1
|
Capulli M, Olstad OK, Onnerfjord P, Tillgren V, Muraca M, Gautvik KM, Heinegård D, Rucci N, Teti A. The C-terminal domain of chondroadherin: a new regulator of osteoclast motility counteracting bone loss. J Bone Miner Res 2014; 29:1833-46. [PMID: 24616121 DOI: 10.1002/jbmr.2206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 01/23/2014] [Accepted: 02/06/2014] [Indexed: 11/12/2022]
Abstract
Chondroadherin (CHAD) is a leucine-rich protein promoting cell attachment through binding to integrin α2 β1 and syndecans. We observed that CHAD mRNA and protein were lower in bone biopsies of 50-year-old to 65-year-old osteoporotic women and in bone samples of ovariectomized mice versus gender/age-matched controls, suggesting a role in bone metabolism. By the means of an internal cyclic peptide (cyclicCHAD), we observed that its integrin binding sequence impaired preosteoclast migration through a nitric oxide synthase 2-dependent mechanism, decreasing osteoclastogenesis and bone resorption in a concentration-dependent fashion, whereas it had no effect on osteoblasts. Consistently, cyclicCHAD reduced transcription of two nitric oxide downstream genes, migfilin and vasp, involved in cell motility. Furthermore, the nitric oxide donor, S-nitroso-N-acetyl-D,L-penicillamine, stimulated preosteoclast migration and prevented the inhibitory effect of cyclicCHAD. Conversely, the nitric oxide synthase 2 (NOS2) inhibitor, N5-(1-iminoethyl)-l-ornithine, decreased both preosteoclast migration and differentiation, confirming a role of the nitric oxide pathway in the mechanism of action triggered by cyclicCHAD. In vivo, administration of cyclicCHAD was well tolerated and increased bone volume in healthy mice, with no adverse effect. In ovariectomized mice cyclicCHAD improved bone mass by both a preventive and a curative treatment protocol, with an effect in line with that of the bisphosphonate alendronate, that was mimicked by the NOS2 inhibitor [L-N6-(1-Iminoethyl)-lysine.2 dihydrochloride]. In both mouse models, cyclicCHAD reduced osteoclast and bone resorption without affecting osteoblast parameters and bone formation. In conclusion, CHAD is a novel regulator of bone metabolism that, through its integrin binding domain, inhibits preosteoclast motility and bone resorption, with a potential translational impact for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Mattia Capulli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Hessle L, Stordalen GA, Wenglén C, Petzold C, Tanner EK, Brorson SH, Baekkevold ES, Önnerfjord P, Reinholt FP, Heinegård D. The skeletal phenotype of chondroadherin deficient mice. PLoS One 2013; 8:e63080. [PMID: 23755099 PMCID: PMC3670915 DOI: 10.1371/journal.pone.0063080] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 03/24/2013] [Indexed: 11/27/2022] Open
Abstract
Chondroadherin, a leucine rich repeat extracellular matrix protein with functions in cell to matrix interactions, binds cells via their α2β1 integrin as well as via cell surface proteoglycans, providing for different sets of signals to the cell. Additionally, the protein acts as an anchor to the matrix by binding tightly to collagens type I and II as well as type VI. We generated mice with inactivated chondroadherin gene to provide integrated studies of the role of the protein. The null mice presented distinct phenotypes with affected cartilage as well as bone. At 3–6 weeks of age the epiphyseal growth plate was widened most pronounced in the proliferative zone. The proteome of the femoral head articular cartilage at 4 months of age showed some distinct differences, with increased deposition of cartilage intermediate layer protein 1 and fibronectin in the chondroadherin deficient mice, more pronounced in the female. Other proteins show decreased levels in the deficient mice, particularly pronounced for matrilin-1, thrombospondin-1 and notably the members of the α1-antitrypsin family of proteinase inhibitors as well as for a member of the bone morphogenetic protein growth factor family. Thus, cartilage homeostasis is distinctly altered. The bone phenotype was expressed in several ways. The number of bone sialoprotein mRNA expressing cells in the proximal tibial metaphysic was decreased and the osteoid surface was increased possibly indicating a change in mineral metabolism. Micro-CT revealed lower cortical thickness and increased structure model index, i.e. the amount of plates and rods composing the bone trabeculas. The structural changes were paralleled by loss of function, where the null mice showed lower femoral neck failure load and tibial strength during mechanical testing at 4 months of age. The skeletal phenotype points at a role for chondroadherin in both bone and cartilage homeostasis, however, without leading to altered longitudinal growth.
