indexed: 12/25/2022]
Abstract
Connexins (Cxs) form a family of transmembrane proteins comprising 21 members in humans. Cxs differ in their expression patterns, biophysical properties and ability to combine into homomeric or heteromeric gap junction channels between neighbouring cells. The permeation of ions and small metabolites through gap junction channels or hemichannels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. Among others, Cx37, Cx40, Cx43, Cx45 and Cx47 are found in heart, blood and lymphatic vessels. Mutations or polymorphisms in the genes coding for these Cxs have not only been implicated in cardiovascular pathologies but also in a variety of other disorders. While mutations in Cx43 are mostly linked to oculodentodigital dysplasia, Cx47 mutations are associated with Pelizaeus-Merzbacher-like disease and lymphoedema. Cx40 mutations are principally linked to atrial fibrillation. Mutations in Cx37 have not yet been described, but polymorphisms in the Cx37 gene have been implicated in the development of arterial disease. This review addresses current knowledge on gene mutations in cardiovascular Cxs systematically and links them to alterations in channel properties and disease.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
2
|
Hernandez D, Janmohamed A, Chandan P, Phillips IR, Shephard EA. Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: identification of novel gene and pseudogene clusters. ACTA ACUST UNITED AC 2004; 14:117-30. [PMID: 15077013 DOI: 10.1097/00008571-200402000-00006] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To date, six flavin-containing monooxygenase (FMO) genes have been identified in humans, FMOs 1, 2, 3, 4 and 6, which are located within a cluster on chromosome 1, and FMO5, which is located outside the cluster. The objectives were to review and update current knowledge of the structure and expression profiles of these genes and of their mouse counterparts and to determine, via a bioinformatics approach, whether other FMO genes are present in the human and mouse genomes. RESULTS AND CONCLUSIONS We have identified, for the first time, a mouse Fmo6 gene. In addition, we describe a novel human FMO gene cluster on chromosome 1, located 4 Mb telomeric of the original cluster. The novel cluster contains five genes, all of which exhibit characteristics of pseudogenes. We propose the names FMO 7P, 8P, 9P, 10P and 11P for these genes. We also describe a novel mouse gene cluster, located approximately 3.5 Mb distal of the original gene cluster on Chromosome 1. The novel mouse cluster contains three genes, all of which contain full-length open-reading frames and possess no obvious features characteristic of pseudogenes. One of the genes is apparently a functional orthologue of human FMO9P. We propose the names Fmo9, 12 and 13 for the novel mouse genes. Orthologues of these genes are also present in rat. Sequence comparisons and phylogenetic analyses indicate that the novel human and mouse gene clusters arose, not from duplications of the known gene cluster, but via a series of independent gene duplication events. The mammalian FMO gene family is thus more complex than previously realised.
Collapse
Affiliation(s)
- Diana Hernandez
- Department of Biochemistry and Molecular Biology, University College London, London, UK
| | | | | | | | | |
Collapse
|
3
|
Cashman JR, Zhang J. Interindividual differences of human flavin-containing monooxygenase 3: genetic polymorphisms and functional variation. Drug Metab Dispos 2002; 30:1043-52. [PMID: 12228178 DOI: 10.1124/dmd.30.10.1043] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The human flavin-containing monooxygenase (form 3) (FMO3) participates in the oxygenation of nucleophilic heteroatom-containing drugs, xenobiotics, and endogenous materials. Currently, six forms of the FMO gene are known, but it is FMO3 that is the major form in adult human liver that is likely responsible for the majority of FMO-mediated metabolism. The substrate structural feature requirements for human FMO3 is beginning to become known to a greater extent and a few chemicals extensively metabolized by FMO3 have been reported. Expression of FMO3 is species- and tissue-specific, but unlike human cytochrome p450, mammalian FMO3 does not appear to be inducible. Interindividual variation in FMO3-dependent metabolism of drugs, chemicals, and endogenous material is therefore more likely due to genetic effects and not environmental ones. Examples of such interindividual variation come from the study of very rare mutations of the human FMO3 gene that have been associated with deficient N-oxygenation of dietary trimethylamine. Defective trimethylamine N-oxygenation causes trimethylaminuria or "fish-like odor syndrome". Information on human FMO3 mutations from individuals suffering from the condition of trimethylaminuria has provided knowledge about the underlying molecular mechanism(s) for trimethylaminuria. A number of common variants of human FMO3 have been reported. Diversification of the FMO3 gene may have led to selective advantages and new functions. As more examples of human FMO3-mediated metabolism of drugs or new chemical entities are discovered in the future, it is possible that FMO3 allelic variation may be shown to contribute to interindividual and interethnic variability of FMO-mediated metabolism. Human FMO3 may be another example of an environmental gene that participates in a protective mechanism to help humans ward off potentially toxic exposure of chemicals.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute, San Diego 92121, California.
