1
|
Fang YL, Li N, Zhi XF, Zheng J, Liu Y, Pu LJ, Gu CY, Shu JB, Cai CQ. Discovery of specific mutations in spinal muscular atrophy patients by next-generation sequencing. Neurol Sci 2020; 42:1827-1833. [PMID: 32895776 DOI: 10.1007/s10072-020-04697-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
Spinal muscular atrophy (SMA) is a type of autosomal recessive genetic disease, which seriously threatens the health and lives of children and adolescents. We attempted to find some genes and mutations related to the onset of SMA. Eighty-three whole-blood samples were collected from 28 core families, including 28 probands with clinically suspected SMA (20 SMA patients, 5 non-SMA children, and 3 patients with unknown etiology) and their parents. The multiplex ligation probe amplification (MLPA) was performed for preliminary diagnosis. The high-throughput sequencing technology was used to conduct the whole-exome sequencing analysis. We analyzed the mutations in adjacent genes of SMN1 gene and the unique mutations that only occurred in SMA patients. According to the MLPA results, 20 probands were regarded as experimental group and 5 non-SMA children as control group. A total of 10 mutations were identified in the adjacent genes of SMN1 gene. GUSBP1 g.[69515863G>A], GUSBP1 g.[69515870C>T], and SMA4 g.[69515738C>A] were the top three most frequent sites. SMA4 g.[69515726A>G] and OCLN c.[818G>T] have not been reported in the existing relevant researches. Seventeen point mutations in the DYNC1H1 gene were only recognized in SMA children, and the top two most common mutations were c.[2869-34A>T] and c.[345-89A>G]; c.[7473+105C>T] was the splicing mutation that might change the mRNA splicing site. The mutations of SMA4 g.[69515726A>G], OCLN c.[818G>T], DYNC1H1 c.[2869-34A>T], DYNC1H1 c.[345-89A>G], and DYNC1H1 c.[7473+105C>T] in the adjacent genes of SMN1 gene and other genes might be related to the onset of SMA.
Collapse
Affiliation(s)
- Yu-Lian Fang
- Institute of Pediatrics, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Na Li
- Department of Neonatology, The Pediatric Clinical College, Tianjin Medical University, Tianjin, 300134, China.,Department of Neonatology, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Xiu-Fang Zhi
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Zheng
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Neonatology, The Pediatric Clinical College, Tianjin Medical University, Tianjin, 300134, China.,Department of Neonatology, Tianjin Children's Hospital, Tianjin, 300134, China
| | - Lin-Jie Pu
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Chun-Yu Gu
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Jian-Bo Shu
- Institute of Pediatrics, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China.
| | - Chun-Quan Cai
- Institute of Pediatrics, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China. .,Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China. .,Department of Neurosurgery, Tianjin Children's Hospital, Tianjin, 300134, China.
| |
Collapse
|
2
|
Zhao S, Wang W, Wang Y, Han R, Fan C, Ni P, Guo F, Zeng F, Yang Q, Yang Y, Sun Y, Zhang X, Chen Y, Zhu B, Cai W, Chen S, Cai R, Guo X, Zhang C, Zhou Y, Huang S, Liu Y, Chen B, Yan S, Chen Y, Ding H, Shang X, Xu X, Sun J, Peng Z. NGS-based spinal muscular atrophy carrier screening of 10,585 diverse couples in China: a pan-ethnic study. Eur J Hum Genet 2020; 29:194-204. [PMID: 32884118 DOI: 10.1038/s41431-020-00714-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/09/2020] [Accepted: 08/04/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, we performed a spinal muscular atrophy carrier screening investigation with NGS-based method. First, the validation for NGS-based method was implemented in 2255 samples using real-time PCR. The concordance between the NGS-based method and real-time PCR for the detection of SMA carrier and patient were up to 100%. Then, we applied this NGS-based method in 10,585 self-reported normal couples (34 Chinese ethnic groups from 5 provinces in South China) for SMA carrier screening. The overall carrier frequency was 1 in 73.8 (1.4%). It varied substantially between ethnic groups, highest in Dai ethnicity (4.3%), and no significant difference was found between five provinces. One couple was detected as carriers with an elevated risk of having an SMA affected baby. The distribution of SMN1:SMN2 genotype was also revealed in this study. Among the individuals with normal phenotype, the exon 7 copy-number ratio of SMN1 to SMN2 proved the gene conversion between them. With NGS-based method, we investigated SMA carrier status in Chinese population for the first time, and our results demonstrated that it is a promising alternative for SMA carrier screening and could provide data support and reference for future clinical application.
