1
|
Gregorczyk M, Pastore G, Muñoz I, Carroll T, Streubel J, Munro M, Lis P, Lange S, Lamoliatte F, Macartney T, Toth R, Brown F, Hastie J, Pereira G, Durocher D, Rouse J. Functional characterization of C21ORF2 association with the NEK1 kinase mutated in human in diseases. Life Sci Alliance 2023; 6:e202201740. [PMID: 37188479 PMCID: PMC10185812 DOI: 10.26508/lsa.202201740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
The NEK1 kinase controls ciliogenesis, mitosis, and DNA repair, and NEK1 mutations cause human diseases including axial spondylometaphyseal dysplasia and amyotrophic lateral sclerosis. C21ORF2 mutations cause a similar pattern of human diseases, suggesting close functional links with NEK1 Here, we report that endogenous NEK1 and C21ORF2 form a tight complex in human cells. A C21ORF2 interaction domain "CID" at the C-terminus of NEK1 is necessary for its association with C21ORF2 in cells, and pathogenic mutations in this region disrupt the complex. AlphaFold modelling predicts an extended binding interface between a leucine-rich repeat domain in C21ORF2 and the NEK1-CID, and our model may explain why pathogenic mutations perturb the complex. We show that NEK1 mutations that inhibit kinase activity or weaken its association with C21ORF2 severely compromise ciliogenesis, and that C21ORF2, like NEK1 is required for homologous recombination. These data enhance our understanding of how the NEK1 kinase is regulated, and they shed light on NEK1-C21ORF2-associated diseases.
Collapse
Affiliation(s)
- Mateusz Gregorczyk
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Graziana Pastore
- The Lunenfeld-Tannenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ivan Muñoz
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Johanna Streubel
- German Cancer Research Centre (DKFZ), Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Meagan Munro
- The Lunenfeld-Tannenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Pawel Lis
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Sven Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Fiona Brown
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Gislene Pereira
- German Cancer Research Centre (DKFZ), Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Daniel Durocher
- The Lunenfeld-Tannenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| |
Collapse
|
2
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
3
|
Wang H, Qi W, Zou C, Xie Z, Zhang M, Naito MG, Mifflin L, Liu Z, Najafov A, Pan H, Shan B, Li Y, Zhu ZJ, Yuan J. NEK1-mediated retromer trafficking promotes blood-brain barrier integrity by regulating glucose metabolism and RIPK1 activation. Nat Commun 2021; 12:4826. [PMID: 34376696 PMCID: PMC8355301 DOI: 10.1038/s41467-021-25157-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/24/2021] [Indexed: 12/14/2022] Open
Abstract
Loss-of-function mutations in NEK1 gene, which encodes a serine/threonine kinase, are involved in human developmental disorders and ALS. Here we show that NEK1 regulates retromer-mediated endosomal trafficking by phosphorylating VPS26B. NEK1 deficiency disrupts endosomal trafficking of plasma membrane proteins and cerebral proteome homeostasis to promote mitochondrial and lysosomal dysfunction and aggregation of α-synuclein. The metabolic and proteomic defects of NEK1 deficiency disrupts the integrity of blood-brain barrier (BBB) by promoting lysosomal degradation of A20, a key modulator of RIPK1, thus sensitizing cerebrovascular endothelial cells to RIPK1-dependent apoptosis and necroptosis. Genetic inactivation of RIPK1 or metabolic rescue with ketogenic diet can prevent postnatal lethality and BBB damage in NEK1 deficient mice. Inhibition of RIPK1 reduces neuroinflammation and aggregation of α-synuclein in the brains of NEK1 deficient mice. Our study identifies a molecular mechanism by which retromer trafficking and metabolism regulates cerebrovascular integrity, cerebral proteome homeostasis and RIPK1-mediated neuroinflammation.
Collapse
Affiliation(s)
- Huibing Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Weiwei Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu Zou
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Zhangdan Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | | | - Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Zhen Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Heling Pan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
4
|
Baumann G, Meckel T, Böhm K, Shih YH, Dickhaut M, Reichardt T, Pilakowski J, Pehl U, Schmidt B. Illuminating a Dark Kinase: Structure-Guided Design, Synthesis, and Evaluation of a Potent Nek1 Inhibitor and Its Effects on the Embryonic Zebrafish Pronephros. J Med Chem 2021; 65:1265-1282. [DOI: 10.1021/acs.jmedchem.0c02118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Georg Baumann
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Tobias Meckel
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Kevin Böhm
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Yung-Hsin Shih
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Mirco Dickhaut
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Torben Reichardt
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Johannes Pilakowski
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ulrich Pehl
- Merck Healthcare KGaA, Biopharma R&D, Discovery and Development Technologies, 64293 Darmstadt, Germany
| | - Boris Schmidt
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
5
|
An Overview of In Vivo and In Vitro Models for Autosomal Dominant Polycystic Kidney Disease: A Journey from 3D-Cysts to Mini-Pigs. Int J Mol Sci 2020; 21:ijms21124537. [PMID: 32630605 PMCID: PMC7352572 DOI: 10.3390/ijms21124537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inheritable cause of end stage renal disease and, as of today, only a single moderately effective treatment is available for patients. Even though ADPKD research has made huge progress over the last decades, the precise disease mechanisms remain elusive. However, a wide variety of cellular and animal models have been developed to decipher the pathophysiological mechanisms and related pathways underlying the disease. As none of these models perfectly recapitulates the complexity of the human disease, the aim of this review is to give an overview of the main tools currently available to ADPKD researchers, as well as their main advantages and limitations.
