1
|
Li T, Geng Y, Hu Y, Zhang L, Cui X, Zhang W, Gao F, Liu Z, Luo X. Dentin Matrix Protein 1 Silencing Inhibits Phosphorus Utilization in Primary Cultured Tibial Osteoblasts of Broiler Chicks. Front Vet Sci 2022; 9:875140. [PMID: 35558889 PMCID: PMC9087580 DOI: 10.3389/fvets.2022.875140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Three experiments were carried out in the present study to investigate whether dentin matrix protein 1 (DMP1) was involved in regulating phosphorus (P) metabolic utilization in primary cultured tibial osteoblasts of broiler chicks. Experiment 1 was conducted to select the optimal osteogenic inductive culture medium and the optimal induction time in primary cultured tibial osteoblasts of broiler chicks. In experiment 2, the siRNAs against DMP1 were designed, synthesized and transfected into primary cultured tibial osteoblasts of broiler chicks, and then the inhibitory efficiencies of siRNAs against DMP1 were determined, and the most efficacious siRNA was selected to be used for the DMP1 silencing. In experiment 3, with or without siRNA against DMP1, primary cultured tibial osteoblasts of broiler chicks were treated with the medium supplemented with 0.0, 1.0 or 2.0 mmol/L of P as NaH2PO4 for 12 days. The P metabolic utilization-related parameters were measured. The results showed that the osteogenic induced medium 2 and 12 days of the optimal induction time were selected; Among the designed siRNAs, the si340 was the most effective (P < 0.05) in inhibiting the DMP1 expression; DMP1 silencing decreased (P < 0.05) the expressions of DMP1 mRNA and protein, P retention rate, mineralization formation, alkaline phosphatase activity and bone gla-protein content in tibial osteoblasts at all of added P levels. It is concluded that DMP1 silencing inhibited P utilization, and thus DMP1 was involved in regulating P metabolic utilization in primary cultured tibial osteoblasts of broiler chicks, which provides a novel insight into the regulation of the P utilization in the bone of broilers, and will contribute to develop feasible strategies to improve the bone P utilization efficiency of broilers so as to decrease its excretion.
Collapse
Affiliation(s)
- Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yanqiang Geng
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yun Hu
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyan Cui
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Weiyun Zhang
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Feiyu Gao
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Xugang Luo
| |
Collapse
|
2
|
Dentin Matrix Protein 1 on Titanium Surface Facilitates Osteogenic Differentiation of Stem Cells. Molecules 2021; 26:molecules26226756. [PMID: 34833848 PMCID: PMC8621853 DOI: 10.3390/molecules26226756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) contains a large number of acidic domains, multiple phosphorylation sites, a functional arginine-glycine-aspartate (RGD) motif, and a DNA binding domain, and has been shown to play essential regulatory function in dentin and bone mineralization. DMP1 could also orchestrate bone matrix formation, but the ability of DMP1 on Ti to human mesenchymal stem cell (hMSC) conversion to osteoblasts has not been studied. There is importance to test if the DMP1 coated Ti surface would promote cell migration and attachment to the metal surface and promote the differentiation of the attached stem cells to an osteogenic lineage. This study aimed to study the human mesenchymal stem cells (hMSCs) attachment and proliferation on DMP1 coated titanium (Ti) disks compared to non-coated disks, and to assess possible osteoblastic differentiation of attached hMSCs. Sixty-eight Ti disks were divided into two groups. Group 1 disks were coated with dentin matrix protein 1 and group 2 disks served as control. Assessment with light microscopy was used to verify hMSC attachment and proliferation. Cell viability was confirmed through fluorescence microscopy and mitochondrial dehydrogenase activity. Real-time polymerase chain reaction analysis was done to study the gene expression. The proliferation assay showed significantly greater cell proliferation with DMP1 coated disks compared to the control group (p-value < 0.001). Cell vitality analysis showed a greater density of live cells on DMP1 coated disks compared to the control group. Alkaline phosphatase staining revealed higher enzyme activity on DMP1 coated disks and showed itself to be significantly higher than the control group (p-value < 0.001). von Kossa staining revealed higher positive areas for mineralized deposits on DMP1 coated disks than the control group (p-value < 0.05). Gene expression analysis confirmed upregulation of runt-related transcription factor 2, osteoprotegerin, osteocalcin, osteopontin, and alkaline phosphatase on DMP1 coated disks (p-value < 0.001). The dentin matrix protein promoted the adhesion, proliferation, facilitation differentiation of hMSC, and mineralized matrix formation.
Collapse
|
3
|
Zhang M, Ni S, Zhang X, Lu J, Gao S, Yang Y, Wang Z, Sun H, Li Y. Dexamethasone-loaded hollow hydroxyapatite microsphere promotes odontogenic differentiation of human dental pulp cells in vitro. Odontology 2019; 108:222-230. [PMID: 31598795 DOI: 10.1007/s10266-019-00459-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/08/2019] [Indexed: 12/28/2022]
Abstract
A sustained-release system was established by synthesis of dexamethasone-loaded hollow hydroxyapatite microspheres (DHHAM). The in vitro effect of DHHAM on odontogenic differentiation of human dental pulp cells (hDPCs) was evaluated. Hollow hydroxyapatite microspheres (HHAM) are successfully manufactured using simple biomimetic one-step strategy in the presence of glycine and sodium dodecyl sulfonate. Dexamethasone (DEX) was loaded to the system after the formation of HHAM. The drug encapsulation capacity of DEX in HHAM is 40.3% and its loading efficiency is 16.7%. The cumulative release of DEX in vitro is 55% up to 35 days. Results of Real-time Polymerase Chain Reaction (Real-time PCR), alkaline phosphatase (ALP) activity and Alizarin Red S staining revealed that DHHAM can obviously promote bio-mineralization of hDPCs in the absence of osteogenic medium and enhance the gene expression of ALP, Runt-related transcription factor 2 (RUNX2), osteocalcin, dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1). The data suggest that sustained release of DEX from DHHAM could efficiently enhance odontogenic differentiation of hDPCs.
Collapse
Affiliation(s)
- Menglin Zhang
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Shilei Ni
- Department of Pathology, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Zhang
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Jinjin Lu
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Siyu Gao
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Yalan Yang
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhe Wang
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China
| | - Hongchen Sun
- School of Stomatology, China Medical University, Shenyang, 110001, China
| | - Yi Li
- Department of Pediatric Dentistry, School of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Zhang Y, Yuan L, Meng L, Fang M, Guo S, Wang D, Ma J, Wang L. Guanine and nucleotide binding protein 3 promotes odonto/osteogenic differentiation of apical papilla stem cells via JNK and ERK signaling pathways. Int J Mol Med 2018; 43:382-392. [PMID: 30431055 PMCID: PMC6257834 DOI: 10.3892/ijmm.2018.3984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
Odonto/osteogenic differentiation of stem cells from the apical papilla (SCAPs) is a key process in tooth root formation and development. However, the molecular mechanisms underlying this process remain largely unknown. In the present study, it was identified that guanine and nucleotide binding protein 3 (GNAI3) was at least in part responsible for the odonto/osteogenic differentiation of SCAPs. GNAI3 was markedly induced in mouse tooth root development in vivo and in human SCAPs mineralization in vitro. Notably, knockdown of GNAI3 by lentiviral vectors expressing short-hairpin RNAs against GNAI3 significantly inhibited the proliferation, cell cycle progression and migration of SCAPs, as well as odonto/osteogenic differentiation of SCAPs in vitro, suggesting that GNAI3 may play an essential role in tooth root development. The promotive role of GNAI3 in odonto/osteogenic differentiation was further confirmed by downregulation of odonto/osteogenic makers in GNAI3-deficient SCAPs. In addition, knockdown of GNAI3 effectively suppressed activity of c-Jun N-terminal kinase (JNK) and extracellular-signal regulated kinase (ERK) signaling pathways that was induced during SCAPs differentiation, suggesting that GNAI3 promotes SCAPs mineralization at least partially via JNK/ERK signaling. Taken together, the present results implicate GNAI3 as a critical regulator of odonto/osteogenic differentiation of SCAPs in tooth root development, and suggest a possible role of GNAI3 in regeneration processes in dentin or other tissues.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Meng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mengru Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
5
|
Liu M, Zhao L, Hu J, Wang L, Li N, Wu D, Shi X, Yuan M, Hu W, Wang X. Endothelial cells and endothelin‑1 promote the odontogenic differentiation of dental pulp stem cells. Mol Med Rep 2018; 18:893-901. [PMID: 29845193 PMCID: PMC6059721 DOI: 10.3892/mmr.2018.9033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
It has been established that dental pulp stem cells (DPSCs) serve an important role in the restoration and regeneration of dental tissues. DPSCs are present in blood vessels and also exist in the vessel microenvironment in vivo and have a close association with endothelial cells (ECs). The present study aimed to evaluate the influence of ECs and their secretory product endothelin-1 (ET-1) on the differentiation of DPSCs. In the present study, cells were divided into four groups: i) a DPSC-only control group; ii) a DPSC with ET-1 administration group; iii) a DPSC and human umbilical vein endothelial cell (HUVEC) direct co-culture group; and iv) a DPSC and HUVEC indirect co-culture group using a Transwell system. Reverse transcription-quantitative polymerase chain reaction was used to detect the expression of the odontoblastic differentiation-associated genes, including dentin sialoprotein (DSP) and dentin matrix acidic phosphoprotein 1 (DMP-1) at days 4, 7, 14 and 21. Alizarin Red S staining, immunofluorescence and western blot analyses were also conducted to assess the differentiation of the DPSCs in each group. The highest expression levels of odontoblastic differentiation-associated genes were observed on day 7 and in the two co-culture groups were increased compared with the DPSC-only and DPSC + ET-1 culture groups at all four time points. However, expression levels in the DPSC + ET-1 group were not downregulated as notably as in the co-culture groups on days 14 and 21. The Transwell group exhibited the greatest ability for odontoblastic differentiation compared with the other groups according to staining with Alizarin Red S, immunofluorescence and western blot analysis results. According to the results of the present study, the culture solution with HUVECs affected the differentiation of DPSCs. In addition, ET-1 may promote the odontoblastic differentiation of DPSCs.