Collapse
Affiliation(s)
- Sumin Zhao
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China
| | - Wanyang Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China
| | - Yaoshen Wang
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China
| | - Rui Han
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China
| | - Chunna Fan
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China
| | - Peixiang Ni
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China
| | - Fengyu Guo
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China
| | - Fanwei Zeng
- BGI Genomics, BGI-Shenzhen, 518083, Shenzhen, China
| | - Qiaona Yang
- BGI Genomics, BGI-Shenzhen, 518083, Shenzhen, China
| | - Yun Yang
- BGI Genomics, BGI-Shenzhen, 518083, Shenzhen, China
| | - Yan Sun
- BGI Genomics, BGI-Shenzhen, 518083, Shenzhen, China.,James D. Watson Institute of Genome Science, 310008, Hangzhou, China
| | - Xinhua Zhang
- Department of Hematology, 303rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Baosheng Zhu
- Nation Health and Family Planning Commission Key Laboratory For Preconception and Health Birth in Western China, The First People's Hospital of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Wangwei Cai
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, Hainan, China
| | - Shaoke Chen
- Department of Genetic and Metabolic Laboratory, Guangxi Zhuang Autonomous Region Women and Children Health Care Hospital, Nanning, Guangxi, China
| | - Ren Cai
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Xiaoling Guo
- Maternity and Child Health Care Hospital of Foshan City, Foshan, Guangdong, China
| | - Chonglin Zhang
- Guilin Women and Children Health Care Hospital, Guilin, Guangxi, China
| | - Yuqiu Zhou
- Department of Clinical Laboratory, Zhuhai Municipal Maternal and Child Healthcare Hospital, Zhuhai Institute of Medical Genetics, Zhuhai, Guangdong, China
| | - Shuodan Huang
- Maternal and Child Health Hospital in Meizhou, Meizhou, Guangdong, China
| | - Yanhui Liu
- Department of Prenatal Diagnosis Center, Dong Guan Maternal and Child Health Hospital, Dongguan, Guangdong, China
| | - Biyan Chen
- Baise Women and Children Care Hospital, Baise, Guangxi, China
| | - Shanhuo Yan
- Genetic Laboratory, Qinzhou Maternal and Child Health Hospital, Qingzhou, Guangxi, China
| | - Yajun Chen
- Women and Children's Health Hospital of Shaoguan, Shaoguan, Guangdong, China
| | - Hongmei Ding
- Department of Gynecology and Obstetrics, The People's Hospital of Yunfu City, Yunfu, Guangdong, China
| | - Xuan Shang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jun Sun
- Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China. .,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, 300308, Tianjin, China.
| | - Zhiyu Peng
- BGI Genomics, BGI-Shenzhen, 518083, Shenzhen, China.
| |
Collapse
|
3
|
Ruhno C, McGovern VL, Avenarius MR, Snyder PJ, Prior TW, Nery FC, Muhtaseb A, Roggenbuck JS, Kissel JT, Sansone VA, Siranosian JJ, Johnstone AJ, Nwe PH, Zhang RZ, Swoboda KJ, Burghes AHM. Complete sequencing of the SMN2 gene in SMA patients detects SMN gene deletion junctions and variants in SMN2 that modify the SMA phenotype. Hum Genet 2019; 138:241-256. [PMID: 30788592 PMCID: PMC6503527 DOI: 10.1007/s00439-019-01983-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) is a progressive motor neuron disease caused by loss or mutation of the survival motor neuron 1 (SMN1) gene and retention of SMN2. We performed targeted capture and sequencing of the SMN2, CFTR, and PLS3 genes in 217 SMA patients. We identified a 6.3 kilobase deletion that occurred in both SMN1 and SMN2 (SMN1/2) and removed exons 7 and 8. The deletion junction was flanked by a 21 bp repeat that occurred 15 times in the SMN1/2 gene. We screened for its presence in 466 individuals with the known SMN1 and SMN2 copy numbers. In individuals with 1 SMN1 and 0 SMN2 copies, the deletion occurred in 63% of cases. We modeled the deletion junction frequency and determined that the deletion occurred in both SMN1 and SMN2. We have identified the first deletion junction where the deletion removes exons 7 and 8 of SMN1/2. As it occurred in SMN1, it is a pathogenic mutation. We called variants in the PLS3 and SMN2 genes, and tested for association with mild or severe exception patients. The variants A-44G, A-549G, and C-1897T in intron 6 of SMN2 were significantly associated with mild exception patients, but no PLS3 variants correlated with severity. The variants occurred in 14 out of 58 of our mild exception patients, indicating that mild exception patients with an intact SMN2 gene and without modifying variants occur. This sample set can be used in the association analysis of candidate genes outside of SMN2 that modify the SMA phenotype.