Collapse
|
6
|
Brieño-Enríquez MA, Moak SL, Holloway JK, Cohen PE. NIMA-related kinase 1 (NEK1) regulates meiosis I spindle assembly by altering the balance between α-Adducin and Myosin X. PLoS One 2017; 12:e0185780. [PMID: 28982183 PMCID: PMC5628868 DOI: 10.1371/journal.pone.0185780] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
NIMA-related kinase 1 (NEK1) is a serine/threonine and tyrosine kinase that is highly expressed in mammalian germ cells. Mutations in Nek1 induce anemia, polycystic kidney and infertility. In this study we evaluated the role of NEK1 in meiotic spindle formation in both male and female gametes. Our results show that the lack of NEK1 provokes an abnormal organization of the meiosis I spindle characterized by elongated and/or multipolar spindles, and abnormal chromosome congression. The aberrant spindle structure is concomitant with the disruption in localization and protein levels of myosin X (MYO10) and α-adducin (ADD1), both of which are implicated in the regulation of spindle formation during mitosis. Interaction of ADD1 with MYO10 is dependent on phosphorylation, whereby phosphorylation of ADD1 enables its binding to MYO10 on mitotic spindles. Reduction in ADD1 protein in NEK1 mutant mice is associated with hyperphosphorylation of ADD1, thereby preventing the interaction with MYO10 during meiotic spindle formation. Our results reveal a novel regulatory role for NEK1 in the regulation of spindle architecture and function during meiosis.
Collapse
Affiliation(s)
- Miguel A. Brieño-Enríquez
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | - Stefannie L. Moak
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York, United States of America
| | - J. Kim Holloway
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
7
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2, which encode polycystin-1 and polycystin-2, respectively. Rodent models are available to study the pathogenesis of polycystic kidney disease (PKD) and for preclinical testing of potential therapies-either genetically engineered models carrying mutations in Pkd1 or Pkd2 or models of renal cystic disease that do not have mutations in these genes. The models are characterized by age at onset of disease, rate of disease progression, the affected nephron segment, the number of affected nephrons, synchronized or unsynchronized cyst formation and the extent of fibrosis and inflammation. Mouse models have provided valuable mechanistic insights into the pathogenesis of PKD; for example, mutated Pkd1 or Pkd2 cause renal cysts but additional factors are also required, and the rate of cyst formation is increased in the presence of renal injury. Animal studies have also revealed complex genetic and functional interactions among various genes and proteins associated with PKD. Here, we provide an update on the preclinical models commonly used to study the molecular pathogenesis of ADPKD and test potential therapeutic strategies. Progress made in understanding the pathophysiology of human ADPKD through these animal models is also discussed.
Collapse
Affiliation(s)
- Hester Happé
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| |
Collapse
|
8
|
Abstract
Meiosis is a highly conserved process, which is stringently regulated in all organisms, from fungi through to humans. Two major events define meiosis in eukaryotes. The first is the pairing, or synapsis, of homologous chromosomes and the second is the exchange of genetic information in a process called meiotic recombination. Synapsis is mediated by the meiosis-specific synaptonemal complex structure in combination with the cohesins that tether sister chromatids together along chromosome arms through prophase I. Previously, we identified FKBP6 as a novel component of the mammalian synaptonemal complex. Further studies demonstrated an interaction between FKBP6 and the NIMA-related kinase-1, NEK1. To further investigate the role of NEK1 in mammalian meiosis, we have examined gametogenesis in the spontaneous mutant, Nek1kat2J. Homozygous mutant animals show decreased testis size, defects in testis morphology, and in cohesin removal at late prophase I of meiosis, causing complete male infertility. Cohesin protein SMC3 remains localized to the meiotic chromosome cores at diplonema in the Nek1 mutant, and also in the related Fkbp6 mutant, while in wild type cells SMC3 is removed from the cores at the end of prophase I and becomes more diffuse throughout the DAPI stained region of the nucleus. These data implicate NEK1 as a possible kinase involved in cohesin redistribution in murine spermatocytes.
Collapse
|
9
|
Prenatal diagnosis and molecular genetic analysis of short rib-polydactyly syndrome type III (Verma-Naumoff) in a second-trimester fetus with a homozygous splice site mutation in intron 4 in the NEK1 gene. Taiwan J Obstet Gynecol 2013; 51:266-70. [PMID: 22795106 DOI: 10.1016/j.tjog.2012.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2011] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To demonstrate perinatal imaging findings and to investigate the mutation in the NEK1 gene in a fetus with type III short rib-polydactyly syndrome (SRPS) (Verma-Naumoff). CASE REPORT A 34-year-old woman with no past history of fetal SRPS was referred to the hospital at 21 weeks of gestation because of sonographic diagnosis of short limbs in the fetus. Fetal ultrasound revealed a narrow thorax, short ribs, short limbs with marginal spurs, and postaxial hexadactyly in both the hands and feet. A diagnosis of SRPS III (Verma-Naumoff) was made. Amniocentesis was performed. The karyotype was 46,XY. Molecular genetic analysis of the amniotic fluid cells identified a homozygous splice site mutation in intron 4 (c.331-1 A > G) or IVS4-1 A > G in the NEK1 gene. The parents were heterozygous for the mutation. The pregnancy was subsequently terminated and a malformed fetus was delivered with prominent forehead, a flattened nasal bridge, a narrow and short trunk, a protuberant abdomen, bilateral postaxial polydactyly and syndactyly of the hands and feet, and micromelic limbs. No facial cleft or genital abnormality was noted. The radiograph was consistent with SRPS III. CONCLUSION Polydactyly, micromelia, metaphyseal spurs, widened humeral metaphyses, and shortened ribs can be prominent prenatal ultrasound findings of SRPS III. The present case provides evidence for a correlation of a mutation in the NEK1 gene with SRPS III.
Collapse
|
10
|
Huber C, Cormier-Daire V. Ciliary disorder of the skeleton. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2012; 160C:165-74. [DOI: 10.1002/ajmg.c.31336] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice. Mamm Genome 2012; 23:454-66. [PMID: 22763584 DOI: 10.1007/s00335-012-9403-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located just ~700 kb from the distal end of the X chromosome, whereas the boundary is found at a more proximal position in Mus spretus, a species that diverged from house mice 2-4 million years ago. In this study we used a combination of genetic and physical mapping to document a pronounced shift in the PAR boundary in a second house mouse subspecies, Mus musculus castaneus (represented by the CAST/EiJ strain), ~430 kb proximal of the M. m. domesticus boundary. We demonstrate molecular evolutionary consequences of this shift, including a marked lineage-specific increase in sequence divergence within Mid1, a gene that resides entirely within the M. m. castaneus PAR but straddles the boundary in other subspecies. Our results extend observations of structural divergence in the PAR to closely related subspecies, pointing to major evolutionary changes in this functionally important genomic region over a short time period.