Collapse
Affiliation(s)
- Lovisa Hessle
- Sections of Molecular Skeletal Biology and Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Gunhild A. Stordalen
- Department of Pathology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- * E-mail:
| | - Christina Wenglén
- Sections of Molecular Skeletal Biology and Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Elizabeth K. Tanner
- School of Engineering, University of Glasgow, Glasgow, United Kingdom
- Section of Orthopaedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sverre-Henning Brorson
- Department of Pathology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Espen S. Baekkevold
- Department of Pathology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Patrik Önnerfjord
- Sections of Molecular Skeletal Biology and Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Finn P. Reinholt
- Department of Pathology, University of Oslo, and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Dick Heinegård
- Sections of Molecular Skeletal Biology and Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Carpenter S, Carlson T, Dellacasagrande J, Garcia A, Gibbons S, Hertzog P, Lyons A, Lin LL, Lynch M, Monie T, Murphy C, Seidl KJ, Wells C, Dunne A, O'Neill LAJ. TRIL, a functional component of the TLR4 signaling complex, highly expressed in brain. THE JOURNAL OF IMMUNOLOGY 2009; 183:3989-95. [PMID: 19710467 DOI: 10.4049/jimmunol.0901518] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
TLR4 is the primary sensor of LPS. In this study, we describe for the first time TLR4 interactor with leucine-rich repeats (TRIL), which is a novel component of the TLR4 complex. TRIL is expressed in a number of tissues, most prominently in the brain but also in the spinal cord, lung, kidney, and ovary. TRIL is composed of a signal sequence, 13 leucine-rich repeats, a fibronectin domain, and a single transmembrane spanning region. TRIL is induced by LPS in the human astrocytoma cell line U373, in murine brain following i.p. injection, and in human PBMC. Endogenous TRIL interacts with TLR4 and this interaction is greatly enhanced following LPS stimulation. TRIL also interacts with the TLR4 ligand LPS. Furthermore, U373 cells stably overexpressing TRIL display enhanced cytokine production in response to LPS. Finally, knockdown of TRIL using small interfering RNA attenuates LPS signaling and cytokine production in cell lines, human PBMC, and primary murine mixed glial cells. These results demonstrate that TRIL is a novel component of the TLR4 complex which may have particular relevance for the functional role of TLR4 in the brain.
Collapse
Affiliation(s)
- Susan Carpenter
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wang W, Yang Y, Li L, Shi Y. Synleurin, a novel leucine-rich repeat protein that increases the intensity of pleiotropic cytokine responses. Biochem Biophys Res Commun 2003; 305:981-8. [PMID: 12767927 DOI: 10.1016/s0006-291x(03)00876-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have identified and characterized a novel single span transmembrane leucine-rich repeat protein, synleurin, that renders cells highly sensitive to the activation by cytokines and lipopolysaccharide (LPS). The major part of the extracellular domain consists of a leucine-rich repeats (LRR) cassette. The LRR central core has 12 analogous LRR repeating modules arranged in a seamless tandem array. The LRRs are most homologous to that of chondroadherin, insulin-like growth factor binding proteins, platelet glycoprotein V, slits, and toll-like receptors. Synleurin expression was detected at low levels in many tissues, including smooth muscle, brain, uterus, pancreas, cartilage, adipose, spleen, and testis. When synleurin is ecotopically expressed in transfected cells, the cells exhibit amplified responses to bFGF, EGF, PDGF-B, IGF-1, IGF-2, and LPS. Synleurin gene (slrn) maps to human chromosome at 5q12. The name synleurin reflects its synergistic effect on cytokine stimulation and its prominent leucine-rich repeats.