Collapse
Affiliation(s)
- Corey Ruhno
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Vicki L McGovern
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | | | - Pamela J Snyder
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Thomas W Prior
- Department of Pathology, Case Western Reserve Medical Center, Cleveland, OH, USA
| | - Flavia C Nery
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Abdurrahman Muhtaseb
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - John T Kissel
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | | | - Jennifer J Siranosian
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alec J Johnstone
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pann H Nwe
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ren Z Zhang
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kathryn J Swoboda
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Feng M, Liu C, Xia Y, Liu B, Zhou M, Li Z, Sun Q, Hu Z, Wang Y, Wu L, Liu X, Liang D. Restoration of SMN expression in mesenchymal stem cells derived from gene-targeted patient-specific iPSCs. J Mol Histol 2017; 49:27-37. [DOI: 10.1007/s10735-017-9744-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
|
5
|
Yamamoto T, Sato H, Lai PS, Nurputra DK, Harahap NIF, Morikawa S, Nishimura N, Kurashige T, Ohshita T, Nakajima H, Yamada H, Nishida Y, Toda S, Takanashi JI, Takeuchi A, Tohyama Y, Kubo Y, Saito K, Takeshima Y, Matsuo M, Nishio H. Intragenic mutations in SMN1 may contribute more significantly to clinical severity than SMN2 copy numbers in some spinal muscular atrophy (SMA) patients. Brain Dev 2014; 36:914-20. [PMID: 24359787 DOI: 10.1016/j.braindev.2013.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by deletion or intragenic mutation of SMN1. SMA is classified into several subtypes based on clinical severity. It has been reported that the copy number of SMN2, a highly homologous gene to SMN1, is associated with clinical severity among SMA patients with homozygous deletion of SMN1. The purpose of this study was to clarify the genotype-phenotype relationship among the patients without homozygous deletion of SMN1. METHODS We performed molecular genetic analyses of SMN1 and SMN2 in 112 Japanese patients diagnosed as having SMA based on the clinical findings. For the patients retaining SMN1, the PCR or RT-PCR products of SMN1 were sequenced to identify the mutation. RESULTS Out of the 112 patients, 106 patients were homozygous for deletion of SMN1, and six patients were compound heterozygous for deletion of one SMN1 allele and intragenic mutation in the retained SMN1 allele. Four intragenic mutations were identified in the six patients: p.Ala2Val, p.Trp92Ser, p.Thr274TyrfsX32 and p.Tyr277Cys. To the best of our knowledge, all mutations except p.Trp92Ser were novel mutations which had never been previously reported. According to our observation, clinical severity of the six patients was determined by the type and location of the mutation rather than SMN2 copy number. CONCLUSION SMN2 copy number is not always associated with clinical severity of SMA patients, especially SMA patients retaining one SMN1 allele.
Collapse
Affiliation(s)
- Tomoto Yamamoto
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideyuki Sato
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, NUHS, National University of Singapore, Singapore
| | - Dian Kesumapramudya Nurputra
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nur Imma Fatimah Harahap
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoru Morikawa
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Nishimura
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Kurashige
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomohiko Ohshita
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hideki Nakajima
- Department of Clinical Neuroscience and Neurology, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | - Hiroyuki Yamada
- Department of Pediatrics, Hyogo Prefectural Tsukaguchi Hospital, Amagasaki, Hyogo, Japan
| | - Yoshinobu Nishida
- Department of Pediatrics, Hyogo Prefectural Tsukaguchi Hospital, Amagasaki, Hyogo, Japan
| | - Soichiro Toda
- Department of Pediatrics, Kameda Medical Center, Kamogawa, Chiba, Japan
| | | | | | - Yumi Tohyama
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Yuji Kubo
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuhiro Takeshima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masafumi Matsuo
- Department of Medical Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
6
|
Lunke S, El-Osta A. Applicability of histone deacetylase inhibition for the treatment of spinal muscular atrophy. Neurotherapeutics 2013; 10:677-87. [PMID: 23996601 PMCID: PMC3805858 DOI: 10.1007/s13311-013-0209-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA), a neurodegenerative disease with potentially devastating and even deadly effects on affected individuals, was first described in the late nineteenth century. Although the survival of motor neuron (SMN) gene was identified nearly 2 decades ago to be causative of the disease, neither an effective treatment nor a cure are currently available. Yet efforts are on-going to test a multitude of treatment strategies with the potential to alleviate disease symptoms in human and clinical trials. Among the most studied compounds for the treatment of SMA are histone deacetylase inhibitors. Several of these epigenetic modifiers have been shown to increase expression of the crucial SMN gene in vitro and in vivo, an effect linked to increased histone acetylation and remodeling of the chromatin landscape surrounding the SMN gene promoter. Here, we review the history and current state of use of histone deacetylase inhibitors in SMA, as well as the success of clinical trials investigating the clinical applicability of these epigenetic modifiers in SMA treatment.