Collapse
Affiliation(s)
- Mingyue Liu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lin Zhao
- Department of Stomatology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Junlong Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lihua Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ning Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Di Wu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xin Shi
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Mengtong Yuan
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Weiping Hu
- Department of Prosthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiaofeng Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
6
|
Hamilton SL, Ferando B, Eapen AS, Yu JC, Joy AR. Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells. J Histochem Cytochem 2016; 65:139-151. [PMID: 27881474 DOI: 10.1369/0022155416676064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer-namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)-in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating "cancer-ness," thus potentially promoting specific hallmarks of metastasis.
Collapse
Affiliation(s)
- Samantha Lynn Hamilton
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| | - Blake Ferando
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ)
| | - Asha Sarah Eapen
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ)
| | - Jennifer Chian Yu
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| | - Anita Rose Joy
- Department of Growth, Development and Structure, Southern Illinois University School of Dental Medicine, Alton, Illinois (SLH, BF, ASE, JCY, ARJ).,Department of Biological Sciences, College of Arts and Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois (SLH, JCY, ARJ)
| |
Collapse
|
7
|
Wan C, Yuan G, Luo D, Zhang L, Lin H, Liu H, Chen L, Yang G, Chen S, Chen Z. The Dentin Sialoprotein (DSP) Domain Regulates Dental Mesenchymal Cell Differentiation through a Novel Surface Receptor. Sci Rep 2016; 6:29666. [PMID: 27430624 PMCID: PMC4949421 DOI: 10.1038/srep29666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/18/2016] [Indexed: 01/22/2023] Open
Abstract
Dentin sialophosphoprotein (DSPP) is a dentin extracellular matrix protein that is processed into dentin sialoprotein (DSP), dentin glycoprotein (DGP) and dentin phosphoprotein (DPP). DSP is mainly expressed in odontoblasts. We hypothesized that DSP interacts with cell surface receptors and subsequently activates intracellular signaling. Using DSP as bait for screening a protein library, we demonstrate that DSP acts as a ligand and binds to integrin β6. The 36 amino acid residues of DSP are sufficient to bind to integrin β6. This peptide promoted cell attachment, migration, differentiation and mineralization of dental mesenchymal cells. In addition, DSP (aa183-219) stimulated phosphorylation of ERK1/2 and P38 kinases. This activation was inhibited by an anti-integrin β6 antibody and siRNA. Furthermore, we demonstrate that this DSP fragment induces SMAD1/5/8 phosphorylation and nuclear translocation via ERK1/2 and P38 signaling. SMAD1/5/8 binds to SMAD binding elements (SBEs) in the DSPP gene promoter. SBE mutations result in a decrease in DSPP transcriptional activity. Endogenous DSPP expression was up-regulated by DSP (aa183-219) in dental mesenchymal cells. The data in the current study demonstrate for the first time that this DSP domain acts as a ligand in a RGD-independent manner and is involved in intracellular signaling via interacting with integrin β6. The DSP domain regulates DSPP expression and odontoblast homeostasis via a positive feedback loop.
Collapse
Affiliation(s)
- Chunyan Wan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, Texas, 78229-3700, United States
| | - Guohua Yuan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Daoshu Luo
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, Texas, 78229-3700, United States.,Department of Anatomy, Histology and Embryology, School of Basic Medical sciences, Fujian Medical University, Fuzhou, 350108, China
| | - Lu Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Heng Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lei Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, Texas, 78229-3700, United States.,Department of Surgery, The First Affiliated Hospital, Fujian Medial University, Fuzhou, 350005, China
| | - Guobin Yang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, Texas, 78229-3700, United States
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
8
|
Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I. PLoS One 2016; 11:e0148225. [PMID: 26882351 PMCID: PMC4755593 DOI: 10.1371/journal.pone.0148225] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/14/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the level of odontogenic differentiation of dental pulp stem cells (DPSCs) on hydrogel scaffolds derived from bone extracellular matrix (bECM) in comparison to those seeded on collagen I (Col-I), one of the main components of dental pulp ECM. METHODS DPSCs isolated from human third molars were characterized for surface marker expression and odontogenic potential prior to seeding into bECM or Col-I hydrogel scaffolds. The cells were then seeded onto bECM and Col-I hydrogel scaffolds and cultured under basal conditions or with odontogenic and growth factor (GF) supplements. DPSCs cultivated on tissue culture polystyrene (TCPS) with and without supplements were used as controls. Gene expression of dentin sialophosphoprotein (DSPP), dentin matrix protein 1 (DMP-1) and matrix extracellular phosphoglycoprotein (MEPE) was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and mineral deposition was observed by Von Kossa staining. RESULTS When DPSCs were cultured on bECM hydrogels, the mRNA expression levels of DSPP, DMP-1 and MEPE genes were significantly upregulated with respect to those cultured on Col-I scaffolds or TCPS in the absence of extra odontogenic inducers. In addition, more mineral deposition was observed on bECM hydrogel scaffolds as demonstrated by Von Kossa staining. Moreover, DSPP, DMP-1 and MEPE mRNA expressions of DPSCs cultured on bECM hydrogels were further upregulated by the addition of GFs or osteo/odontogenic medium compared to Col-I treated cells in the same culture conditions. SIGNIFICANCE These results demonstrate the potential of the bECM hydrogel scaffolds to stimulate odontogenic differentiation of DPSCs.
Collapse
|
9
|
Song T, Wu T, Wei F, Li A, Wang F, Xie Y, Liu D, Fan Z, Wang X, Cheng S, Zhang C, He J, Wang S. Construction of a cDNA library for miniature pig mandibular deciduous molars. BMC DEVELOPMENTAL BIOLOGY 2014; 14:16. [PMID: 24750690 PMCID: PMC4021421 DOI: 10.1186/1471-213x-14-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 04/09/2014] [Indexed: 01/21/2023]
Abstract
Background The miniature pig provides an excellent experimental model for tooth morphogenesis because its diphyodont and heterodont dentition resembles that of humans. However, little information is available on the process of tooth development or the exact molecular mechanisms controlling tooth development in miniature pigs or humans. Thus, the analysis of gene expression related to each stage of tooth development is very important. Results In our study, after serial sections were made, the development of the crown of the miniature pigs’ mandibular deciduous molar could be divided into five main phases: dental lamina stage (E33-E35), bud stage (E35-E40), cap stage (E40-E50), early bell stage (E50-E60), and late bell stage (E60-E65). Total RNA was isolated from the tooth germ of miniature pig embryos at E35, E45, E50, and E60, and a cDNA library was constructed. Then, we identified cDNA sequences on a large scale screen for cDNA profiles in the developing mandibular deciduous molars (E35, E45, E50, and E60) of miniature pigs using Illumina Solexa deep sequencing. Microarray assay was used to detect the expression of genes. Lastly, through Unigene sequence analysis and cDNA expression pattern analysis at E45 and E60, we found that 12 up-regulated and 15 down-regulated genes during the four periods are highly conserved genes homologous with known Homo sapiens genes. Furthermore, there were 6 down-regulated and 2 up-regulated genes in the miniature pig that were highly homologous to Homo sapiens genes compared with those in the mouse. Conclusion Our results not only identify the specific transcriptome and cDNA profile in developing mandibular deciduous molars of the miniature pig, but also provide useful information for investigating the molecular mechanism of tooth development in the miniature pig.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Tian Tan Xi Li No,4, Beijing 100050, China.
| |
Collapse
|
10
|
Yonekura T, Homma H, Sakurai A, Moriguchi M, Miake Y, Toyosawa S, Shintani S. Identification, characterization, and expression of dentin matrix protein 1 gene inXenopus laevis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:525-37. [DOI: 10.1002/jez.b.22529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Tomoko Yonekura
- Department of Pediatric Dentistry; Tokyo Dental College; Mihama-ku Chiba Japan
| | - Hiromi Homma
- Department of Pediatric Dentistry; Tokyo Dental College; Mihama-ku Chiba Japan
| | - Atsuo Sakurai
- Department of Pediatric Dentistry; Tokyo Dental College; Mihama-ku Chiba Japan
- Oral Health Science Center hrc8; Tokyo Dental College; Mihama-ku Chiba Japan
| | - Mitsuko Moriguchi
- Department of Ultrastructural Science; Tokyo Dental College; Mihama-ku Chiba Japan
| | - Yasuo Miake
- Department of Ultrastructural Science; Tokyo Dental College; Mihama-ku Chiba Japan
| | - Satoru Toyosawa
- Department of Oral Pathology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Seikou Shintani
- Department of Pediatric Dentistry; Tokyo Dental College; Mihama-ku Chiba Japan
- Oral Health Science Center hrc8; Tokyo Dental College; Mihama-ku Chiba Japan
| |
Collapse
|
11
|
Eslaminejad MB, Bordbar S, Nazarian H. Odontogenic differentiation of dental pulp-derived stem cells on tricalcium phosphate scaffolds. J Dent Sci 2013. [DOI: 10.1016/j.jds.2013.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
12
|
Li C, Xie X, Wang X, Sun Y, Liu P, Chen L, Qin C. Differential expression and localization of dentin matrix protein 1 (DMP1) fragments in mouse submandibular glands. J Mol Histol 2013; 44:231-9. [PMID: 23111467 PMCID: PMC3694222 DOI: 10.1007/s10735-012-9464-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
It has been demonstrated that dentin matrix protein 1 (DMP1) is an essential regulator in the formation of bone and tooth. In addition to the mineralized tissues, DMP1 is also expressed in the non-mineralized tissues such as kidney, brain and salivary glands. Some studies have shown that the expression of DMP1 is significantly elevated in cancerous glands, while details about the expression and localization patterns of DMP1 in these glandular tissues still remain largely unknown. In this study, with multiple approaches, we systematically analyzed the expression and localization of DMP1 in mouse submandibular glands (SMGs). The results showed that although DMP1 was expressed in both female and male mouse SMGs, the mRNA levels of DMP1 in male mice were higher than those in female mice after the appearance of granular convoluted tubule (GCT). In mouse SMGs, DMP1 was primarily present as the 46 kDa C-terminal fragment and the 37 kDa N-terminal fragment. The C-terminal fragment was mainly localized in the nuclei of acinar and ductal cells, while the N-terminal fragment was restricted to the cytoplasm of ductal cells. This study showed the expression of DMP1 in the GCT of male mice, a novel finding different from the result of previous reports. Collectively, the differential localization patterns of DMP1 fragments indicate that different forms of DMP1 may play distinct roles in the SMGs.