Collapse
Affiliation(s)
- Wei Wang
- Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|
5
|
Wiberg C, Heinegård D, Wenglén C, Timpl R, Mörgelin M. Biglycan organizes collagen VI into hexagonal-like networks resembling tissue structures. J Biol Chem 2002; 277:49120-6. [PMID: 12354766 DOI: 10.1074/jbc.m206891200] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of the leucine-rich repeat (LRR) proteins biglycan, decorin, and chondroadherin to interact with collagen VI and influence its assembly to supramolecular structures was studied by electron microscopy and surface plasmon resonance measurements in the BIAcore 2000 system. Biglycan showed a unique ability to organize collagen VI into extensive hexagonal-like networks over a time period of only a few minutes. Only the intact molecule, substituted with two dermatan sulfate chains, had this capacity. Intact decorin, with one dermatan sulfate chain only, was considerably less efficient, and aggregates of organized collagen VI were found only after several hours. Chondroadherin without glycosaminoglycan substitutions did not induce any ordered collagen VI organization. However, all three related LRR proteins were shown to interact with collagen VI using electron microscopy and surface plasmon resonance. Biglycan and decorin were exclusively found close to the N-terminal parts of the collagen VI tetramers, whereas chondroadherin was shown to bind close to both the N- and C-terminal parts of collagen VI. In the formed hexagonal networks, biglycan was localized to the intra-network junctions of the collagen VI filaments. This was demonstrated by electron microscopy after negative staining of gold-labeled biglycan in aggregation experiments with collagen VI.
Collapse
Affiliation(s)
- Charlotte Wiberg
- Department of Cell and Molecular Biology, University of Lund, BMC, S-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
6
|
Ameye L, Young MF. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 2002; 12:107R-16R. [PMID: 12213783 DOI: 10.1093/glycob/cwf065] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Small leucine-rich proteoglycans (SLRPs) are extracellular molecules that bind to TGFbetas and collagens and other matrix molecules. In vitro, SLRPs were shown to regulate collagen fibrillogenesis, a process essential in development, tissue repair, and metastasis. To better understand their functions in vivo, mice deficient in one or two of the four most prominent and widely expressed SLRPs (biglycan, decorin, fibromodulin, and lumican) were recently generated. All four SLRP deficiencies result in the formation of abnormal collagen fibrils. Taken together, the collagen phenotypes demonstrate a cooperative, sequential, timely orchestrated action of the SLRPs that altogether shape the architecture and mechanical properties of the collagen matrix. In addition, SLRP-deficient mice develop a wide array of diseases (osteoporosis, osteoarthritis, muscular dystrophy, Ehlers-Danlos syndrome, and corneal diseases), most of them resulting primarily from an abnormal collagen fibrillogenesis. The development of these diseases by SLRP-deficient mice suggests that mutations in SLRPs may be part of undiagnosed predisposing genetic factors for these diseases. Although the distinct phenotypes developed by the different singly deficient mice point to distinct in vivo function for each SLRP, the analysis of the double-deficient mice also demonstrates the existence of rescuing/compensation mechanisms, indicating some functional overlap within the SLRP family.
Collapse
Affiliation(s)
- Laurent Ameye
- Craniofacial and Skeletal Diseases Branch, Building 30 Room 225, NIDCR, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
7
|
Mansson B, Wenglén C, Mörgelin M, Saxne T, Heinegård D. Association of chondroadherin with collagen type II. J Biol Chem 2001; 276:32883-8. [PMID: 11445564 DOI: 10.1074/jbc.m101680200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chondroadherin is a cell binding, leucine-rich repeat protein found in the territorial matrix of articular cartilage. Several members of the leucine-rich repeat protein family present in the extracellular matrix of e.g. cartilage have been shown to interact with collagen and influence collagen fibrillogenesis. We show that complexes of monomeric collagen type II and chondroadherin can be released under non-denaturing conditions from articular cartilage treated with p-aminophenylmercuric acetate to activate resident matrix metalloproteinases. Purified complexes as well as complexes formed in vitro between recombinant chondroadherin and collagen type II were studied by electron microscopy. Chondroadherin was shown to bind to two sites on collagen type II. The interaction was characterized by surface plasmon resonance analysis showing K(D) values in the nanomolar range. Both chondroadherin and collagen interact with chondrocytes, partly via the same receptor, but give rise to different cellular responses. By also interacting with each other, a complex system is created which may be of functional importance for the communication between the cells and its surrounding matrix and/or in the regulation of collagen fibril assembly.