Collapse
|
12
|
White MA, Stubbings M, Dumont BL, Payseur BA. Genetics and evolution of hybrid male sterility in house mice. Genetics 2012; 191:917-34. [PMID: 22554891 PMCID: PMC3389984 DOI: 10.1534/genetics.112.140251] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 04/23/2012] [Indexed: 12/12/2022] Open
Abstract
Comparative genetic mapping provides insights into the evolution of the reproductive barriers that separate closely related species. This approach has been used to document the accumulation of reproductive incompatibilities over time, but has only been applied to a few taxa. House mice offer a powerful system to reconstruct the evolution of reproductive isolation between multiple subspecies pairs. However, studies of the primary reproductive barrier in house mice-hybrid male sterility-have been restricted to a single subspecies pair: Mus musculus musculus and Mus musculus domesticus. To provide a more complete characterization of reproductive isolation in house mice, we conducted an F(2) intercross between wild-derived inbred strains from Mus musculus castaneus and M. m. domesticus. We identified autosomal and X-linked QTL associated with a range of hybrid male sterility phenotypes, including testis weight, sperm density, and sperm morphology. The pseudoautosomal region (PAR) was strongly associated with hybrid sterility phenotypes when heterozygous. We compared QTL found in this cross with QTL identified in a previous F(2) intercross between M. m. musculus and M. m. domesticus and found three shared autosomal QTL. Most QTL were not shared, demonstrating that the genetic basis of hybrid male sterility largely differs between these closely related subspecies pairs. These results lay the groundwork for identifying genes responsible for the early stages of speciation in house mice.
Collapse
Affiliation(s)
| | - Maria Stubbings
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
13
|
Moniz L, Dutt P, Haider N, Stambolic V. Nek family of kinases in cell cycle, checkpoint control and cancer. Cell Div 2011; 6:18. [PMID: 22040655 PMCID: PMC3222597 DOI: 10.1186/1747-1028-6-18] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/31/2011] [Indexed: 12/02/2022] Open
Abstract
Early studies in lower Eukaryotes have defined a role for the members of the NimA related kinase (Nek) family of protein kinases in cell cycle control. Expansion of the Nek family throughout evolution has been accompanied by their broader involvement in checkpoint regulation and cilia biology. Moreover, mutations of Nek family members have been identified as drivers behind the development of ciliopathies and cancer. Recent advances in studying the physiological roles of Nek family members utilizing mouse genetics and RNAi-mediated knockdown are revealing intricate associations of Nek family members with fundamental biological processes. Here, we aim to provide a comprehensive account of our understanding of Nek kinase biology and their involvement in cell cycle, checkpoint control and cancer.
Collapse
Affiliation(s)
- Larissa Moniz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada.
| | | | | | | |
Collapse
|
14
|
Yim H, Sung CK, You J, Tian Y, Benjamin T. Nek1 and TAZ interact to maintain normal levels of polycystin 2. J Am Soc Nephrol 2011; 22:832-7. [PMID: 21474562 DOI: 10.1681/asn.2010090992] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Polycystic kidney disease (PKD) in mice can arise from defects in Nek kinases, which participate in ciliogenesis. PKD can also arise from loss of the protein TAZ, an adaptor protein in the E3 ubiquitin ligase complex that targets the ciliary protein polycystin 2 (PC2) for degradation, but whether Nek and TAZ contribute to the same biochemical pathway is unknown. Here, we report that the nimA-related protein kinase Nek1 phosphorylates TAZ at a site essential for the ubiquitination and proteasomal degradation of PC2. Loss of Nek1 leads to underphosphorylation of TAZ, thereby promoting the abnormal accumulation of PC2. Furthermore, TAZ targets Nek1 for degradation. These data suggest that TAZ and Nek1 constitute a negative feedback loop linked through phosphorylation and ubiquitination and that the interaction of Nek1 and TAZ maintain PC2 at the level needed for proper ciliogenesis.
Collapse
Affiliation(s)
- Hyungshin Yim
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-0939, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
15
|
Thiel C, Kessler K, Giessl A, Dimmler A, Shalev SA, von der Haar S, Zenker M, Zahnleiter D, Stöss H, Beinder E, Abou Jamra R, Ekici AB, Schröder-Kreß N, Aigner T, Kirchner T, Reis A, Brandstätter JH, Rauch A. NEK1 mutations cause short-rib polydactyly syndrome type majewski. Am J Hum Genet 2011; 88:106-14. [PMID: 21211617 DOI: 10.1016/j.ajhg.2010.12.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/01/2010] [Accepted: 12/15/2010] [Indexed: 12/25/2022] Open
Abstract
Defects of ciliogenesis have been implicated in a wide range of human phenotypes and play a crucial role in signal transduction and cell-cycle coordination. We used homozygosity mapping in two families with autosomal-recessive short-rib polydactyly syndrome Majewski type to identify mutations in NEK1 as an underlying cause of this lethal osteochondrodysplasia. NEK1 encodes a serine/threonine kinase with proposed function in DNA double-strand repair, neuronal development, and coordination of cell-cycle-associated ciliogenesis. We found that absence of functional full-length NEK1 severely reduces cilia number and alters ciliar morphology in vivo. We further substantiate a proposed digenic diallelic inheritance of ciliopathies by the identification of heterozygous mutations in NEK1 and DYNC2H1 in an additional family. Notably, these findings not only increase the broad spectrum of ciliar disorders, but suggest a correlation between the degree of defective microtubule or centriole elongation and organization and the severity of the resulting phenotype.
Collapse
|
16
|
Tiermodelle mit Zystennieren. MED GENET-BERLIN 2010. [DOI: 10.1007/s11825-010-0230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Zusammenfassung
Polyzystische Nierenerkrankungen (PKD) sind der häufigste genetische Grund für ein terminales Nierenversagen. Flüssigkeitsgefüllte Zysten bilden sich im Nierenparenchym und beeinträchtigen die Nierenfunktion mit zunehmender Anzahl und Größe, bis diese vollkommen zum Erliegen kommt. Seit mehreren Jahrzehnten werden Tiermodelle mit PKD für die Aufklärung der molekularen Mechanismen der Zystogenese verwendet. War man anfangs auf zufällige, durch Spontanmutationen aufgetretene Zystenmodelle angewiesen, eröffneten transgene und Knock-out-Technologien in den letzen 20 Jahren eine völlig neue Dimension, die molekularen Pathomechanismen der Zystogenese durch gezielte genetische Veränderungen im Erbgut aufzuklären. Nur mit der Hilfe von Tiermodellen konnte die Lokalisation von „Zystenproteinen“ in den Zilien und die Beteiligung zilienabhängiger Signalkaskaden in der Zystogenese gezeigt werden. Dieser Artikel gibt einen Überblick über die derzeit vorhandenen murinen Tiermodelle mit PKD.