Collapse
Affiliation(s)
- Sebastian Lunke
- />Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- />Translational Genomics Laboratory, Centre for Translational Pathology, Department of Pathology, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Assam El-Osta
- />Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004 Australia
- />Epigenomics Profiling Facility, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC Australia
- />Department of Pathology, The University of Melbourne, Melbourne, VIC Australia
- />Faculty of Medicine, Monash University, Monash, VIC Australia
| |
Collapse
|
7
|
Hamzi K, Bellayou H, Itri M, Nadifi S. PCR-RFLP, Sequencing, and Quantification in Molecular Diagnosis of Spinal Muscular Atrophy: Limits and Advantages. J Mol Neurosci 2013; 50:270-4. [DOI: 10.1007/s12031-012-9944-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/20/2012] [Indexed: 01/15/2023]
|
8
|
Garbes L, Heesen L, Hölker I, Bauer T, Schreml J, Zimmermann K, Thoenes M, Walter M, Dimos J, Peitz M, Brüstle O, Heller R, Wirth B. VPA response in SMA is suppressed by the fatty acid translocase CD36. Hum Mol Genet 2012; 22:398-407. [PMID: 23077215 DOI: 10.1093/hmg/dds437] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Functional loss of SMN1 causes proximal spinal muscular atrophy (SMA), the most common genetic condition accounting for infant lethality. Hence, the hypomorphic copy gene SMN2 is the only resource of functional SMN protein in SMA patients and influences SMA severity in a dose-dependent manner. Consequently, current therapeutic approaches focus on SMN2. Histone deacetylase inhibitors (HDACi), such as the short chain fatty acid VPA (valproic acid), ameliorate the SMA phenotype by activating the SMN2 expression. By analyzing blood SMN2 expression in 16 VPA-treated SMA patients, about one-third of individuals were identified as positive responders presenting increased SMN2 transcript levels. In 66% of enrolled patients, a concordant response was detected in the respective fibroblasts. Most importantly, by taking the detour of reprograming SMA patients' fibroblasts, we showed that the VPA response was maintained even in GABAergic neurons derived from induced pluripotent stem cells (iPS) cells. Differential expression microarray analysis revealed a complete lack of response to VPA in non-responders, which was associated with an increased expression of the fatty acid translocase CD36. The pivotal role of CD36 as the cause of non-responsiveness was proven in various in vitro approaches. Most importantly, knockdown of CD36 in SMA fibroblasts converted non- into pos-responders. In summary, the concordant response from blood to the central nervous system (CNS) to VPA may allow selection of pos-responders prior to therapy. Increased CD36 expression accounts for VPA non-responsiveness. These findings may be essential not only for SMA but also for other diseases such as epilepsy or migraine frequently treated with VPA.
Collapse
Affiliation(s)
- Lutz Garbes
- Institute of Human Genetics, Institute of Genetics and Center for Molecular Medicine Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chiu HHL, Yong TMK, Wang J, Wang Y, Vessella RL, Ueda T, Wang YZ, Sadar MD. Induction of neuronal apoptosis inhibitory protein expression in response to androgen deprivation in prostate cancer. Cancer Lett 2009; 292:176-85. [PMID: 20044205 DOI: 10.1016/j.canlet.2009.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 01/08/2023]
Abstract
A mechanism for survival of prostate cancer cells in an androgen-deprived environment remains elusive. Here, we find that expression of neuronal apoptosis inhibitory protein (NAIP) was significantly increased in vivo and in vitro in response to androgen deprivation therapy (ADT). Increased expression of NAIP corresponded to increased DNA-binding activity of NF-kappaB that physically associated to previously uncharacterized kappaB-like sites in the NAIP locus. Importantly, expression of NAIP was significantly increased (p=0.04) in clinical samples of prostate cancer from patients receiving ADT. Expression of NAIP may be associated with enhanced survival of prostate cancer in response to castration.
Collapse
Affiliation(s)
- Helen H L Chiu
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia, Canada V5Z 1L3
| | | | | | | | | | | | | | | |
Collapse
|
10
|
A novel protein isoform of the multicopy human NAIP gene derives from intragenic Alu SINE promoters. PLoS One 2009; 4:e5761. [PMID: 19488400 PMCID: PMC2685007 DOI: 10.1371/journal.pone.0005761] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/06/2009] [Indexed: 01/12/2023] Open
Abstract
The human neuronal apoptosis inhibitory protein (NAIP) gene is no longer principally considered a member of the Inhibitor of Apoptosis Protein (IAP) family, as its domain structure and functions in innate immunity also warrant inclusion in the Nod-Like Receptor (NLR) superfamily. NAIP is located in a region of copy number variation, with one full length and four partly deleted copies in the reference human genome. We demonstrate that several of the NAIP paralogues are expressed, and that novel transcripts arise from both internal and upstream transcription start sites. Remarkably, two internal start sites initiate within Alu short interspersed element (SINE) retrotransposons, and a third novel transcription start site exists within the final intron of the GUSBP1 gene, upstream of only two NAIP copies. One Alu functions alone as a promoter in transient assays, while the other likely combines with upstream L1 sequences to form a composite promoter. The novel transcripts encode shortened open reading frames and we show that corresponding proteins are translated in a number of cell lines and primary tissues, in some cases above the level of full length NAIP. Interestingly, some NAIP isoforms lack their caspase-sequestering motifs, suggesting that they have novel functions. Moreover, given that human and mouse NAIP have previously been shown to employ endogenous retroviral long terminal repeats as promoters, exaptation of Alu repeats as additional promoters provides a fascinating illustration of regulatory innovations adopted by a single gene.