Collapse
Affiliation(s)
- B Mansson
- Department of Cell and Molecular Biology, Section for Connective Tissue Biology, Lund University, BMC, C12, SE-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
8
|
Matsushima N, Ohyanagi T, Tanaka T, Kretsinger RH. Super-motifs and evolution of tandem leucine-rich repeats within the small proteoglycans--biglycan, decorin, lumican, fibromodulin, PRELP, keratocan, osteoadherin, epiphycan, and osteoglycin. Proteins 2000; 38:210-25. [PMID: 10656267 DOI: 10.1002/(sici)1097-0134(20000201)38:2<210::aid-prot9>3.0.co;2-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Leucine-rich repeats (LRRs) with 20-30 amino acids in unit length are present in many proteins from prokaryotes to eukaryotes. The LRR-containing proteins include a family of nine small proteoglycans, forming three distinct subfamilies: class I contains biglycan/PG-I and decorin/PG-II; class II: lumican, fibromodulin, PRELP, keratocan, and osteoadherin; and class III: epiphycan/PG-Lb and osteoglycin or osteoinductive factor. Comparative sequence analysis of the 34 available protein sequences reveals that these proteoglycans have two types of LRRs, which we call S and T. The type S LRR is 21 residues long and has the consensus sequence of xxaPzxLPxxLxxLxLxxNxI. The type T LRR has 26 residues; its consensus sequence is zzxxaxxxxFxxaxxLxxLxLxxNxL. In both "x" indicates variable residue; "z" is frequently a gap; "a" is Val, Leu, or Ile; and I is Ile or Leu. These type S and TLRRs are ordered into two super-motifs--STT with about 73 residues in classes I and II and ST with about 47 residues in class III. The 12 LRRs in the small proteoglycans of I and II are best represented as (STT)4; the seven LRRs of class III as (ST)T(ST)2. Our analyses indicate that classes I/II and III evolved along different paths after the establishment of the precursor ST, and classes I and II also diverged after the establishment of the precursor (STT)4.
Collapse
Affiliation(s)
- N Matsushima
- School of Health Sciences, Sapporo Medical University, Hokkaido, Japan.
| | | | | | | |
Collapse
|
9
|
Sommarin Y, Wendel M, Shen Z, Hellman U, Heinegârd D. Osteoadherin, a cell-binding keratan sulfate proteoglycan in bone, belongs to the family of leucine-rich repeat proteins of the extracellular matrix. J Biol Chem 1998; 273:16723-9. [PMID: 9642227 DOI: 10.1074/jbc.273.27.16723] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoadherin is a recently described bone proteoglycan containing keratan sulfate. It promotes integrin (alphav beta3)-mediated cell binding (Wendel, M., Sommarin, Y., and Heinegârd, D. (1998) J. Cell Biol. 141, 839-847). The primary structure of bovine osteoadherin has now been determined by nucleotide sequencing of a cDNA clone from a primary bovine osteoblast expression library. The entire translated primary sequence corresponds to a 49,116-Da protein with a calculated isoelectric point for the mature protein of 5.2. The dominating feature is a central region consisting of 11 B-type, leucine-rich repeats ranging in length from 20 to 30 residues. The full, primary sequence contains four putative sites for tyrosine sulfation, three of which are at the N-terminal end of the molecule. There are six potential sites for N-linked glycosylation present. Osteoadherin shows highest sequence identity, 42%, to bovine keratocan and 37-38% identity to bovine fibromodulin, lumican, and human PRELP. Unique to osteoadherin is the presence of a large and very acidic C-terminal domain. The distribution of cysteine residues resembles that of other leucine-rich repeat proteins except for two centrally located cysteines. Northern blot analysis of RNA samples from various bovine tissues showed a 4.5-kilobase pair message for osteoadherin to be expressed in bone only. Osteoadherin mRNA was detected by in situ hybridization in mature osteoblasts located superficially on trabecular bone.
Collapse
Affiliation(s)
- Y Sommarin
- Department of Cellular and Molecular Biology, Section for Connective Tissue Biology, Lund University, S-221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|