Collapse
|
17
|
Stroope A, Radtke B, Huang B, Masyuk T, Torres V, Ritman E, LaRusso N. Hepato-renal pathology in pkd2ws25/- mice, an animal model of autosomal dominant polycystic kidney disease. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1282-91. [PMID: 20093497 DOI: 10.2353/ajpath.2010.090658] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycystic liver diseases, the most important of which are autosomal dominant and autosomal recessive polycystic kidney diseases, are incurable pathological conditions. Animal models that resemble human pathology in these diseases provide an opportunity to study the mechanisms of cystogenesis and to test potential treatments. Here we demonstrate that Pkd2ws25/- mice, an animal model of autosomal dominant polycystic kidney disease, developed hepatic cysts. As assessed by micro-computed tomography scanning of intact livers and by light microscopy of hepatic tissue, hepatic cystic volumes increased from 12.82+/-3.16% (5- to 8-month-old mice) to 21.58+/-4.81% (9- to 12-month-old mice). Renal cystogenesis was more severe at early stages of disease: in 5- to 7-month-old mice, cystic volumes represented 40.67+/-5.48% of kidney parenchyma, whereas in older mice cysts occupied 31.04+/-1.88% of kidney parenchyma. Mild fibrosis occurred only in liver, and its degree was unchanged with age. Hepatic cysts were lined by single or multiple layers of squamous cholangiocytes. Cystic cholangiocyte cilia were short and malformed, whereas in renal cysts they appeared normal. In Pkd2ws25/- mice, mitotic and apoptotic indices in both kidney and liver were increased compared with wild-type mice. In conclusion, Pkd2ws25/- mice exhibit hepatorenal pathology resembling human autosomal dominant polycystic kidney disease and represent a useful model to study mechanisms of cystogenesis and to evaluate treatment options.
Collapse
Affiliation(s)
- Angela Stroope
- Miles and Shirley Fiterman Center for Digestive Diseases, Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Hilton LK, White MC, Quarmby LM. The NIMA-related kinase NEK1 cycles through the nucleus. Biochem Biophys Res Commun 2009; 389:52-6. [PMID: 19699716 DOI: 10.1016/j.bbrc.2009.08.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
Mutations in NEK1 in mice are causal for cystic kidneys, and model the ciliopathy polycystic kidney disease caused by abnormal ciliary structure or signaling. NEK1 has previously been shown to localize near centrosomes and to play a role in centrosomal stability and ciliogenesis. Recent data suggest that the etiology of kidney cysts involves aberrant signaling from the primary cilium to the nucleus. Here we demonstrate that NEK1 contains functional nuclear localization signals, is exported from the nucleus via a nuclear export signal-dependent pathway and that the protein cycles through the nucleus. Our data suggest that NEK1 is a candidate to transduce messages from the ciliary-basal body region to the regulation of nuclear gene expression.
Collapse
Affiliation(s)
- Laura K Hilton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | | | | |
Collapse
|
19
|
White MC, Quarmby LM. The NIMA-family kinase, Nek1 affects the stability of centrosomes and ciliogenesis. BMC Cell Biol 2008; 9:29. [PMID: 18533026 PMCID: PMC2442590 DOI: 10.1186/1471-2121-9-29] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 06/04/2008] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mutations in Nek1 (NIMA-Related Kinase 1) are causal in the murine models of polycystic kidney disease kat and kat2J. The Neks are known as cell cycle kinases, but recent work in protists has revealed that in addition to roles in the regulation of cell cycle progression, some Neks also regulate cilia. In most cells, cilia are disassembled prior to mitosis and are regenerated after cytokinesis. We propose that Neks participate in the coordination of ciliogenesis with cell cycle progression. Mammalian Nek1 is a candidate for this activity because renal cysts form in response to dysfunctional ciliary signalling. RESULTS Here we report that over-expression of full-length mNek1 inhibited ciliogenesis without disrupting centrosomes in the murine renal epithelial cell line IMCD3. In contrast, over-expression of the kinase domain with its associated basic region, but without the acidic domain, caused loss of centrosomes. As expected, these cells also failed to grow cilia. Both defective ciliogenesis in response to too much mNek1 and disassembly of centrosomes in response to expression of the kinase lacking the presumptive regulatory domain was abrogated by kinase-inactivating mutations or by removal of the coiled-coil domain. We observed that kinase-inactive, C-terminal truncations of mNek1 retaining the coiled-coil domain localized to the cilium, and we define a ciliary targeting region within the coiled-coil domain. CONCLUSION Based on our data, we propose that Nek1 plays a role in centrosome integrity, affecting both ciliogenesis and centrosome stability.
Collapse
Affiliation(s)
- Mark C White
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, Canada.
| | | |
Collapse
|
20
|
Abstract
Primary (nonmotile) cilia are currently enjoying a renaissance in light of novel ascribed functions ranging from mechanosensory to signal transduction. Their importance for key developmental pathways such as Sonic Hedgehog (Shh) and Wnt is beginning to emerge. The function of nodal cilia, for example, is vital for breaking early embryonic symmetry, Shh signaling is important for tissue morphogenesis and successful Wnt signaling for organ growth and differentiation. When ciliary function is perturbed, photoreceptors may die, kidney tubules develop cysts, limb digits multiply and brains form improperly. The etiology of several uncommon disorders has recently been associated with cilia dysfunction. The causative genes are often similar and their cognate proteins certainly share cellular locations and/or pathways. Animal models of ciliary gene ablation such as Ift88, Kif3a, and Bbs have been invaluable for understanding the broad function of the cilium. Herein, we describe the wealth of information derived from the study of the ciliopathies and their animal models.