Collapse
Affiliation(s)
- Changcheng Li
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China. Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA
| | - Xiaohua Xie
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA
| | - Yao Sun
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA
| | - Peihong Liu
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Li Chen
- Longjiang Scholar Laboratory, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang, China
| | - Chunlin Qin
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA
| |
Collapse
|
13
|
Pei X, Pan L, Cui F, He R, Bao H, Wan Q, Wang J. The recombinant human dentin matrix protein 1-coated titanium and its effect on the attachment, proliferation and ALP activity of MG63 cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2717-2726. [PMID: 22903598 DOI: 10.1007/s10856-012-4724-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/14/2012] [Indexed: 06/01/2023]
Abstract
The aim of the present work was to design a bio-interactive implant surface by coating recombinant human dentin matrix protein 1 (hDMP1) onto titanium and to investigate the biological function of this material. Firstly, the plasmid containing the hDMP1 cDNA was constructed and hDMP1 was expressed, purified and characterized. Then, hDMP1 was coated onto the surface of Ti substrates via a biochemical technique and the procedure was divided into three steps: in the beginning, titanium was treated by regular polishing and denoted as Cp-Ti; then, Cp-Ti received alkaline and water treatment and was nominated as AW-Ti; finally, AW-Ti was coated with hDMP1 and referred to as hDMP1-Ti. The inserts of hDMP1 genes were detected by enzyme digestion as well as gel electrophoresis, and the complete nucleotide sequence of hDMP1 was tested. The purified recombinant hDMP1 was electrophoresed on a 10 % SDS-PAGE gel. Cp-Ti, AW-Ti and hDMP1-Ti were characterized by X-ray photoelectron spectroscope and water contact angles tests. The biological activity of MG63 cells cultured in the three groups was investigated by the cell attachment, proliferation and alkaline phosphatase activity assays. The results show that hDMP1 was successfully constructed and coated onto the titanium surface, and hDMP1-Ti had higher hydrophilicity than Cp-Ti. Compared with Cp-Ti and AW-Ti, hDMP1-Ti showed better in vitro bioactivity.
Collapse
Affiliation(s)
- Xibo Pei
- Department of Prosthodontics, West China College of Stomatology, Sichuan University, Renmin Nanlu, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Sun Y, Chen L, Ma S, Zhou J, Zhang H, Feng JQ, Qin C. Roles of DMP1 processing in osteogenesis, dentinogenesis and chondrogenesis. Cells Tissues Organs 2011; 194:199-204. [PMID: 21555863 PMCID: PMC3178078 DOI: 10.1159/000324672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dentin matrix protein 1 (DMP1) is an acidic protein that plays critical roles in osteogenesis and dentinogenesis. Protein chemistry studies have demonstrated that DMP1 primarily exists as processed NH₂⁻ and COOH-terminal fragments in the extracellular matrix of bone and dentin. Our earlier work showed that the substitution of Asp²¹³ (a residue at a cleavage site) by Ala²¹³ blocks the processing of mouse DMP1 in vitro. Recently, we generated transgenic mice expressing this mutant DMP1 (designated 'D213A-DMP1'). By crossbreeding these transgenic mice with Dmp1-knockout (Dmp1-KO) mice, we obtained mice expressing the D213A-DMP1 transgene in the Dmp1-null background (named 'Dmp1-KO/D213A-Tg' mice). In this study, we analyzed the long bone, mandible, dentin, and cartilage of Dmp1-KO/D213A-Tg mice in comparison with wild-type, Dmp1-KO, and Dmp1-KO mice expressing the normal DMP1 transgene (Dmp1-KO/normal-Tg). Our results showed that D213A-DMP1 was barely cleaved in the dentin matrix of Dmp1-KO/D213A-Tg mice and the expression of D213A-DMP1 failed to rescue the developmental defects in Dmp1-null mice. Interestingly, enlarged growth plates and condylar cartilages were observed in Dmp1-KO/D213A-Tg mice, indicating a potential role of the full-length form of DMP1 in chondrogenesis.
Collapse
Affiliation(s)
- Yao Sun
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Tex., USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Bardet C, Vincent C, Lajarille MC, Jaffredo T, Sire JY. OC-116, the chicken ortholog of mammalian MEPE found in eggshell, is also expressed in bone cells. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 314:653-62. [PMID: 20665709 DOI: 10.1002/jez.b.21366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In chicken, ovocleidin 116 (OC-116) is found in the eggshell matrix and its encoding gene, OC-116, is expressed in uterine cells. In mammals, its orthologue MEPE encodes the matrix extracellular phosphoglycoprotein (MEPE), which has been shown to be involved in bone mineralization. Using RT-PCR and in situ hybridization on sections, we have checked whether OC-116 was also expressed in osteoblasts and osteocytes during bone development and mineralization in chicken embryos. We monitored OC-116 expression in the tibia and mandible of a growth series of chicken embryos from E3 to E19. Transcripts were identified in the osteoblasts as early as E5 in the tibia and E7 in the mandible, before matrix mineralization, then from these stages onwards in both the osteoblasts lining the mineralized bone matrix and the osteocytes. Therefore, early in chicken ontogeny and as soon as osteogenesis begins, OC-116 is involved. Its function, which remains still unknown, is maintained during further bone growth and mineralization, and later in adult, in which it is recruited for eggshell formation. We hypothesize that the ancestral OC-116/MEPE in a stem amniote was involved in these two functions and that the loss of eggshell in the mammalian lineage has probably favored the recruitment of some MEPE domains toward new functions in osteogenesis and mineralization, and in phosphatemia regulation.
Collapse
Affiliation(s)
- Claire Bardet
- Université Pierre et Marie Curie, Systématique-Adaptation-Evolution, 7 quai Saint-Bernard, Paris, France
| | | | | | | | | |
Collapse
|
17
|
Heywood BR, Hill S, Pitt K, Tibble P, Williams S. Biogenic Inspiration for the Controlled Nucleation and Growth of Inorganic Materials. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-620-m4.5.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTThe development of effective protocols for the control of crystal structure, size and morphology attracts considerable interest given the requirement for particles of modal size and shape in many areas of particle processing and the importance of crystallochemical selectivity in determining the exploitable properties of crystalline solids. In biological systems there are many examples of advanced “crystal engineering” in which materials are deposited in a highly controlled manner to produce crystal phases that are unique with respect to their structure, habit, uniformity of size and texture. A review of biomineralisation will show that while a complex array of strategies have evolved for regulating crystal growth, one feature is common to the biological paradigm. Interactions between supramolecular organic structures and the nascent inorganic solids play a fundamental role in controlling the deposition of the biominerals and ordering the assembly of these units into hierarchical structures. In order to gain a better understanding of the molecular recognition events, which take place at the organic-inorganic interface, a bio-inspired crystal chemical approach has been adopted. For this work organised organic assemblies (e.g. surfactant aggregates, peptide mimics, dendrimers) of precise molecular design (head group identity, packing conformation, primary sequence etc.) are being assayed for their effectiveness in controlling the nucleation and growth of crystals. It is evident from these studies that the chemical organisation of the polymeric microenvironment operates at the molecular level to control certain aspects of the nucleation, growth and stabilisation of inorganic particles. By systematically changing the molecular motif of the organic template we have established that the size, crystallographic orientation, growth and assembly of the mineral phase can be tailored to function. These results have relevance not only to our understanding of biomineralisation but also suggest a multiplicity of exploitable opportunities for the engineering of crystals.
Collapse
|
18
|
Fisher LW, Fedarko NS. Six Genes Expressed in Bones and Teeth Encode the Current Members of the SIBLING Family of Proteins. Connect Tissue Res 2009. [DOI: 10.1080/03008200390152061] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
19
|
Voss RS, Jansa SA. Phylogenetic Relationships and Classification of Didelphid Marsupials, an Extant Radiation of New World Metatherian Mammals. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2009. [DOI: 10.1206/322.1] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Yao W, Cheng Z, Pham A, Busse C, Zimmermann EA, Ritchie RO, Lane NE. Glucocorticoid-induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. ARTHRITIS AND RHEUMATISM 2008; 58:3485-97. [PMID: 18975341 PMCID: PMC2597521 DOI: 10.1002/art.23954] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Glucocorticoid excess decreases bone mineralization and microarchitecture and leads to reduced bone strength. Both anabolic (parathyroid hormone [PTH]) and antiresorptive agents are used to prevent and treat glucocorticoid-induced bone loss, yet these bone-active agents alter bone turnover by very different mechanisms. This study was undertaken to determine how PTH and risedronate alter bone quality following glucocorticoid excess. METHODS Five-month-old male Swiss-Webster mice were treated with the glucocorticoid prednisolone (5 mg/kg in a 60-day slow-release pellet) or placebo. From day 28 to day 56, 2 groups of glucocorticoid-treated animals received either PTH (5 microg/kg) or risedronate (5 microg/kg) 5 times per week. Bone quality and quantity were measured using x-ray tomography for the degree of bone mineralization, microfocal computed tomography for bone microarchitecture, compression testing for trabecular bone strength, and biochemistry and histomorphometry for bone turnover. In addition, real-time polymerase chain reaction (PCR) and immunohistochemistry were performed to monitor the expression of several key genes regulating Wnt signaling (bone formation) and mineralization. RESULTS Compared with placebo, glucocorticoid treatment decreased trabecular bone volume (bone volume/total volume [BV/TV]) and serum osteocalcin, but increased serum CTX and osteoclast surface, with a peak at day 28. Glucocorticoids plus PTH increased BV/TV, and glucocorticoids plus risedronate restored BV/TV to placebo levels after 28 days. The average degree of bone mineralization was decreased after glucocorticoid treatment (-27%), but was restored to placebo levels after treatment with glucocorticoids plus risedronate or glucocorticoids plus PTH. On day 56, RT-PCR revealed that expression of genes that inhibit bone mineralization (Dmp1 and Phex) was increased by continuous exposure to glucocorticoids and glucocorticoids plus PTH and decreased by glucocorticoids plus risedronate, compared with placebo. Wnt signaling antagonists Dkk-1, Sost, and Wif1 were up-regulated by glucocorticoid treatment but down-regulated after glucocorticoid plus PTH treatment. Immunohistochemistry of bone sections showed that glucocorticoids increased N-terminal Dmp-1 staining while PTH treatment increased both N- and C-terminal Dmp-1 staining around osteocytes. CONCLUSION Our findings indicate that both PTH and risedronate improve bone mass, degree of bone mineralization, and bone strength in glucocorticoid-treated mice, and that PTH increases bone formation while risedronate reverses the deterioration of bone mineralization.