| | | |
Collapse
|
4
|
Cashman JR. Human flavin-containing monooxygenase (form 3): polymorphisms and variations in chemical metabolism. Pharmacogenomics 2002; 3:325-39. [PMID: 12052141 DOI: 10.1517/14622416.3.3.325] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The human flavin-containing monooxygenases catalyze the oxygenation of nucleophilic heteroatom-containing drugs, xenobiotics and endogenous materials. Evidence for six forms of the FMO gene exist but it is FMO form 3 (FMO3) that is the prominent form in adult human liver that is likely to be associated with the bulk of FMO-mediated metabolism. An understanding of the substrate specificity of human FMO3 is beginning to emerge and several examples of drugs and chemicals extensively metabolized by FMO3 have been reported. Expression of FMO3 is species- and tissue-specific, but unlike human cytochrome P450 (CYP450), mammalian FMO3 does not appear to be inducible. Interindividual variation in FMO3-dependent metabolism of drugs, chemicals and endogenous materials is therefore more likely to be due to genetic and not environmental effects. Certain mutations of the human FMO3 gene have been associated with abnormal N-oxygenation of trimethylamine. Deficient N-oxygenation of trimethylamine results in a condition called trimethylaminuria. Some treatment strategies for this inborn error of metabolism are discussed. Other common variants of the FMO3 gene including E158K, V257M and E308G have been observed. It is possible that allelic variation of human FMO3 causes abnormal metabolism of chemicals and has clinical implications for human drug metabolism, but this is an understudied area. Human FMO3 allelic variation may eventually be shown to contribute to interindividual and interethnic variability in FMO3-mediated metabolism. Human FMO3 may be another example of an environmental gene that participates in a protective mechanism to help shield humans from potentially toxic exposure to chemicals. Heterogeneity in the relative frequencies of single and multiple site alleles, haplotypes and genotypes of the human FMO3 amongst various ethnic groups suggests population differences.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA.
| |
Collapse
|
5
|
Finelli P, Cavalli P, Giardino D, Gottardi G, Natacci F, Savasta S, Larizza L. FISH characterization of a supernumerary r(1)(::cen-->q22::q22-->sq21::) chromosome associated with multiple anomalies and bilateral cataracts. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 104:157-64. [PMID: 11746048 DOI: 10.1002/ajmg.10019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe the case of a 15-year-old girl with multiple congenital anomalies, dysmorphic features, severe kyphoscoliosis, growth and mental retardation, and the absence of speech, in whom 35% of the cells carried a supernumerary ring chromosome 1. Fluorescence in situ hybridization (FISH) analysis using YAC/BAC clones spanning the region from 1p13 to 1q21 made it possible to determine the genomic content and structure of the ring(1), which was found to consist of the cytogenetic bands 1q21-22. A complex structure was delineated in the ring chromosome with a partial inverted duplication delimited by markers WI-7732 and WI-607, with WI-7396 and WI-8386 being the boundaries of the single copy segment. Comparison of the clinical signs of other patients with mosaic r(1) reported in the literature allowed the identification of a patient sharing a number of clinical signs including cataracts. Given that mutations of the GJA8 gene encoding connexin 50 (Cx50) and mapping to 1q21 have been associated with the presence of cataracts, it is possible that a gain in copy number or a rearrangement of GJA8 may contribute to cataractogenesis.
Collapse
Affiliation(s)
- P Finelli
- Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
6
|
Le Baccon P, Leroux D, Dascalescu C, Duley S, Marais D, Esmenjaud E, Sotto JJ, Callanan M. Novel evidence of a role for chromosome 1 pericentric heterochromatin in the pathogenesis of B-cell lymphoma and multiple myeloma. Genes Chromosomes Cancer 2001; 32:250-64. [PMID: 11579465 DOI: 10.1002/gcc.1189] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1q rearrangement is a remarkably frequent secondary chromosomal change in both non-Hodgkin's lymphoma (NHL) and multiple myeloma (MM), where it is associated with tumor progression. To gain insight into 1q rearrangement-associated disease mechanisms, we used fluorescence in situ hybridization (FISH) to search for recurring 1q breaks in 35 lymphoma samples (31 NHL patients and 4 lymphoma-derived cell lines) as well as 22 MM patients with cytogenetically determined 1q abnormalities. Strikingly, dual-color FISH analysis with chromosome 1 centromere and 1q12-specific probes identified constitutive heterochromatin band 1q12 as the single most frequent breakpoint site in both NHL and MM (39% and 89% of 1q breaks, respectively). These rearrangements consistently generated aberrant heterochromatin/euchromatin junctions and gain of 1q12 material. A further 30% of NHL 1q breaks specifically involved two other novel, closely spaced sites (clusters I and II) within a 2.5 Mb region of proximal 1q21 (D1S3620 to D1S3623). A possible association between these sites and NHL subtype was evident; the cluster I rearrangement was frequent in follicular and diffuse large cell lymphoma, whereas the cluster II rearrangement was more frequently observed in diffuse small-cell lymphoma (2/2 marginal zone lymphomas, 1/2 atypical chronic lymphocytic leukemias, and 1 lymphoplasmacytic lymphoma in this series). Candidate oncogenes bordering this interval (BCL9 and AF1Q) were not rearranged in any patient except one (AF1Q). This study provides the first evidence of involvement of 1q12 constitutive heterochromatin in the pathogenesis of NHL and MM and indicates proximal 1q21 to be of specific pathological significance in NHL.