Collapse
|
21
|
Abstract
Polycystic kidney disease (PKD) is a diverse group of human monogenic lethal conditions inherited as autosomal dominant (AD) or recessive (AR) traits. Recent development of genetically engineered mouse models of ADPKD, ARPKD, and nephronophthisis/medullary cystic disease (NPHP) are providing additional insights into the molecular mechanisms governing of these disease processes as well as the developmental differentiation of the normal kidney. Genotypic and phenotypic mouse models are discussed and provide evidence for the fundamental involvement of cell-matrix, cell-cell, and primary cilia-lumen interactions, as well as epithelial proliferation, apoptosis, and polarization. Structure/function relationships between the PKD1, PKD2, PKHD1, and NPHP genes and proteins support the notion of a regulatory multiprotein cystic complex with a mechanosensory function that integrates signals from the extracellular environment. The plethora of intracellular signaling cascades that can impact renal cystic development suggest an exquisitely sensitive requirement for integrated downstream transduction and provide potential targets for therapeutic intervention. Appropriate genocopy models that faithfully recapitulate the phenotypic characteristics of the disease will be invaluable tools to analyze the effects of modifier genes and small molecule inhibitor therapies.
Collapse
|
22
|
Abstract
The Nek family of cell-cycle kinases is widely represented in eukaryotes and includes numerous proteins that were described only recently and remain poorly characterized. Comparing Neks in the context of clades allows us to examine the question of whether microbial eukaryotic Neks, although not strictly orthologs of their vertebrate counterparts, can provide clues to ancestral functions that might be retained in the vertebrate Neks. Relatives of the Nek2/NIMA proteins play important roles at the G2-M transition in nuclear envelope breakdown and centromere separation. Nek6, Nek7 and Nek9 also seem to regulate mitosis. By contrast, Nek1 and Nek8 have been linked with polycystic kidney disease. Results of statistical analysis indicate that the family coevolved with centrioles that function as both microtubule-organizing centers and the basal bodies of cilia. This evolutionary perspective, taken together with functional studies of microbial Neks, provides new insights into the cellular roles of the proteins and disease with which some of them have been linked.
Collapse
Affiliation(s)
- Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | | |
Collapse
|
23
|
Abstract
Cystic kidney disorders are one of the leading causes of end-stage renal disease. Numerous experimental animal models have been used to understand the disease pathogenesis. Recent advancements in this field have provided a surprising finding: that many of the proteins associated with cystic kidney disease localize to a nearly forgotten organelle, the primary cilium.
Collapse
Affiliation(s)
- Qihong Zhang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
24
|
Guay-Woodford LM. Murine models of polycystic kidney disease: molecular and therapeutic insights. Am J Physiol Renal Physiol 2003; 285:F1034-49. [PMID: 14600027 DOI: 10.1152/ajprenal.00195.2003] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous murine (mouse and rat) models of polycystic kidney disease (PKD) have been described in which the mutant phenotype results from a spontaneous mutation or engineering via chemical mutagenesis, transgenic technologies, or gene-specific targeting in mouse orthologs of human PKD genes. These murine phenotypes closely resemble human PKD, with common abnormalities observed in tubular epithelia, the interstitial compartment, and the extracellular matrix of cystic kidneys. In both human and murine PKD, genetic background appears to modulate the renal cystic phenotype. In murine models, these putative modifying effects have been dissected into discrete factors called quantitative trait loci and genetically mapped. Several lines of experimental evidence support the hypothesis that PKD genes and their modifiers may define pathways involved in cystogenesis and PKD progression. Among the various pathway abnormalities described in murine PKD, recent provocative data indicate that structural and/or functional defects in the primary apical cilia of tubular epithelia may play a key role in PKD pathogenesis. This review describes the most widely studied murine models; highlights the data regarding specific gene defects and genetic modifiers; summarizes the data from these models that have advanced our understanding of PKD pathogenesis; and examines the effect of various therapeutic interventions in murine PKD.
Collapse
Affiliation(s)
- Lisa M Guay-Woodford
- Division of Genetic and Translational Medicine, Department of Medicine, University of Alabama at Birmingham, Kaul 740, 1530 3rd Ave. South 19th St., Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
Feige E, Chen A, Motro B. Nurit, a novel leucine-zipper protein, expressed uniquely in the spermatid flower-like structure. Mech Dev 2002; 117:369-77. [PMID: 12204287 DOI: 10.1016/s0925-4773(02)00217-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Spermatozoa formation involves drastic morphological and cellular reconstructions. However, the molecular mechanisms driving this process remain elusive. We describe the cloning of a novel murine spermatid-specific gene, designated nurit, identified in a two-hybrid screen for proteins that binds the Nek1 kinase. Nurit protein harbors a leucine-zipper motif, and two additional coiled-coil regions. The C-terminal coiled-coil domain mediates homodimerization of the protein. Nurit homologues are found in primates, pig and rodents. nurit is transcribed through the elongation stage of the spermatids, but is absent from mature spermatozoa. Interestingly, immunogold electron microscopy revealed that the protein is restricted, from its first detectable appearance, to a unique spermatid organelle called the 'flower-like structure'. The function of this structure is unknown, though it may be involved in transporting proteins designated to be discarded via the residual bodies. Nurit is the first marker of the flower-like structure, and its study may provide an excellent opportunity to dissect the function of this organelle.
Collapse
Affiliation(s)
- Erez Feige
- Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | | | | |
Collapse
|
26
|
Chittenden L, Lu X, Cacheiro NLA, Cain KT, Generoso W, Bryda EC, Stubbs L. A new mouse model for autosomal recessive polycystic kidney disease. Genomics 2002; 79:499-504. [PMID: 11944981 DOI: 10.1006/geno.2002.6731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the course of large-scale mutagenesis studies, we discovered a mutant that provides a new mouse model for human autosomal recessive polycystic kidney disease. Animals homozygous for this mutation, T(2;10)67Gso, present evidence of grossly cystic renal and hepatic tissue at birth and a limited survival time of 3-4 days. The recessively expressed phenotype is associated with inheritance of a reciprocal translocation involving mouse chromosomes 2 and 10. Here we describe the pathology and phenotype of this new mutation. The mapping of the chromosomal breakpoint to the 1.0-cM critical region defined for another mouse autosomal recessive polycystic kidney disease model, juvenile congenital polycystic kidney disease (jcpk), led us to undertake the complementation testing that confirmed T(2;10)67Gso and jcpk are allelic. Because of the strong resemblance between the phenotype associated with these mouse mutations and early childhood polycystic kidney disease, and because of advantages offered by reciprocal translocations for gene mapping and cloning, T(2;10)67Gso should prove a valuable asset for studies concerning this fatal disease.