Collapse
|
11
|
Watihayati MS, Fatemeh H, Marini M, Atif AB, Zahiruddin WM, Sasongko TH, Tang TH, Zabidi-Hussin ZAMH, Nishio H, Zilfalil BA. Combination of SMN2 copy number and NAIP deletion predicts disease severity in spinal muscular atrophy. Brain Dev 2009; 31:42-5. [PMID: 18842367 DOI: 10.1016/j.braindev.2008.08.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/04/2008] [Accepted: 08/22/2008] [Indexed: 11/19/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the SMN1 gene. The SMN2 gene is highly homologous to SMN1 and has been reported to be correlated with severity of the disease. The clinical presentation of SMA varies from severe to mild, with three clinical subtypes (type I, type II, and type III) that are assigned according to age of onset and severity of the disease. Here, we aim to investigate the potential association between the number of copies of SMN2 and the deletion in the NAIP gene with the clinical severity of SMA in patients of Malaysian origin. Forty-two SMA patients (14 of type I, 20 type II, and 8 type III) carrying deletions of the SMN1 gene were enrolled in this study. SMN2 copy number was determined by fluorescence-based quantitative polymerase chain reaction assay. Twenty-nine percent of type I patients carried one copy of SMN2, while the remaining 71% carried two copies. Among the type II and type III SMA patients, 29% of cases carried two copies of the gene, while 71% carried three or four copies of SMN2. Deletion analysis of NAIP showed that 50% of type I SMA patients had a homozygous deletion of exon 5 of this gene and that only 10% of type II SMA cases carried a homozygous deletion, while all type III patients carried intact copies of the NAIP gene. We conclude that there exists a close relationship between SMN2 copy number and SMA disease severity, suggesting that the determination of SMN2 copy number may be a good predictor of SMA disease type. Furthermore, NAIP gene deletion was found to be associated with SMA severity. In conclusion, combining the analysis of deletion of NAIP with the assessment of SMN2 copy number increases the value of this tool in predicting the severity of SMA.
Collapse
Affiliation(s)
- Mohd Shamshudin Watihayati
- Human Genome Center, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Baranov VS, Kiselev AV, Vakharlovsky VG, Zheleznjakova GJ, Komantzev VN, Malisheva OV, Glotov AS, Ivashchenko TE, Baranov AN. Molecular genetic basis of proximal spinal muscular atrophy and experience in its pharmaceutical treatment. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Kobayashi K, Xin Y, Ymer SI, Werther GA, Russo VC. Subtractive hybridisation screen identifies genes regulated by glucose deprivation in human neuroblastoma cells. Brain Res 2007; 1170:129-39. [PMID: 17719568 DOI: 10.1016/j.brainres.2007.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 02/06/2023]
Abstract
Glucose is the major source of energy for the brain and inadequate glucose supply causes damage of neuronal cells. In this study we employed the human neuroblastoma cell line SH-SY5Y, as an in vitro model for neuronal cells, to identify genes regulated by glucose deprivation. Using subtractive hybridisation screen, validated by Northern analysis, we identify for the first time specific targets of the glucopenic response. These genes are involved in key cellular process including gene transcription, protein synthesis, mitochondrial metabolism, neuronal development, neuroprotection and neuronal apoptosis. Our findings suggest that the fate of neuronal cells undergoing glucose starvation relies on complex gene interactions. Modulation of the expression of these genes in vivo will enable determination of the precise role of each gene and possibly identify key elements and potential therapeutic targets of the glucopenic response.