Collapse
Affiliation(s)
- Wei Yao
- Department of Medicine, Aging Center, UC Davis Medical Center, Sacramento, CA
| | - Zhiqiang Cheng
- Department of Medicine, Aging Center, UC Davis Medical Center, Sacramento, CA
| | - Aaron Pham
- Department of Medicine, Aging Center, UC Davis Medical Center, Sacramento, CA
| | - Cheryl Busse
- Department of Medicine, Aging Center, UC Davis Medical Center, Sacramento, CA
| | - Elizabeth A. Zimmermann
- Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA
| | - Robert O. Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, and Department of Materials Science and Engineering, University of California, Berkeley, CA
| | - Nancy E. Lane
- Department of Medicine, Aging Center, UC Davis Medical Center, Sacramento, CA
| |
Collapse
|
21
|
Maciejewska I, Qin D, Huang B, Sun Y, Mues G, Svoboda K, Bonewald L, Butler WT, Feng JQ, Qin C. Distinct compartmentalization of dentin matrix protein 1 fragments in mineralized tissues and cells. Cells Tissues Organs 2008; 189:186-91. [PMID: 18698129 PMCID: PMC2727859 DOI: 10.1159/000151372] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) has been shown to be critical for the formation of dentin and bone. However, the precise pathway by which DMP1 participates in dentinogenesis and osteogenesis remains to be clarified. DMP1 is present in the extracellular matrix of dentin and bone as processed NH(2)- and COOH-terminal fragments. The NH(2)-terminal fragment occurs as a proteoglycan, whereas the COOH-terminal fragment is highly phosphorylated. The differences in biochemical properties suggest that these fragments may have different tissue and cell distribution in association with distinct functions. In this study, we analyzed the distribution of the NH(2)- and COOH-terminal fragments of DMP1 in tooth, bone, osteocytes as well as MC3T3-E1 and HEK-293 cells. Immunohistochemical analyses were performed using antibodies specific to the NH(2)- or COOH-terminal region of DMP1. Clear differences in the distribution of these fragments were observed. In the teeth and bone, the NH(2)-terminal fragment was primarily located in the nonmineralized predentin and cartilage of the growth plate, while the COOH-terminal fragment accumulated in the mineralized zones. In osteocytes, the NH(2)-terminal fragment appeared more abundant along cell membrane and processes of osteocytes, while the COOH-terminal fragment was often found in the nuclei. This pattern of distribution in cellular compartments was further confirmed by analyses on MC3T3-E1 and HEK-293 cells transfected with a construct containing DMP1 cDNA. In these cell lines, the COOH-terminal fragment accumulated in cell nuclei, while the NH(2)-terminal fragment was in the cytosol. The different distribution of DMP1 fragments indicates that these DMP1 variants must perform distinct functions.
Collapse
Affiliation(s)
- Izabela Maciejewska
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex
| | - Disheng Qin
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex
| | - Bingzhen Huang
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex
| | - Yao Sun
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex
| | - Gabrielle Mues
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex
| | - Kathy Svoboda
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex
| | - Lynda Bonewald
- School of Dentistry, University of Missouri at Kansas City, Kansas City, Mo., USA
| | - William T. Butler
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex
| | - Jerry Q. Feng
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex
| | - Chunlin Qin
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex
| |
Collapse
|
22
|
Peng T, Huang B, Sun Y, Lu Y, Bonewald L, Chen S, Butler WT, Feng JQ, D'Souza RN, Qin C. Blocking of proteolytic processing and deletion of glycosaminoglycan side chain of mouse DMP1 by substituting critical amino acid residues. Cells Tissues Organs 2008; 189:192-7. [PMID: 18698130 PMCID: PMC2666981 DOI: 10.1159/000151373] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) is present in the extracellular matrix (ECM) of dentin and bone as processed NH(2)- and COOH-terminal fragments, resulting from proteolytic cleavage at the NH(2) termini of 4 aspartic acid residues during rat DMP1 processing. One cleavage site residue, Asp(181) (corresponding to Asp(197) of mouse DMP1), and its flanking region are highly conserved across species. We speculate that cleavage at the NH(2) terminus of Asp(197) of mouse DMP1 represents an initial, first-step scission in the whole cascade of proteolytic processing. To test if Asp(197) is critical for initiating the proteolytic processing of mouse DMP1, we substituted Asp(197) with Ala(197) by mutating the corresponding nucleotides of mouse cDNA that encode this amino acid residue. This mutant DMP1 cDNA was cloned into a pcDNA3.1 vector. Data from transfection experiments indicated that this single substitution blocked the proteolytic processing of mouse DMP1 in HEK-293 cells, indicating that cleavage at the NH(2) terminus of Asp(197) is essential for exposing other cleavage sites for the conversion of DMP1 to its fragments. The NH(2)-terminal fragment of DMP1 occurs as a proteoglycan form (DMP1-PG) that contains a glycosaminoglycan (GAG) chain. Previously, we showed that a GAG chain is linked to Ser(74) in rat DMP1 (Ser(89) in mouse DMP1). To confirm that mouse DMP1-PG possesses a single GAG chain attached to Ser(89), we substituted Ser(89) by Gly(89). Data from transfection analysis indicated that this substitution completely prevented formation of the GAG-containing form, confirming that DMP1-PG contains a single GAG chain attached to Ser(89) in mouse DMP1.
Collapse
Affiliation(s)
- Tao Peng
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex., USA
| | - Bingzhen Huang
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex., USA
| | - Yao Sun
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex., USA
| | - Yongbo Lu
- School of Dentistry, University of Missouri at Kansas City, Kansas City, Mo., USA
| | - Lynda Bonewald
- School of Dentistry, University of Missouri at Kansas City, Kansas City, Mo., USA
| | - Shuo Chen
- School of Dentistry, University of Texas Health Science Center, San Antonio, Tex., USA
| | - William T. Butler
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex., USA
| | - Jerry Q. Feng
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex., USA
| | - Rena N. D'Souza
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex., USA
| | - Chunlin Qin
- Department of Biomedical Science, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex., USA
| |
Collapse
|
23
|
Qin C, Huang B, Wygant JN, McIntyre BW, McDonald CH, Cook RG, Butler WT. A Chondroitin Sulfate Chain Attached to the Bone Dentin Matrix Protein 1 NH2-Terminal Fragment. J Biol Chem 2006; 281:8034-40. [PMID: 16421105 DOI: 10.1074/jbc.m512964200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dentin matrix protein 1 (DMP1) is an acidic noncollagenous protein shown by gene ablations to be critical for the proper mineralization of bone and dentin. In the extracellular matrix of these tissues DMP1 is present as fragments representing the NH2-terminal (37 kDa) and COOH-terminal (57 kDa) portions of the cDNA-deduced amino acid sequence. During our separation of bone noncollagenous proteins, we observed a high molecular weight, DMP1-related component (designated DMP1-PG). We purified DMP1-PG with a monoclonal anti-DMP1 antibody affinity column. Amino acid analysis and Edman degradation of tryptic peptides proved that the core protein for DMP1-PG is the 37-kDa fragment of DMP1. Chondroitinase treatments demonstrated that the slower migration rate of DMP1-PG is due to the presence of glycosaminoglycan. Quantitative disaccharide analysis indicated that the glycosaminoglycan is made predominantly of chondroitin 4-sulfate. Further analysis on tryptic peptides led us to conclude that a single glycosaminoglycan chain is linked to the core protein via Ser74, located in the Ser74-Gly75 dipeptide, an amino acid sequence specific for the attachment of glycosaminoglycans. Our findings show that in addition to its existence as a phosphoprotein, the NH2-terminal fragment from DMP1 occurs as a proteoglycan. Amino acid sequence alignment analysis showed that the Ser74-Gly75 dipeptide and its flanking regions are highly conserved among a wide range of species from caiman to the Homo sapiens, indicating that this glycosaminoglycan attachment domain has survived an extremely long period of evolution pressure, suggesting that the glycosaminoglycan may be critical for the basic biological functions of DMP1.