Collapse
Affiliation(s)
- Laura Chittenden
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, L-452, 7000 East Avenue, Livermore, California 94550, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Woo D, Lee GY, Anderson E, Aziz N. Immature ovaries and polycystic kidneys in the congenital polycystic kidney mouse may be due to abnormal sex steroid metabolism. Mol Cell Endocrinol 2001; 176:155-62. [PMID: 11369455 DOI: 10.1016/s0303-7207(00)00398-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ke 6 is a 17beta-hydroxysteroid dehydrogenase (17betaHSD) that is expressed in the kidneys and gonads. The expression of this gene is markedly reduced in three murine models of recessive polycystic kidney disease, a developmental disorder, where some nephrons within the affected kidneys develop into huge fluid-filled cysts while the non-cystic nephrons atrophies by apoptosis. Here, we show that in the cpk/cpk mouse, which have polycystic kidneys, the female reproductive organs also fail to mature properly and remain arrested at an early stage of development. Direct measurement of 17betaHSD activity showed a severe reduction in estrogen and androgen metabolism within gonadal and non-gonadal tissues of the cpk/cpk mouse. Using immunofluorescent staining we localized the expression of the Ke 6 protein within the female mouse reproductive organs. Our findings suggest that estrogen/androgen metabolism may play an important role in the development of the urogenital systems.
Collapse
Affiliation(s)
- D Woo
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
28
|
Aziz N, Anderson E, Lee GY, Woo DD. Arrested testis development in the cpk mouse may be the result of abnormal steroid metabolism. Mol Cell Endocrinol 2001; 171:83-8. [PMID: 11165015 DOI: 10.1016/s0303-7207(00)00390-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ke 6 is a 17beta-hydroxysteroid dehydrogenase that is expressed in several somatic tissues as well as the female reproductive tissues. We previously correlated a dramatic reduction in the expression of the Ke 6 gene with the development of recessive polycystic kidney disease, in three murine models, the cpk, jck and pcy mice. We also determined that in one of the murine models, the cpk mouse, the female reproductive organs fail to mature properly and remain arrested at an early stage of development. In this study, we report the expression of the Ke 6 protein in normal male reproductive tissues by immunofluorescent staining. We determined in the cpk mouse that the testes similar to the immature ovaries, is also under-developed and arrested at an early developmental stage. Direct measurement of 17betaHSD activity showed a conspicuous reduction in sex steroid metabolism in the cpk/cpk testes. Our findings suggest that estrogen/androgen metabolism play an important role in the development of the urogenital system.
Collapse
Affiliation(s)
- N Aziz
- Department of Medicine, Nephrology Division, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
Lysophosphatidic acid (LPA) is a simple bioactive phospholipid with diverse physiological actions on many cell types. LPA induces proliferative and/or morphological effects and has been proposed to be involved in biologically important processes including neurogenesis, myelination, angiogenesis, wound healing, and cancer progression. LPA acts through specific G protein-coupled, seven-transmembrane domain receptors. To date, three mammalian cognate receptor genes, lp(A1)/vzg-1/Edg2, lp(A2)/Edg4, and lp(A3)/Edg7, have been identified that encode high-affinity LPA receptors. Here, we review current knowledge on these LPA receptors, including their isolation, function, expression pattern, gene structure, chromosomal location, and possible physiological or pathological roles.
Collapse
Affiliation(s)
- J J Contos
- Department of Pharmacology, Neurosciences Program, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
30
|
MONTAGUTELLI XAVIER. Effect of the Genetic Background on the Phenotype of Mouse Mutations. J Am Soc Nephrol 2000. [DOI: 10.1681/asn.v11suppl_2s101] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract.An increasing number of scientific articles report that the phenotype of a given single gene mutation in mice is modulated by the genetic background of the inbred strain in which the mutation is maintained. This effect is attributable to so-called modifier genes, which act in combination with the causative gene. The modulation of the phenotype can be major, as exemplified in the case of several mouse models of polycystic kidney disease. Because of the existence of inbred strains and the possibility of developing congenic strains, the effect of the genetic background can be analyzed in mice, including the identification of major modifier genes. Furthermore, by transferring a given mutation into different genetic backgrounds, mouse models can be manipulated with the aim of more accurately mimicking specific features of human diseases.