Collapse
Affiliation(s)
- Kisho Kobayashi
- Centre for Hormone Research, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Royal Children's Hospital, 3052 Parkville, Australia
| | | | | | | | | |
Collapse
|
14
|
Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA, Mager DL. Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet 2006; 3:e10. [PMID: 17222062 PMCID: PMC1781489 DOI: 10.1371/journal.pgen.0030010] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 12/05/2006] [Indexed: 12/19/2022] Open
Abstract
Neuronal apoptosis inhibitory protein (NAIP, also known as BIRC1) is a member of the conserved inhibitor of apoptosis protein (IAP) family. Lineage-specific rearrangements and expansions of this locus have yielded different copy numbers among primates and rodents, with human retaining a single functional copy and mouse possessing several copies, depending on the strain. Roles for this gene in disease have been documented, but little is known about transcriptional regulation of NAIP. We show here that NAIP has multiple promoters sharing no similarity between human and rodents. Moreover, we demonstrate that multiple, domesticated long terminal repeats (LTRs) of endogenous retroviral elements provide NAIP promoter function in human, mouse, and rat. In human, an LTR serves as a tissue-specific promoter, active primarily in testis. However, in rodents, our evidence indicates that an ancestral LTR common to all rodent genes is the major, constitutive promoter for these genes, and that a second LTR found in two of the mouse genes is a minor promoter. Thus, independently acquired LTRs have assumed regulatory roles for orthologous genes, a remarkable evolutionary scenario. We also demonstrate that 5′ flanking regions of IAP family genes as a group, in both human and mouse are enriched for LTR insertions compared to average genes. We propose several potential explanations for these findings, including a hypothesis that recruitment of LTRs near NAIP or other IAP genes may represent a host-cell adaptation to modulate apoptotic responses. When retroviruses infect cells, the viral DNA inserts into the cellular genome. If this happens in gametes (egg or sperm), the viral DNA will be transmitted from parent to offspring, like all chromosomal DNA. Through evolutionary time, such infections of gametes have been so prevalent that 8%–10% of the normal human and mouse genomes are now composed of ancient viral DNA, termed endogenous retroviruses (ERVs). In human, these ERVs are mutated or “dead” but it has been shown that ERV regulatory regions can be employed by the host to help control expression of cellular genes. Here, we report on a remarkable example of this phenomenon. We demonstrate that both the human and rodent neuronal apoptosis inhibitory protein (NAIP) genes, involved in preventing cell death, use different ERV sequences to drive gene expression. Moreover, in each of the primate and rodent lineages, two separate ERVs contribute to NAIP gene expression. This repeated ERV recruitment by NAIP genes throughout evolution is very unlikely to have occurred by chance. We offer a number of potential explanations, including the intriguing possibility that it may be advantageous for anti-cell death genes like NAIP to use ERVs to control their expression. These results support the view that not all retroviral remnants in our genome are simply junk DNA.
Collapse
Affiliation(s)
- Mark T Romanish
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wynne M Lock
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Louie N. van de Lagemaat
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine A Dunn
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Chan V, Yip B, Yam I, Au P, Lin CK, Wong V, Chan TK. Carrier incidence for spinal muscular atrophy in southern Chinese. J Neurol 2004; 251:1089-93. [PMID: 15372251 DOI: 10.1007/s00415-004-0487-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 02/23/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
A real time quantitative PCR (QPCR) method using TaqMan technology was used to assess the copy number of the two survival motor neuron genes (SMN1 and SMN2) on chromosome 5q13. This allows the accurate determination of carriers for spinal muscular atrophy (SMA), with one copy of SMN1. Analysis of 569 normal southern Chinese individuals revealed a carrier incidence of 1.6%, similar to that found in the western society. Study of 42 obligatory carriers showed a (2 + 0) genotype in two (4.8 %). In 27 SMA patients with homozygous deletion of the SMN1 gene, the number of SMN2 gene correlated with disease phenotype, with 68% of type II and III patients carrying three or more SMN2 genes, whilst the incidence of three or more SMN2 genes in the normal population was 1.57%.
Collapse
Affiliation(s)
- Vivian Chan
- University Department of Medicine, Queen Mary Hospital, Pokfulam Road, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
16
|
Schmutz J, Martin J, Terry A, Couronne O, Grimwood J, Lowry S, Gordon LA, Scott D, Xie G, Huang W, Hellsten U, Tran-Gyamfi M, She X, Prabhakar S, Aerts A, Altherr M, Bajorek E, Black S, Branscomb E, Caoile C, Challacombe JF, Chan YM, Denys M, Detter JC, Escobar J, Flowers D, Fotopulos D, Glavina T, Gomez M, Gonzales E, Goodstein D, Grigoriev I, Groza M, Hammon N, Hawkins T, Haydu L, Israni S, Jett J, Kadner K, Kimball H, Kobayashi A, Lopez F, Lou Y, Martinez D, Medina C, Morgan J, Nandkeshwar R, Noonan JP, Pitluck S, Pollard M, Predki P, Priest J, Ramirez L, Retterer J, Rodriguez A, Rogers S, Salamov A, Salazar A, Thayer N, Tice H, Tsai M, Ustaszewska A, Vo N, Wheeler J, Wu K, Yang J, Dickson M, Cheng JF, Eichler EE, Olsen A, Pennacchio LA, Rokhsar DS, Richardson P, Lucas SM, Myers RM, Rubin EM. The DNA sequence and comparative analysis of human chromosome 5. Nature 2004; 431:268-74. [PMID: 15372022 DOI: 10.1038/nature02919] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 08/02/2004] [Indexed: 11/08/2022]
Abstract
Chromosome 5 is one of the largest human chromosomes and contains numerous intrachromosomal duplications, yet it has one of the lowest gene densities. This is partially explained by numerous gene-poor regions that display a remarkable degree of noncoding conservation with non-mammalian vertebrates, suggesting that they are functionally constrained. In total, we compiled 177.7 million base pairs of highly accurate finished sequence containing 923 manually curated protein-coding genes including the protocadherin and interleukin gene families. We also completely sequenced versions of the large chromosome-5-specific internal duplications. These duplications are very recent evolutionary events and probably have a mechanistic role in human physiological variation, as deletions in these regions are the cause of debilitating disorders including spinal muscular atrophy.