Collapse
Affiliation(s)
- Chunlin Qin
- Department of Endodontics, University of Texas Houston Health Science Center Dental Branch, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kim JW, Yamakoshi Y, Iwata T, Hu YY, Zhang H, Hu JCC, Simmer JP. Porcine dentin matrix protein 1: gene structure, cDNA sequence, and expression in teeth. Eur J Oral Sci 2006; 114:33-41. [PMID: 16460339 PMCID: PMC4445085 DOI: 10.1111/j.1600-0722.2006.00284.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dentin matrix protein 1 (DMP1) is an acidic non-collagenous protein that is necessary for the proper biomineralization of bone, cartilage, cementum, dentin, and enamel. Dentin matrix protein 1 is highly phosphorylated and potentially glycosylated, but there is no experimental data identifying which specific amino acids are modified. For the purpose of facilitating the characterization of DMP1 from pig, which has the advantage of large developing teeth for obtaining protein in quantity and extensive structural information concerning other tooth matrix proteins, we characterized the porcine DMP1 cDNA and gene structure, raised anti-peptide immunoglobulins that are specific for porcine DMP1, and detected DMP1 protein in porcine tooth extracts and histological sections. Porcine DMP1 has 510 amino acids, including a 16-amino acid signal peptide. The deduced molecular weight of the secreted, unmodified protein is 53.5 kDa. The protein has 93 serines and 12 threonines in the appropriate context for phosphorylation, and four asparagines in a context suitable for glycosylation. Dentin matrix protein 1 protein bands with apparent molecular weights between 30 and 45 kDa were observed in partially purified dentin extracts. In developing teeth, immunohistochemistry localized DMP1 in odontoblasts and the dentinal tubules of mineralized dentin and in ameloblasts, but not in the enamel matrix.
Collapse
Affiliation(s)
- Jung-Wook Kim
- University of Michigan Dental Research Laboratory, Ann Arbor, MI, USA
- Seoul National University, College of Dentistry & Dental Research Institute, Department of Pediatric Dentistry, Seoul, Korea
| | - Yasuo Yamakoshi
- University of Michigan Dental Research Laboratory, Ann Arbor, MI, USA
| | - Takanori Iwata
- University of Michigan Dental Research Laboratory, Ann Arbor, MI, USA
- Tokyo Medical and Dental University, Department of Hard Tissue Engineering, Division of Periodontology, Tokyo, Japan
| | - Yuan Yuan Hu
- University of Michigan Dental Research Laboratory, Ann Arbor, MI, USA
| | - Hengmin Zhang
- University of Michigan Dental Research Laboratory, Ann Arbor, MI, USA
| | - Jan C.-C. Hu
- University of Michigan Dental Research Laboratory, Ann Arbor, MI, USA
| | - James P. Simmer
- University of Michigan Dental Research Laboratory, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Abstract
In recent years, substantial progress has been made regarding the molecular etiology of human structural tooth diseases that alter dentin matrix formation. These diseases have been classified into two major groups with subtypes: dentin dysplasia (DD) types I and II and dentinogenesis imperfecta (DGI) types I-III. Genetic linkage studies have identified the critical loci for DD-II, DGI-II, and DGI-II to human chromosome 4q21. Located within the common disease loci for these diseases is cluster of dentin/bone genes that includes osteopontin (OPN), bone sialoprotein (BSP), matrix extracellular phosphoglycoprotein (MEPE), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP). To date, only mutations within dentin sialophosphoprotein have been associated with the pathogenesis of dentin diseases including DGI types-II and -III and DD-II. In this article, we overview the recent literature related to these dentin genetic diseases, their clinical features, and molecular pathogenesis.
Collapse
Affiliation(s)
- Mary MacDougall
- Department of Oral Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA.
| | | | | |
Collapse
|
26
|
Fisher LW, Jain A, Tayback M, Fedarko NS. Small integrin binding ligand N-linked glycoprotein gene family expression in different cancers. Clin Cancer Res 2005; 10:8501-11. [PMID: 15623631 DOI: 10.1158/1078-0432.ccr-04-1072] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Members of the small integrin binding ligand N-linked glycoprotein (SIBLING) gene family have the capacity to bind and modulate the activity of matrix metalloproteinases (MMPs). The expression levels of five SIBLING gene family members [bone sialoprotein (BSP), osteopontin (OPN), dentin matrix protein 1 (DMP1), matrix extracellular phosphoglycoprotein (MEPE), and dentin sialophosphoprotein (DSPP)] and certain MMPs were determined using a commercial cancer array. EXPERIMENTAL DESIGN Cancer profiling arrays containing normalized cDNA from both tumor and corresponding normal tissues from 241 individual patients were used to screen for SIBLING and MMP expression in nine distinct cancer types. RESULTS Significantly elevated expression levels were observed for BSP in cancer of the breast, colon, stomach, rectum, thyroid, and kidney; OPN in cancer of the breast, uterus, colon, ovary, lung, rectum, and thyroid; DMP1 in cancer of the breast, uterus, colon, and lung; and dentin sialophosphoprotein in breast and lung cancer. The degree of correlation between a SIBLING and its partner MMP was found to be significant within a given cancer type (e.g., BSP and MMP-2 in colon cancer, OPN and MMP-3 in ovarian cancer; DMP1 and MMP-9 in lung cancer). The expression levels of SIBLINGs were distinct within subtypes of cancer (e.g., breast ductal tumors compared with lobular tumors). In general, SIBLING expression increased with cancer stage for breast, colon, lung, and rectal cancer. CONCLUSIONS These results suggest SIBLINGs as potential markers of early disease progression in a number of different cancer types, some of which currently lack vigorous clinical markers.
Collapse
Affiliation(s)
- Larry W Fisher
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
27
|
Chen S, Inozentseva-Clayton N, Dong J, Gu TT, MacDougall M. Binding of two nuclear factors to a novel silencer element in human dentin matrix protein 1 (DMP1) promoter regulates the cell type-specific DMP1 gene expression. J Cell Biochem 2005; 92:332-49. [PMID: 15108359 DOI: 10.1002/jcb.20051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
DMP1 is an acidic phosphorylated protein with the spatial and temporal expression that is largely restricted to bone and tooth tissues. The biological function of DMP1 is associated with biomineralization of bone, cartilage and tooth development. To study the cell-specific expression of DMP1, a 2,512 bp upstream segment of the human gene was isolated and characterized. A series of progressive deletions of the human DMP1 5' flanking sequence were ligated to the luciferase reporter gene, and their promoter activities examined in transfected human osteoblast-like (MG-63) and dental pulp (HDP-D) cells that express DMP1 and hepatic (HepG2) and uterine (HeLa) cells lacking DMP1 expression. A critical cis-regulatory element located between nt -150 and -63 was found to act as a specific silencer responsible for the negative regulation of DMP1 in HepG2 and HeLa cells. The transcriptional activity of this element in MG-63 and HDP-D cells had a 5-7-fold increase than that observed in HepG2 and HeLa cells. Electrophoretic mobility shift assays (EMSAs) showed that a 6-bp DNA sequence in this element was bound by two nuclear factors that are expressed at high levels in HepG2 and HeLa versus MG-63 and HDP-D cells. Competitive assays by EMSAs suggest that the 6-bp core DNA sequence, AG(T/C)C(A/G)C, is a novel DNA-protein binding site and conserved with high identity in reported DMP1 promoters for all species. Furthermore, point mutations of the core sequence caused a marked increase of DMP1 promoter activity in HepG2 and HeLa cells. We speculate that this silencing cis-element may play a critical role in the regulation of DMP1 cell-specific expression.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Pediatric Dentistry, Dental School, The University of Texas Health Science Center at San Antonio, Texas 78229-3900, USA.
| | | | | | | | | |
Collapse
|
28
|
Dong J, Gu T, Jeffords L, MacDougall M. Dentin phosphoprotein compound mutation in dentin sialophosphoprotein causes dentinogenesis imperfecta type III. Am J Med Genet A 2004; 132A:305-9. [PMID: 15690376 DOI: 10.1002/ajmg.a.30460] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A rare compound mutation involving a 36 bp deletion and 18 bp insertion within exon 5 of the dentin sialophosphoprotein (DSPP) gene has been identified in a family with dentinogenesis imperfecta type III (DGI-III). The DSPP gene encodes two major tooth matrix proteins dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). DSPP mutations associated with DGI-III results in an in frame truncation of the serine aspartic acid triplet repeat found in DPP near the highly conserved carboxyl terminal region shortening the protein by six amino acids. Clinically this family presents with discolored amber opalescent teeth and severe attrition of the tooth structure. This study is the first report of a mutation within DPP associated with a genetic dentin disease. Our study indicates that DGI-III is allelic with some forms of DGI-II with and without progressive hearing loss and dentin dysplasia type II that have been shown to be caused by mutations within the DSP coding or signal peptide regions.
Collapse
Affiliation(s)
- Juan Dong
- Department of Pediatric Dentistry, Dental School, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | |
Collapse
|
29
|
Qin C, Brunn JC, Cook RG, Orkiszewski RS, Malone JP, Veis A, Butler WT. Evidence for the proteolytic processing of dentin matrix protein 1. Identification and characterization of processed fragments and cleavage sites. J Biol Chem 2003; 278:34700-8. [PMID: 12813042 DOI: 10.1074/jbc.m305315200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Full-length cDNA coding for dentin matrix protein 1 (DMP1) has been cloned and sequenced, but the corresponding complete protein has not been isolated. In searching for naturally occurring DMP1, we recently discovered that the extracellular matrix of bone contains fragments originating from DMP1. Shortened forms of DMP1, termed 37K and 57K fragments, were treated with alkaline phosphatase and then digested with trypsin. The resultant peptides were purified by a two-dimensional method: size exclusion followed by reversed-phase high performance liquid chromatography. Purified peptides were sequenced by Edman degradation and mass spectrometry, and the sequences compared with the DMP1 sequence predicted from cDNA. Extensive sequencing of tryptic peptides revealed that the 37K fragments originated from the NH2-terminal region, and the 57K fragments were from the COOH-terminal part of DMP1. Phosphate analysis indicated that the 37K fragments contained 12 phosphates, and the 57K fragments had 41. From 37K fragments, two peptides lacked a COOH-terminal lysine or arginine; instead they ended at Phe173 and Ser180 and were thus COOH termini of 37K fragments. Two peptides were from the NH2 termini of 57K fragments, starting at Asp218 and Asp222. These findings indicated that DMP1 is proteolytically cleaved at four bonds, Phe173-Asp174, Ser180-Asp181, Ser217-Asp218, and Gln221-Asp222, forming eight fragments. The uniformity of cleavages at the NH2-terminal peptide bonds of aspartyl residues suggests that a single proteinase is involved. Based on its reported specificity, we hypothesize that these scissions are catalyzed by PHEX protein. We envision that the proteolytic processing of DMP1 plays a crucial role during osteogenesis and dentinogenesis.