Collapse
|
31
|
Kandli M, Feige E, Chen A, Kilfin G, Motro B. Isolation and characterization of two evolutionarily conserved murine kinases (Nek6 and nek7) related to the fungal mitotic regulator, NIMA. Genomics 2000; 68:187-96. [PMID: 10964517 DOI: 10.1006/geno.2000.6293] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Entrance and exit from mitosis in Aspergillus nidulans require activation and proteolysis, respectively, of the NIMA (never in mitosis, gene A) serine/threonine kinase. Four different NIMA-related kinases were reported in mammals (Nek1-4), but none of them has been shown to perform mitotic functions related to those demonstrated for NIMA. We describe here the isolation of two novel murine protein kinase genes, designated nek6 and nek7, which are highly similar to each other (87% amino acid identity in the predicted kinase domain). Interestingly, Nek6 and Nek7 are also highly similar to the F19H6.1 protein kinase of Caenorhabditis elegans (76 and 73% amino acid identity in the kinase domain, respectively), and phylogenetic analysis suggests that these three proteins constitute a novel subfamily within the NIMA family of serine/threonine kinases. In contrast to the other documented NIMA-related kinases, Nek6/7 and F19H6.1 harbor their catalytic domain in the C-terminus of the protein. Immunofluorescence suggests that Nek6 and Nek7 are cytoplasmic. Linkage analysis, using the murine BXD recombinant inbred strain panel, localized nek6 to chromosome 2 at 28 cM. Using a mouse/hamster radiation hybrid panel, we assigned the nek7 gene to chromosome 1 at approximately 73 cM.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Cell Cycle Proteins
- Chromosome Mapping
- Conserved Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Embryo, Mammalian/enzymology
- Evolution, Molecular
- Female
- Fungal Proteins/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- HeLa Cells
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Molecular Sequence Data
- NIMA-Related Kinase 1
- NIMA-Related Kinases
- Phylogeny
- Protein Serine-Threonine Kinases/genetics
- RNA/genetics
- RNA/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- M Kandli
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | | | | | | | |
Collapse
|
32
|
Guo L, Schreiber TH, Weremowicz S, Morton CC, Lee C, Zhou J. Identification and characterization of a novel polycystin family member, polycystin-L2, in mouse and human: sequence, expression, alternative splicing, and chromosomal localization. Genomics 2000; 64:241-51. [PMID: 10756092 DOI: 10.1006/geno.2000.6131] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystins-1, -2, -L, and -REJ are the four known members of the polycystin family of proteins. In this study, we describe a fifth member of the family, polycystin-L2, encoded by PKD2L2 in human and Pkd2l2 in mouse. Full-length cDNA sequences for both mouse and human polycystin-L2 were obtained from testis cDNA. Sequence analysis predicts that the mouse and human polycystin-L2 proteins consist of 621 and 624 amino acid residues, respectively. Polycystin-L2 has significant homology with polycystins-L and -2, with similarities of 58 and 59%, respectively. Both human and murine polycystin-L2 proteins are predicted to have seven putative transmembrane (TM) domains, and, by comparison with transient receptor potential channels, the six carboxyl-terminal TM domains are likely to constitute an ion channel subunit. Northern blot analysis indicated that mouse Pkd2l2 has an abundant approximately 2.5-kb transcript in testis and an approximately 2.2-kb transcript in heart. RT-PCR analysis showed that the full-length transcript is expressed in human brain, kidney, testis, and HepG2 cells, and there are three alternatively spliced variants that were differentially expressed. PKD2L2 consists of 17 exons spanning approximately 50 kb of genomic DNA. PKD2L2 was mapped to human chromosome 5q31 and Pkd2l2 to mouse chromosome 18 in band C.
Collapse
Affiliation(s)
- L Guo
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
33
|
Contos JJ, Chun J. Genomic characterization of the lysophosphatidic acid receptor gene, lp(A2)/Edg4, and identification of a frameshift mutation in a previously characterized cDNA. Genomics 2000; 64:155-69. [PMID: 10729222 DOI: 10.1006/geno.2000.6122] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To understand the regulation, evolution, and genetics of lp(A2)/Edg4, a second lysophosphatidic acid receptor gene, we characterized its complete cDNA sequence, genomic structure, and chromosomal location. The full-length mouse transcript sequence was determined using rapid amplification of cDNA ends. Southern blot and restriction fragment length polymorphism segregation analyses revealed that the mouse gene was present as a single copy and located at the middle of Chromosome 8 near the mutations for myodystrophy (myd) and "kidney-anemia-testes" (kat). This region is syntenic with human chromosome 19p12, where the human genomic clone containing the lp(A2) gene (EDG4) was mapped. Sequence analysis of genomic clones demonstrated that both mouse and human transcripts were encoded by three exons, with an intron separating the coding region for transmembrane domain VI. Reverse transcriptase-PCR demonstrated that the three exons were spliced in all mouse tissues shown to express the transcript. Finally, in a comparison of all human lp(A2) sequences present in the database, we identified several sequence variants in multiple tumors. One such variant (a G deletion) in the initially characterized Edg4 cDNA clone (derived from an ovarian tumor) results in a frameshift mutation near the 3' end of the coding region. In addition to increasing our understanding of the mechanisms underlying lysophosphatidic acid signaling and lysophospholipid receptor gene evolution, these results have important implications regarding the genomic targeting and oncogenic potential of lp(A2).
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Southern
- Chromosome Mapping
- Chromosomes, Human, Pair 8
- DNA, Complementary/genetics
- Databases, Factual
- Exons
- Expressed Sequence Tags
- Female
- Frameshift Mutation
- Gene Dosage
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- Oligonucleotides
- Ovarian Neoplasms/genetics
- Polymorphism, Restriction Fragment Length
- RNA Splicing
- RNA, Messenger
- Receptors, Cell Surface/genetics
- Receptors, G-Protein-Coupled
- Receptors, Lysophosphatidic Acid
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- J J Contos
- Neurosciences Graduate Program, School of Medicine, La Jolla, California, 92093-0636, USA
| | | |
Collapse
|
34
|
Upadhya P, Birkenmeier EH, Birkenmeier CS, Barker JE. Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice. Proc Natl Acad Sci U S A 2000; 97:217-21. [PMID: 10618398 PMCID: PMC26643 DOI: 10.1073/pnas.97.1.217] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1999] [Indexed: 01/25/2023] Open
Abstract
We previously have described a mouse model for polycystic kidney disease (PKD) caused by either of two mutations, kat or kat(2J), that map to the same locus on chromosome 8. The homozygous mutant animals have a latent onset, slowly progressing form of PKD with renal pathology similar to the human autosomal-dominant PKD. In addition, the mutant animals show pleiotropic effects that include facial dysmorphism, dwarfing, male sterility, anemia, and cystic choroid plexus. We previously fine-mapped the kat(2J) mutation to a genetic distance of 0.28 +/- 0.12 centimorgan between D8Mit128 and D8Mit129. To identify the underlying molecular defect in this locus, we constructed an integrated genetic and physical map of the critical region surrounding the kat(2J) mutation. Cloning and expression analysis of the transcribed sequences from this region identified Nek1, a NIMA (never in mitosis A)-related kinase as a candidate gene. Further analysis of the Nek1 gene from both kat/kat and kat(2J)/kat(2J) mutant animals identified a partial internal deletion and a single-base insertion as the molecular basis for these mutations. The complex pleiotropic phenotypes seen in the homozygous mutant animals suggest that the NEK1 protein participates in different signaling pathways to regulate diverse cellular processes. Our findings identify a previously unsuspected role for Nek1 in the kidney and open a new avenue for studying cystogenesis and identifying possible modes of therapy.