Collapse
Affiliation(s)
- Jeremy Schmutz
- Stanford Human Genome Center, Department of Genetics, Stanford University School of Medicine, 975 California Ave, Palo Alto, California 94304, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yamashita M, Nishio H, Harada Y, Matsuo M, Yamamoto T. Significant increase in the number of the SMN2 gene copies in an adult-onset Type III spinal muscular atrophy patient with homozygous deletion of the NAIP gene. Eur Neurol 2004; 52:101-6. [PMID: 15305106 DOI: 10.1159/000080140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 06/03/2004] [Indexed: 11/19/2022]
Abstract
The patient was a 57-year-old Japanese man who gradually developed muscle atrophy and weakness in the trunk and limbs since the age of 20 years and was wheelchair bound at the age of 56 years. The gene copy number assay confirmed the combined homozygous deletion of the survival motor neuron (SMN) 1 and neuronal apoptosis inhibitory protein (NAIP) genes and showed the presence of 4 copies of the SMN2 gene. In this patient, the significant increase in the number of the SMN2 gene copies should compensate for the homozygous deletion of the SMN1 gene and make his disease milder despite the absence of the NAIP gene. Taken together with our previous data, we may reasonably hypothesize that the SMN2 gene copy number is more critical in determining the severity of the disease compared to the NAIP genotype.
Collapse
Affiliation(s)
- Mariko Yamashita
- Department of Neurology, Saiseikai Nakatsu Hospital and Medical Center based on Social Welfare Organization Saiseikai Imperial Gift Foundation Inc., Osaka, Japan.
| | | | | | | | | |
Collapse
|
18
|
Jablonka S, Sendtner M. Molecular and cellular basis of spinal muscular atrophy. AMYOTROPHIC LATERAL SCLEROSIS AND OTHER MOTOR NEURON DISORDERS : OFFICIAL PUBLICATION OF THE WORLD FEDERATION OF NEUROLOGY, RESEARCH GROUP ON MOTOR NEURON DISEASES 2003; 4:144-9. [PMID: 13129800 DOI: 10.1080/14660820310011296] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Autosomal recessive spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by muscle atrophy combined with motor neuron degeneration. SMA is caused by homozygous mutation or loss of the telomeric copy of the survival of motor neuron gene (SMN). The SMN gene is localized as an inverted repeat on chromosome 5q13. Both gene copies (SMN1 and SMN2) are expressed, but they differ in the expression of full-length protein. SMN2 gene preferentially gives rise to a truncated and less stable version of the SMN protein and thus can not compensate for SMN1 loss or mutations unless it is not present in multiple copies. The SMN protein is part of multiprotein complexes in the cytoplasm and the nucleus of all cell types. These complexes are involved in assembly of spliceosomal snRNPs. SMN interacts with RNA polymerase II and other binding proteins, indicating that the SMN protein is involved in messenger and ribosomal RNA transcription and processing. The analysis of animal models for SMA could help to identify the pathophysiological changes that are responsible for spinal muscular atrophy.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
19
|
Cuscó I, López E, Soler-Botija C, Jesús Barceló M, Baiget M, Tizzano EF. A genetic and phenotypic analysis in Spanish spinal muscular atrophy patients with c.399_402del AGAG, the most frequently found subtle mutation in the SMN1 gene. Hum Mutat 2003; 22:136-43. [PMID: 12872254 DOI: 10.1002/humu.10245] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by mutations in the SMN1 (survival motor neuron) gene. It is classified by age of onset and maximal motor milestones achieved in type I, II, and III (severe, intermediate, and mild form, respectively). Of 369 unrelated SMA patients who were investigated for homozygous deletions in the SMN1 gene, 18 patients (4.8%) revealed at least one copy of exon 7. A 4-bp deletion in exon 3 (c.399_402delAGAG) was detected in 15 patients from 10 families. This mutation was associated with a large spectrum of phenotypes from type I to asymptomatic patients. Five patients from two consanguineous families were homozygous for the mutation with diverse mild phenotypes. Determination of the SMN2 copy number showed that the presence of two or three copies generally correlated with a better evolution. RT-PCR studies of SMN transcripts in control and patients with the same SMN2 copy number showed that the full-length/Delta7 ratio is influenced by the SMN1 genotype although it seems independent of the SMN2 copy number. Moreover, protein analysis in these patients showed a reduction in SMN protein in compound heterozygous patients (c.399_402delAGAG/deletion) when compared with homozygous c.399_402delAGAG/c.399_402delAGAG patients. Microsatellite DNA markers flanking the SMA locus revealed the occurrence of the 4-bp deletion in the background of the same haplotype, suggesting that a single mutational event was involved in the 10 families. The geographic origins of ancestors point to a founder effect from the south and east of Spain. The c.399_402delAGAG, which is to date unique to the Spanish population, constitutes the most frequently found subtle mutation in SMA. Hum Mutat 22:136-143, 2003.