Collapse
Affiliation(s)
- Chunlin Qin
- Department of Basic Sciences, The University of Texas-Houston Health Science Center, Dental Branch, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Hecker A, Testenière O, Marin F, Luquet G. Phosphorylation of serine residues is fundamental for the calcium-binding ability of Orchestin, a soluble matrix protein from crustacean calcium storage structures. FEBS Lett 2003; 535:49-54. [PMID: 12560077 DOI: 10.1016/s0014-5793(02)03856-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Orchestia cavimana is a terrestrial crustacean, which cyclically stores calcium in diverticula of the midgut, in the form of calcified amorphous concretions. These concretions are associated with a proteinaceous matrix, the main constituent of the soluble matrix is Orchestin, an acidic calcium-binding protein [Testenière et al., Biochem. J. 361 (2002) 327-335]. In the present paper, we clearly demonstrate that Orchestin is phosphorylated on serine and tyrosine residues, but that calcium binding only occurs via the phosphoserine residues. To our knowledge, this is the first example of an invertebrate mineralization for which a post-translational modification is clearly related to an important function of a calcifying protein.
Collapse
Affiliation(s)
- Arnaud Hecker
- UMR CNRS 5548, Développement-Communication chimique, Université de Bourgogne, 6 Bd Gabriel, F-21000 Dijon, France
| | | | | | | |
Collapse
|
31
|
Fen JQ, Zhang J, Dallas SL, Lu Y, Chen S, Tan X, Owen M, Harris SE, MacDougall M. Dentin matrix protein 1, a target molecule for Cbfa1 in bone, is a unique bone marker gene. J Bone Miner Res 2002; 17:1822-31. [PMID: 12369786 DOI: 10.1359/jbmr.2002.17.10.1822] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dentin matrix protein 1 (Dmp1), a phosphoprotein highly linked to dentin formation, has also been reported to be expressed in the skeleton. However, the role of Dmp1 in skeletal tissues remains unclear. To clarify the role of Dmp1 in bone formation, we characterized the expression profile of Dmp1 in bone and cartilage and examined whether Dmp1 expression was regulated by core-binding factor a1 (Cbfa1). Studies of fetal rat calvarial (FRC) cell cultures showed that the expression of Dmp1 was associated closely with "bone nodule" formation and mineralization in vitro. In situ hybridization studies were performed to examine the spatial and temporal expression patterns of Dmp1 during development in mouse embryos from 12.5 day postcoitus (dpc) to 8 weeks postnatal; these studies showed that Dmp1 first appeared in hypertrophic cartilage cells, followed by osteoblasts, and later was expressed strongly in osteocytes. The expression profiles of Cbfa1 and Dmp1 overlapped in both cartilage and bone during development, with Cbfa1 preceding Dmp1. Examination of Dmp1 expression in Cbfa1-/- mice revealed that Dmp1 was absent in the developing bones of Cbfa1-null mice, whereas there was essentially no change in Dmp1 expression in the arrested tooth bud. Transient transfection studies showed forced expression of Dmp1 under the control of Cbfa1 and gel shift data indicated the presence of a functional osteocalcin-specific element (OSE)-2 response element in the Dmp1 proximal promoter region. However, in vitro promoter studies suggested that regulation of Dmp1 by Cbfa1 was not mediated by direct binding of Cbfa1 to this site and may be through indirect mechanisms. These studies highlight Dmp1 as a unique marker gene for osteoblastic differentiation. The close association of Dmp1 and Cbfa1 in the developing skeleton suggests that Dmp1 may play an important role in bone formation.
Collapse
Affiliation(s)
- Jian Q Fen
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, 64108, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jain A, Karadag A, Fohr B, Fisher LW, Fedarko NS. Three SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) enhance factor H's cofactor activity enabling MCP-like cellular evasion of complement-mediated attack. J Biol Chem 2002; 277:13700-8. [PMID: 11825898 DOI: 10.1074/jbc.m110757200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we have shown that two members of the newly named SIBLING (small integrin-binding ligand, N-linked glycoproteins) family of proteins, bone sialoprotein, and osteopontin, bound first to a cell surface receptor and then to complement Factor H thereby blocking the lytic activity of the alternative pathway of complement. Another member of this family, dentin matrix protein 1, is shown in this paper to be very similar to osteopontin in that it can bind strongly to Factor H (K(a) approximately 1 nm) and block the lytic activity through either the vitronectin receptor (alpha(V)beta(3) integrin) or CD44. Binding of Factor H to SIBLING localized to the cells surface was demonstrated by fluorescence-activated cell sorting. Extensive overlapping fragment analyses suggests that both dentin matrix protein 1 and osteopontin interact with cell surface CD44 through their amino termini. Similar fragments of bone sialoprotein, like the intact protein, did not functionally interact with CD44. All three proteins are shown to act in conjunction with Factor I, a serum protease that, when complexed to appropriate cofactors, stops the lytic pathway by digesting the bound C3b in a series of proteolytic steps. These results show that at least three members of this family confer membrane cofactor protein-like activity (MCP or CD46) upon cells expressing RGD-binding integrins or CD44. The required order of the assembly of the complex suggests that this cofactor activity is limited to short diffusional distances.
Collapse
Affiliation(s)
- Alka Jain
- Division of Geriatrics, Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
33
|
Harada N, Nagai T, Shimokawa O, Niikawa N, Matsumoto N. A 4q21-q22 deletion in a girl with severe growth retardation. Clin Genet 2002; 61:226-8. [PMID: 12000367 DOI: 10.1034/j.1399-0004.2002.610311.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Toyosawa S, Shintani S, Fujiwara T, Ooshima T, Sato A, Ijuhin N, Komori T. Dentin matrix protein 1 is predominantly expressed in chicken and rat osteocytes but not in osteoblasts. J Bone Miner Res 2001; 16:2017-26. [PMID: 11697797 DOI: 10.1359/jbmr.2001.16.11.2017] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although osteocytes are the most abundant cells in bone, little is known about their function, and no specific marker protein for osteocytes has been described. Dentin matrix protein 1 (DMP1) is an acidic phosphoprotein expressed in tooth organ and bone. Our previous work showed that in the chicken, which is not capable of forming tooth, DMPI messenger RNA (mRNA) is highly expressed in bone by Northern blot analysis. To clarify the significance of DMP1 expression in bone, the expression of DMP1 mRNA and its protein was examined in the chicken and rat. In the chicken, DMPI mRNA was detected only in bone tissues and was localized in osteocytes and preosteocytes but not in osteoblasts. Similarly, in the rat, DMPI mRNA was predominantly expressed in osteocytes and preosteocytes in bone matrix but not in osteoblasts located at the bone surface. Antiserum was raised against the peptide from rat DMP1, and the localization of DMP1 was examined by immunohistochemistry. In the development of bone, DMP1 was first detected in newly formed bone matrix after osteoblastic cells had been embedded within it. After the appearance of typical osteocytes, DMP1 was localized in the pericellular bone matrix of osteocytes, including their processes. These data show that DMP1 is a bone matrix protein specifically expressed in osteocytes and preosteocytes and suggest that DMP1 plays a role in bone homeostasis because of its high calcium ion-binding capacity.
Collapse
Affiliation(s)
- S Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, Fu G, Qian M, Yang J, Shi Y, Hu L, Han B, Wang Z, Huang W, Liu J, Chen Z, Zhao G, Kong X. Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP. Nat Genet 2001; 27:201-4. [PMID: 11175790 DOI: 10.1038/84848] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dentinogenesis imperfecta 1 (DGI1, MIM 125490) is an autosomal dominant dental disease characterized by abnormal dentin production and mineralization. The DGI1 locus was recently refined to a 2-Mb interval on 4q21 (ref. 1). Here we study three Chinese families carrying DGI1. We find that the affected individuals of two families also presented with progressive sensorineural high-frequency hearing loss (gene DFNA39). We identified three disease-specific mutations within the dentin sialophosphoprotein gene (DSPP) in these three families. We detected a G-->A transition at the donor-splicing site of intron 3 in one family without DFNA39, a mutation predicted to result in the skipping of exon 3. In two other families affected with both DGI1 and DFNA39, however, we identified two independent nucleotide transversions in exons 2 and 3 of DSPP, respectively, that cause missense mutations of two adjacent amino-acid residues in the predicted transmembrane region of the protein. Moreover, transcripts of DSPP previously reported to be expressed specifically in teeth are also detected in the inner ear of mice. We have thus demonstrated for the first time that distinct mutations in DSPP are responsible for the clinical manifestations of DGI1 with or without DFNA39.
Collapse
Affiliation(s)
- S Xiao
- Shanghai Research Center of Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang X, Zhao J, Li C, Gao S, Qiu C, Liu P, Wu G, Qiang B, Lo WH, Shen Y. DSPP mutation in dentinogenesis imperfecta Shields type II. Nat Genet 2001; 27:151-2. [PMID: 11175779 DOI: 10.1038/84765] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We identified a nonsense mutation (Gln45stop) in exon 3 of the dentin sialophosphoprotein (DSPP) gene in a Chinese family with dentinogenesis imperfecta Shields type II (DGI-II), in which the affected members showed discoloration and severe attrition of their teeth, with obliterated pulp chambers.
Collapse
Affiliation(s)
- X Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fisher LW, Torchia DA, Fohr B, Young MF, Fedarko NS. Flexible structures of SIBLING proteins, bone sialoprotein, and osteopontin. Biochem Biophys Res Commun 2001; 280:460-5. [PMID: 11162539 DOI: 10.1006/bbrc.2000.4146] [Citation(s) in RCA: 461] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone sialoprotein (BSP) and osteopontin (OPN) are two members of the SIBLING (Small Integrin-Binding LIgand, N-linked Glycoprotein) family of genetically related proteins that are clustered on human chromosome 4. We present evidence that this entire family is the result of duplication and subsequent divergent evolution of a single ancient gene. The solution structures of these two post-translationally modified recombinant proteins were solved by one dimensional proton NMR and transverse relaxation times. The polypeptide backbones of both free BSP and OPN rapidly sample an ensemble of conformations consistent with them both being completely unstructured in solution. This flexibility appears to enable these relatively small glycoproteins to rapidly associate with a number of different binding partners including other proteins as well as the mineral phase of bones and teeth. These proteins often function by bridging two proteins of fixed structures into a biologically active complex.