Collapse
Affiliation(s)
- P Le Baccon
- The Lymphoma Research Group, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bouhouche A, Benomar A, Birouk N, Mularoni A, Meggouh F, Tassin J, Grid D, Vandenberghe A, Yahyaoui M, Chkili T, Brice A, LeGuern E. A locus for an axonal form of autosomal recessive Charcot-Marie-Tooth disease maps to chromosome 1q21.2-q21.3. Am J Hum Genet 1999; 65:722-7. [PMID: 10441578 PMCID: PMC1377978 DOI: 10.1086/302542] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders that affect the peripheral nervous system. Three loci are known for the autosomal dominant forms of axonal CMT (CMT2), but none have yet been identified for autosomal recessive axonal CMT (ARCMT2). We have studied a large consanguineous Moroccan ARCMT2 family with nine affected sibs. The onset of CMT was in the 2d decade in all affected individuals who presented with a severe motor and sensory neuropathy, with proximal muscle involvement occurring in some patients. After exclusion of known loci for CMT2 and for demyelinating ARCMT2, a genomewide search was performed. Evidence for linkage was found with markers on chromosome 1q. The maximum pairwise LOD score was above the threshold value of 3.00, for markers D1S514, D1S2715, D1S2777, and D1S2721, and it reached 6.10 at the loci D1S2777, D1S2721, and D1S2624, according to multipoint LOD-score analysis. These markers defined a region of homozygosity that placed the gene in a 4.4-cM interval. Moreover, a recombination event detected in an unaffected 48-year-old individual excludes the D1S506 marker, thereby reducing the interval to 1.7 cM. In addition, the P0 gene, an attractive candidate because of both its location on chromosome 1q and its role in myelin structure, was excluded by physical mapping and direct sequencing.
Collapse
Affiliation(s)
- A Bouhouche
- INSERM U.289, Fédération de Neurologie, Hôpital de la Salpêtrière, Bâtiment Nouvelle Pharmacie, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Brouillette JA, Stafford A, Hammer TA, Venta PJ. BslI PCR/RFLP marker in the canine connexin 40 (CX40 or GJA5) gene. Anim Genet 1999; 30:229-30. [PMID: 10442994 DOI: 10.1046/j.1365-2052.1999.00404-6.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- J A Brouillette
- Department of Microbiology, College of Human Medicine, Michigan State University, East Lansing 48824-1314, USA
| | | | | | | |
Collapse
|
9
|
Vollrath D, Jaramillo-Babb VL. A Sequence-Ready BAC Clone Contig of a 2.2-Mb Segment of Human Chromosome 1q24. Genome Res 1999. [DOI: 10.1101/gr.9.2.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human chromosomal region 1q24 encodes two cloned disease genes and lies within large genetic inclusion intervals for several disease genes that have yet to be identified. We have constructed a single bacterial artificial chromosome (BAC) clone contig that spans over 2 Mb of 1q24 and consists of 78 clones connected by 100 STSs. The average density of mapped STSs is one of the highest described for a multimegabase region of the human genome. The contig was efficiently constructed by generating STSs from clone ends, followed by library walking. Distance information was added by determining the insert sizes of all clones, and expressed sequence tags (ESTs) and genes were incorporated to create a partial transcript map of the region, providing candidate genes for local disease loci. The gene order and content of the region provide insight into ancient duplication events that have occurred on proximal 1q. The stage is now set for further elucidation of this interesting region through large-scale sequencing.[The sequence data described in this paper have been submitted to GenBank under accession nos. G42259–G42312 and G42330–G42335.]
Collapse
|
10
|
Abstract
Chromosomal band 1q21 contains a number of genes, constituting the Epidermal differentiation complex (EDC), most of which are involved in the process of terminal differentiation of the human epidermis and implicated in several disorders of keratinization and cancer. The physical map of 1q21 has been refined by generating 400 YAC derivatives. These products have allowed us to localize EDC genes and additional ESTs precisely. The transcriptional map of the region has been extended by positioning 20 ESTs reported to map between D1S442 and D1S305. Eight of the ESTs are localized in two distinct clusters, confirmed by isolating PACs and chromosome 1-specific cosmids. Two of the ESTs correspond to the genes for YL1 and selenium-binding protein, both of which have potential tumor suppressor activity. Through the use of fragmented YACs and bacterial clones, the order of markers and ESTs in the region has been established as follows: cen-A002O32-Bda44g03-Cda10d12-Bdab5d06, H60056, A005K39-D1S442-WI5663-WI7969-Cx40-Cda0g e12-Cda0kh05-A002D26- A008S07-Cda0ff08-D1S498-S100A10-WI7815( THH)-WI7217(FLG)-D1S1664-INV-SPRR2A- LOR-A001X21-D1S305-tel.
Collapse
Affiliation(s)
- M Lioumi
- Division of Medical and Molecular Genetics, United Medical School of Guy's and St. Thomas's Hospital (UMDS), London, United Kingdom.
| | | | | | | |
Collapse
|