Collapse
Affiliation(s)
- P Upadhya
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.
| | | | | | | |
Collapse
|
35
|
Vogler C, Homan S, Pung A, Thorpe C, Barker J, Birkenmeier EH, Upadhya P. Clinical and pathologic findings in two new allelic murine models of polycystic kidney disease. J Am Soc Nephrol 1999; 10:2534-9. [PMID: 10589692 DOI: 10.1681/asn.v10122534] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Patients with inherited cystic kidney diseases have progressive cystic dilation of nephrons with concomitant loss of functional renal parenchyma and renal failure. Animal models of inherited cystic kidney disease are useful for study of the pathogenesis and molecular basis of cystic renal diseases. This article describes the clinical and pathologic features in two spontaneously occurring murine models of inherited polycystic kidney disease due to independent allelic mutations on mouse chromosome 8. The mutations, designated kat and kat2J, affect a chromosomal segment homologous to a region of human chromosome 4q35; the altered gene has not yet been identified. An allelism test showed that the mutations are at the same locus. The phenotype, inherited as an autosomal recessive, is more severe in kat2J/kat2J mice. Their kidneys are morphologically normal at birth, but by 3 mo of age, cysts affect all levels of the nephron. Adult males have testicular hypoplasia and they are sterile. A few of the oldest kat2J/kat2J mice have focal portal bile duct proliferation and dilation. kat2J/kat2J mice develop anemia and uremia and die before 1 yr of age. In kat/kat mice, the renal cystic disease progresses more slowly but is morphologically similar to that of kat2J/kat2J mice. The progressive cystic transformation of the kidneys in these allelic murine models resembles that seen in humans with autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- C Vogler
- Department of Pathology, Saint Louis University School of Medicine, Missouri 63104, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Chen A, Yanai A, Arama E, Kilfin G, Motro B. NIMA-related kinases: isolation and characterization of murine nek3 and nek4 cDNAs, and chromosomal localization of nek1, nek2 and nek3. Gene 1999; 234:127-37. [PMID: 10393247 DOI: 10.1016/s0378-1119(99)00165-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Aspergillus NIMA kinase plays a key role in controlling entrance into mitosis, and recent evidence suggests that mammalian NIMA-related kinases perform similar functions. We report here the cloning of the mouse nek3 and nek4 genes. Mouse nek3 is probably the ortholog of the partially sequenced, human nek3, whereas murine nek4 cDNA is probably the ortholog of human STK2. Nek4 is highly conserved between mouse and human, whereas Nek3 is somewhat less conserved (96.5 and 88% identity in the kinase domains, respectively). Northern analysis shows preferential expression of nek3 in mitotically active tissue, whereas nek4 is highly abundant in the testis. Within the developing testicular germ cells, in-situ analysis demonstrated that nek1, 2 and 4 exhibit differential patterns of expression, suggesting overlapping, but non-identical functions. Linkage analysis, using the mouse recombinant inbred strain panel (BXD), was used to localize nek1, 2 and 3. nek1 was mapped between Cpe and D8Mit8 on chromosome 8 at around 32cM, nek2 was mapped to the distal region of chromosome 1, and nek3 was mapped to the most centromeric region of chromosome 8.
Collapse
Affiliation(s)
- A Chen
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
37
|
Upadhya P, Churchill G, Birkenmeier EH, Barker JE, Frankel WN. Genetic modifiers of polycystic kidney disease in intersubspecific KAT2J mutants. Genomics 1999; 58:129-37. [PMID: 10366444 DOI: 10.1006/geno.1999.5830] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polycystic kidney disease (PKD) is a genetically heterogeneous disorder. In addition to the many PKD-causative loci mapped in mouse and human, a number of reports indicate that modifier loci greatly influence the course of disease progression. Recently we reported a new mouse mutation, kat2J, on chromosome (Chr) 8 that causes late-onset PKD and anemia. During the mapping studies it was noted that the severity of PKD in the mutant (C57BL/6J-kat2J/+ x CAST/Ei)F2 generation was more variable than that in the parental C57BL/6J strain. This suggested that genetic background or modifier genes alter the clinical manifestations and progression of PKD. Genome scans using molecular markers revealed three loci that affect the severity of PKD. The CAST-derived modifier on Chr 1 affects both kidney weight and hematocrit. The CAST-derived modifier on Chr 19 affects kidney weight, and the C57BL/6J-derived modifier on Chr 2 affects hematocrit. Additional modifier loci are noted that interact with and modulate the effects of these three loci. The mapping of these modifier genes and their eventual identification will help to uncover factors that can delay disease progression. These, in turn, could be used to design suitable modes of therapy for various forms of human PKD.
Collapse
Affiliation(s)
- P Upadhya
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609, USA. p6
| | | | | | | | | |
Collapse
|
38
|
Fomitcheva J, Baker ME, Anderson E, Lee GY, Aziz N. Characterization of Ke 6, a new 17beta-hydroxysteroid dehydrogenase, and its expression in gonadal tissues. J Biol Chem 1998; 273:22664-71. [PMID: 9712896 DOI: 10.1074/jbc.273.35.22664] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The abnormal regulation of the Ke 6 gene has been linked to the development of recessive polycystic kidney disease in the mouse. In this report, we have shown that Ke 6 is a 17beta-hydroxysteroid dehydrogenase and can regulate the concentration of biologically active estrogens and androgens. The Ke 6 enzyme is preferentially an oxidative enzyme and inactivates estradiol, testosterone, and dihydrotestosterone. However, the enzyme has some reductive activity and can synthesize estradiol from estrone. We find that the Ke 6 gene is expressed within the ovaries and testes. The presence of Ke 6 protein within the cumulus cells surrounding the oocyte places it in a strategic location to control the level of steroids to which the egg is exposed. Previously, it had been shown that glucocorticoids can induce renal cysts in the neonatal rodent, only when given at a narrow time window of postnatal kidney development. We propose that the reduction in the level of Ke 6 enzyme, which occurs in the cpk, jck, and pcy mice, may lead to abnormal elevations in local level of sex steroids, which either directly or indirectly via abnormal glucocorticoid metabolism result in recessive renal cystic disease, a developmental disorder of the kidney.
Collapse
Affiliation(s)
- J Fomitcheva
- Nephrology Division, Department of Medicine, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|