Collapse
Affiliation(s)
- L W Fisher
- Craniofacial and Skeletal Diseases Branch, NIH, Bethesda, Maryland, 20892-4320, USA.
| | | | | | | | | |
Collapse
|
38
|
Petersen DN, Tkalcevic GT, Mansolf AL, Rivera-Gonzalez R, Brown TA. Identification of osteoblast/osteocyte factor 45 (OF45), a bone-specific cDNA encoding an RGD-containing protein that is highly expressed in osteoblasts and osteocytes. J Biol Chem 2000; 275:36172-80. [PMID: 10967096 DOI: 10.1074/jbc.m003622200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We describe the cloning and characterization of a novel bone-specific cDNA predicted to encode an extracellular matrix protein. This cDNA was identified by subtractive hybridization based upon its high expression in bone marrow-derived osteoblasts. By Northern blot analysis, we detected a single 2-kilobase mRNA transcript in bone, whereas no expression was detected in other tissues. Immunohistochemistry revealed that the protein was expressed highly in osteocytes within trabecular and cortical bone. RNA and protein expression analysis using in vivo marrow ablation as a model of bone remodeling demonstrated that this gene was expressed only in cells that were embedded within bone matrix in contrast to the earlier expression of known osteoblast markers. The cDNA was predicted to encode a serine/glycine-rich secreted peptide containing numerous potential phosphorylation sites and one RGD sequence motif. The interaction of RGD domain-containing peptides with integrins has been shown previously to regulate bone remodeling by promoting recruitment, attachment, and differentiation of osteoblasts and osteoclasts. Secretion of this RGD-containing protein from osteocytes has the potential to regulate cellular activities within the bone environment and thereby may impact bone homeostasis. We propose the name OF45 (osteoblast/osteocyte factor of 45 kDa) for this novel cDNA.
Collapse
Affiliation(s)
- D N Petersen
- Department of Cardiovascular & Metabolic Diseases, Global Research and Development, Pfizer, Inc., Groton, Connecticut 06340, USA
| | | | | | | | | |
Collapse
|
39
|
To the Editor. J Dent Res 2000. [DOI: 10.1177/00220345000790080201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Srinivasan R, Chen B, Gorski JP, George A. Recombinant expression and characterization of dentin matrix protein 1. Connect Tissue Res 2000; 40:251-8. [PMID: 10757113 DOI: 10.3109/03008209909000703] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dentin matrix protein 1 (DMP1) is an extracellular matrix noncollagenous protein (NCP) initially isolated from dentin and now found to be present in calcified tissues like calvaria and long bone. The characteristic feature of DMP1 is that it contains a large number of acidic domains and has properties which implicate it as a key participant in regulating matrix mineralization. The level of DMP1 in the tissue is sparse and it is not easily isolated from dentin because it copurifies with other dentin NCPs. The exact function of DMP1 is not known and this is due to the inherent difficulty of obtaining enough protein from the mineralized tissues. In order to understand the physiologic role for DMP1 during the formation of mineralized tissues we have produced milligram quantities of recombinant DMP1 in E. coli. The objective of this work was: (1) to prepare unmodified apoprotein so that it could be used for studying the function of DMP1; and (2) to prepare polyclonal antibody against the recombinant DMP1 antigen. The DMP1 polyclonal antibody did not cross-react with other NCPs present in dentin or with bone acidic glycoprotein-75 (BAG-75) present in the bone matrix, confirming the specificity of this antibody and thus making it a valuable tool to determine the in vivo function of DMP1.
Collapse
Affiliation(s)
- R Srinivasan
- Department of Oral Biology, College of Dentistry, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
41
|
Kulkarni GV, Chen B, Malone JP, Narayanan AS, George A. Promotion of selective cell attachment by the RGD sequence in dentine matrix protein 1. Arch Oral Biol 2000; 45:475-84. [PMID: 10775676 DOI: 10.1016/s0003-9969(00)00010-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dentine matrix protein 1 (DMP1) is an important component of the non-collagenous extracellular matrix of developing teeth and bones. Functions of DMP1 other than a putative role in the initiation of mineralization are largely unknown. A first report on the DNA and deduced amino acid sequence showed that DMP1 has a single Arg-Gly-Asp (RGD) sequence. Here, whether the RGD sequence functions as a cell-attachment domain was tested. Using site-directed mutagenesis, two mutant recombinant DMP1 proteins with specific alterations at the RGD site were created. In the first mutant protein the RGD sequence was altered to a RGE (RGE) sequence; in the second the RGD domain was deleted (DEL). Mutated proteins were confirmed to be DMP1 by partial protein sequencing and dot-blot analysis with an anti-DMP1 antibody. Attachment of RPC-C2A (dental pulp cells), MC3T3-E1 (calvarial cells) or CHO (Chinese hamster ovary cells) to non-tissue-culture plastic coated with either DMP1, RGE or DEL proteins was compared. Bovine serum albumin and fibronectin served as negative and positive controls, respectively. The RGD-containing native DMP1 protein effectively allowed cell attachment and spreading. The RGE and DEL proteins with the altered and deleted RGD sites were significantly less effective in promoting cell attachment than the recombinant DMP1. Both RPC-C2A pulp cells and MC3T3-E1 cells showed similar reductions in attachment to mutated proteins. Treatment of RPC-C2A cells with a RGD-containing peptide prior to plating on DMP1-coated chambers abolished DMP1-mediated cell attachment. In contrast to RPC-C2A and MC3T3-E1cells, CHO cells, which normally do not express DMP1, failed to attach to DMP1. These data demonstrate that DMP1 promotes cell attachment through the RGD domain and that the attachment is cell- and tissue-specific. A basis for these observations is proposed using computer-generated models of the polypeptides within the DMP1 protein containing the RGD, RGE or DEL sequences.
Collapse
Affiliation(s)
- G V Kulkarni
- Room 455D, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Canada
| | | | | | | | | |
Collapse
|
42
|
Thotakura SR, Karthikeyan N, Smith T, Liu K, George A. Cloning and characterization of rat dentin matrix protein 1 (DMP1) gene and its 5'-upstream region. J Biol Chem 2000; 275:10272-7. [PMID: 10744713 DOI: 10.1074/jbc.275.14.10272] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat dentin matrix protein 1 (DMP1) is a highly acidic 58-kDa phosphoprotein, and DMP1 was the first gene to be cloned from the mineralized dentin matrix. It exists as a highly phosphorylated protein with a pI of 3 in the dentin matrix and, in that state, might have an important role in the mineralization process. The spatio-temporal distribution during development indicates that the expression of this gene is tightly regulated in the odontoblasts. It is now known that DMP1 is not unique to dentin but is present in other mineralized tissues like long bone, calvaria, and ameloblasts. To study the transcriptional regulation and the function of DMP1 in these tissues, a genomic clone with a functional promoter, introns, and exons was isolated. Sequence analysis showed that the rat DMP1 gene is comprised of six exons and five introns and spans approximately 13 kilobases (kb). Exon 1 contains the 5'-untranslated sequences. Exon 2 encodes a total of 18 amino acids including the 16 amino acids of the signal sequence. Exons 3-5 encode 16, 11, and 15 amino acids, respectively. Exon 6 contains 1.3 kb of the coding sequence with the RGD domain, stop codon, and the 3'-untranslated region (1.1 kb). We have mapped two transcription start sites within the DMP1 promoter that are 280 and 321 base pairs, respectively, from the ATG start codon. The location of functional elements within the 5'-upstream DMP1 DNA fragment was determined by cloning it into a luciferase reporter gene. Transient transfection and luciferase assays revealed that the 3 kb fragment has the ability to drive the luciferase gene. However, this promoter activity was restricted to MC3T3-E1 cells (an osteoblast cell lineage). The promoter was silent in Chinese hamster ovary cells (an epithelial cell lineage), indicating the necessity of tissue-specific factors to drive the transcription.
Collapse
Affiliation(s)
- S R Thotakura
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
43
|
Thotakura SR, Mah T, Srinivasan R, Takagi Y, Veis A, George A. The non-collagenous dentin matrix proteins are involved in dentinogenesis imperfecta type II (DGI-II). J Dent Res 2000; 79:835-9. [PMID: 10765957 DOI: 10.1177/00220345000790030901] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dentinogenesis Imperfecta type II (DGI-II) is a localized form of mesodermal dysplasia of the dentin affecting both the primary and permanent dentitions. This is an autosomal-dominant disease in which there is a disorder in dentin mineralization. Several studies have localized DGI-II to human chromosome 4 in the region 4q 12-21. Many ECM genes-such as OPN, DMP1, DMP2, DMP3 (DSPP), and BSP-have been mapped to the same locus. Biochemical studies indicated that dentin phosphophoryn (DMP2) might be a candidate gene in DGI-II. In this study, we have used histological and RFLP analyses of tissues from a DGI-II-affected patient, as compared with two normal controls, to determine if DMP1, 2, or 3 was linked to DGI-II. The histology of the affected tooth was very different in the DGI-II patient as compared with the normals. In particular, the dentinal tubules in the DGI-II patient were very irregular, which could be the result of perturbations in the process of dentin formation. Patient and control DNA samples were digested with EcoRI or PstI and Southern-hybridized with the DMP1, DMP2, and DMP3 cDNAs. Few differences in the restriction pattern were observed between affected and normal samples for DMP1 and DMP3-3' region (phosphophoryn-like sequences) probes. On the other hand, DMP2 showed a dramatic shift in the restriction pattern in DGI-II. This study suggests that the different restriction enzyme digestion profiles of the DNA from the DGI-II patient, as probed by DMP2, might be related to the defective mineralization of dentin in DGI-II.
Collapse
Affiliation(s)
- S R Thotakura
- Department of Oral Biology, School of Dentistry, University of Illinois at Chicago, 60612, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Several clones containing DMP1 cDNA were isolated from a caiman tooth library by screening with a platypus DMP1 probe. The caiman DMP1 shows little amino acid sequence similarity to mammalian DMP1s for much of its length. A few highly conserved regions can, however, be identified that correspond to the slowly evolving parts of the corresponding mammalian genes. Southern blot analysis using probes comprising either conserved regions or longer segments of the gene indicates that only a single DMP1 locus exists. In coding regions, exon-intron boundaries and reading frames are shared by caiman and mammalian genes with the exception of exons 1 and 5, which are longer in the caiman. The repetitive sequence of the last exon is shared by mammals and caiman as are the high Ser content and acidity due to a high proportion of Asp and Glu residues. The conserved mammalian cell-attachment signal Arg-Gly-Asp is absent in the caiman DMP1. In contrast to the amelogenin gene, the DMP1 gene appears to evolve rapidly in vertebrates.
Collapse
Affiliation(s)
- S Toyosawa
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, D-72076, Tübingen, Germany
| | | | | | | |
Collapse
|
45
|
MacDougall M, Jeffords LG, Gu TT, Knight CB, Frei G, Reus BE, Otterud B, Leppert M, Leach RJ. Genetic linkage of the dentinogenesis imperfecta type III locus to chromosome 4q. J Dent Res 1999; 78:1277-82. [PMID: 10371253 DOI: 10.1177/00220345990780061301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dentinogenesis imperfecta type III (DGI-III) is an autosomal-dominant disorder of dentin formation which appears in a tri-racial southern Maryland population known as the "Brandywine isolate". This disease has suggestive evidence of linkage to the long arm of human chromosome 4 (LOD score of 2.0) in a family presenting with both juvenile periodontitis and DGI-III. The purpose of this study was to screen a family presenting with only DGI-III to determine if this locus was indeed on chromosome 4q. Furthermore, we wanted to determine if DGI-III co-localized with dentinogenesis imperfecta type II (DGI-II), which has been localized to 4q21-q23. Therefore, a large kindred from the Brandywine isolate was identified, oral examination performed, and blood samples collected from 21 family members. DNA from this family was genotyped with 6 highly polymorphic markers that span the DGI-II critical region of chromosome 4q. Analysis of the data yielded a maximum two-point LOD score of 4.87 with a marker for the dentin matrix protein 1 (DMP1) locus, a gene contained in the critical region for DGI-II. Our results demonstrated that the DGI-III locus is on human chromosome 4q21 within a 6.6 cM region that overlaps the DGI-II critical region. These results are consistent with the hypothesis that DGI-II is either an allelic variant of DGI-III or the result of mutations in two tightly linked genes.
Collapse
Affiliation(s)
- M MacDougall
- Department of Pediatric Dentistry, University of Texas Health Science Center at San Antonio, 78284-7888, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aplin HM, Hirst KL, Dixon MJ. Refinement of the dentinogenesis imperfecta type II locus to an interval of less than 2 centiMorgans at chromosome 4q21 and the creation of a yeast artificial chromosome contig of the critical region. J Dent Res 1999; 78:1270-6. [PMID: 10371252 DOI: 10.1177/00220345990780061201] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dentinogenesis imperfecta type II is an autosomal-dominant disorder of dentin formation which has been mapped to the 6.6 centiMorgan D4S2691-D4S2692 interval at human chromosome 4q21. In the current investigation, the use of four short tandem repeat polymorphisms has allowed the critical region to be refined to an interval of less than 2 centiMorgans defined by recombination events in unrelated, affected individuals from two families both of which show independent evidence for linkage to chromosome 4q21. The creation of a yeast artificial chromosome contig of this newly defined interval has allowed us to demonstrate that the critical region encompasses approximately 2 Mb of DNA and that the dentin-specific gene, dentin sialoprotein, maps to this interval within 300 kb of dentin matrix acidic phosphoprotein 1 and bone sialoprotein. Moreover, dentin sialoprotein shows no recombination with the dentinogenesis imperfecta type II phenotype. Dentin sialoprotein is therefore a candidate for the dentinogenesis imperfecta type II locus.
Collapse
Affiliation(s)
- H M Aplin
- School of Biological Sciences and Department of Dental Medicine, University of Manchester, United Kingdom
| | | | | |
Collapse
|
47
|
Lumsden JM, Lord EA, Hirst KL, Dixon MJ, Montgomery GW. Mapping of dentin-specific acidic phosphoprotein and integrin-binding sialoprotein in sheep defines an inversion breakpoint with respect to human chromosome 4Q. Genet Mol Biol 1999. [DOI: 10.1590/s1415-47571999000100007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genes from sheep chromosome 6 map to human chromosome 4 in the region extending from 4p16 to 4q26. However, there is an inversion of gene order in the central portion of the chromosome with one breakpoint close to secreted phosphoprotein 1 (SPP1). Genes for SPP1, integrin-binding sialoprotein (IBSP) and dentin-specific acidic phosphoprotein (DMP1) are located close together in a YAC contig in the human. RFLP markers were developed for DMP1 and IBSP in sheep and located on the sheep linkage map to further define the breakpoint region. There were no recombinants between SPP1 and IBSP indicating that these loci are close together in sheep, as in humans. DMP1 was located approximately 80 cM from SPP1 in sheep, 7 cM from the microsatellite BMC4203. In the human YAC contig, the order of these genes is SPP1-IBSP-DMP1 with 340 kb separating SPP1 and IBSP and 150 kb between IBSP and DMP1. Therefore, one breakpoint for the inversion in gene order between the sheep and the human has been narrowed to a region of 150 kb on the human map.
Collapse
|
48
|
MacDougall M, Gu TT, Luan X, Simmons D, Chen J. Identification of a novel isoform of mouse dentin matrix protein 1: spatial expression in mineralized tissues. J Bone Miner Res 1998; 13:422-31. [PMID: 9525343 DOI: 10.1359/jbmr.1998.13.3.422] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dentin matrix protein 1 (Dmp1) is an acidic phosphoprotein first identified by cDNA cloning from a rat tooth library. Northern blot hybridization of a variety of tissues detected Dmp1 mRNAs only in odontoblasts, suggesting that this protein was odontoblast specific. In situ hybridization studies showed expression of Dmp1 in odontoblasts with transient expression in secretory ameloblasts. The purpose of this study was to isolate and characterize a mouse Dmp1 cDNA and determine its spatial expression pattern related to other mineralizing tissues. A mouse molar cDNA library was screened with a 32P-labeled Dmp1 polymerase chain reaction amplification product in order to isolate a full-length clone. DNA sequence analysis of the largest mouse Dmp1 cDNA (2802 base pairs [bp]) revealed an open reading frame of 1509 nucleotides encoding a 503 amino acid protein with a single polyadenylation signal. Comparison with rat and bovine Dmp1 sequence showed high homology and the identification of a 45 bp (15 amino acid) insert, representing an alternative spliced mRNA. This 45 bp segment was shown to represent a small exon by DNA analysis of a mouse genomic Dmp1 clone. In situ hybridization studies revealed a much broader Dmp1 tissue expression pattern than previously reported. Dmp1 transcripts were detected in the odontoblast and ameloblasts, osteoblasts, and cementoblasts. Our data indicate that Dmp1 is alternatively spliced, and the primary full-length transcript contains a 45 bp insert which is encoded by a small exon. Therefore, Dmp1 is not a tooth-specific protein but rather is expressed in a number of mineralizing tissues including enamel, bone, and cementum.
Collapse
Affiliation(s)
- M MacDougall
- Department of Pediatric Dentistry, Dental School, University of Texas Health Science Center at San Antonio, 78284-7888, USA
| | | | | | | | | |
Collapse
|
49
|
D'Souza RN, Cavender A, Sunavala G, Alvarez J, Ohshima T, Kulkarni AB, MacDougall M. Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res 1997; 12:2040-9. [PMID: 9421236 DOI: 10.1359/jbmr.1997.12.12.2040] [Citation(s) in RCA: 267] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the precise mechanisms of the conversion of predentin to dentin are not well understood, several lines of evidence implicate the noncollagenous proteins (NCPs) as important regulators of dentin biomineralization. Here we compared the in vivo temporospatial expression patterns of two dentin NCP genes, dentin matrix protein 1 (Dmp1), and dentin sialophosphoprotein (DSPP) in developing molars. Reverse transcription-polymerase chain reaction was performed on embryonic day 13 to 1-day-old first molars using Dmp1- and DSPP-specific primer sets. Dmp1 transcripts appeared at the late bud stage, while DSPP mRNA was seen at the cap stage. Expression of both genes was sustained throughout odontogenesis. In situ hybridization analysis revealed interesting differences in the expression patterns of these genes. While Dmp1 and DSPP showed coexpression in young odontoblasts before the start of mineralization, the expression of these genes was notably distinct at later stages. Dmp1 expression decreased in secretory odontoblasts after the appearance of mineral, while high levels of DSPP were sustained in odontoblasts. In early secretory ameloblasts, DSPP expression was transient and down-regulated with the appearance ofdentin matrix. Interestingly, Dmp1 expression became evident in ameloblasts during the maturative phase of amelogenesis. In contrast to Dspp expression that was tooth-specific, Dmp1 was expressed by osteoblasts throughout ossification in the skeleton. Probes directed to the "DSP" and "DPP" regions of the DSPP gene showed identical patterns of mRNA expression. These data show that the developmental expression patterns of Dmp1 and DSPP are distinct, implying that these molecules serve different biological functions in vivo.
Collapse
Affiliation(s)
- R N D'Souza
- Department of Basic Sciences, Dental Branch, University of Texas Houston Health Science Center 77030, USA
| | | | | | | | | | | | | |
Collapse
|