Collapse
Affiliation(s)
- Ivon Cuscó
- Hospital de Sant Pau, Genetics and Research Institute, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Gerritsen ME, Soriano R, Yang S, Zlot C, Ingle G, Toy K, Williams PM. Branching out: a molecular fingerprint of endothelial differentiation into tube-like structures generated by Affymetrix oligonucleotide arrays. Microcirculation 2003; 10:63-81. [PMID: 12610664 DOI: 10.1038/sj.mn.7800170] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2002] [Accepted: 09/13/2002] [Indexed: 11/08/2022]
Abstract
The process of endothelial differentiation into a network of tube-like structures with patent lumens requires an integrated program of gene expression. To identify genes upregulated in endothelial cells during the process of tube formation, RNA was prepared from several different time points (0, 4, 8, 24, 40, and 48 hours) and from three different experimental models of human endothelial tube formation: in collagen gels and fibrin gels driven by the combination of PMA (80), bFGF (40 ng/ml) and bFGF (40 ng/ml) or in collagen gels driven by the combination of HGF (40 ng/ml) and VEGF (40 ng/ml). Gene expression was evaluated using Affymetrix Gene Chip oligonucleotide arrays. Over 1000 common genes were upregulated greater than twofold over baseline at one or more time points in the three different models. In the present study, we discuss the identified genes that could be assigned to major functional classes: apoptosis, cytoskeleton, proteases, matrix, and matrix turnover, pumps and transporters, membrane lipid turnover, and junctional molecules or adhesion proteins.
Collapse
Affiliation(s)
- Mary E Gerritsen
- Department of Cardiovascular Research, Genentech, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Cuscó I, Barceló MJ, Baiget M, Tizzano EF. Implementation of SMA carrier testing in genetic laboratories: comparison of two methods for quantifying the SMN1 gene. Hum Mutat 2002; 20:452-9. [PMID: 12442269 DOI: 10.1002/humu.10144] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The degeneration and loss of motor neurons of the anterior horn characterize children affected with spinal muscular atrophy (SMA). Mutations in the survival motor neuron gene (SMN1) are determinant for the development of the disease whereas the number of copies of SMN2, the highly homologous copy of SMN1, plays a role as a phenotypic modifier factor. The detection of SMN1 homozygous deletions is the typical test for SMA diagnosis. Owing to the limitation of this test for carrier and heterozygous deletion analysis, the demand of SMN1 quantitative tests is permanently growing. The high incidence of SMA, the notable carrier frequency, the severity of the disease, and the lack of effective treatment may justify the implementation of such an analysis in DNA diagnostic labs. The advantages and disadvantages of two reliable quantitative methods were evaluated. One of these is a competitive PCR protocol using internal standards and a genomic sequence as a reference. The other method is a real-time PCR employing an external standard as a reference. Both methods present sufficient advantages for incorporation into molecular genetic diagnostic labs. The possibility of studying samples from different labs, the versatility and reproducibility of the analysis, and cost-benefit calculations must be considered in the final choice.
Collapse
|
22
|
Lindholm D, Mercer EA, Yu LY, Chen Y, Kukkonen J, Korhonen L, Arumäe U. Neuronal apoptosis inhibitory protein: Structural requirements for hippocalcin binding and effects on survival of NGF-dependent sympathetic neurons. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:138-47. [PMID: 12445469 DOI: 10.1016/s1570-9639(02)00454-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neuronal apoptosis inhibitory protein (NAIP) has been linked to the inherited disease, spinal muscular atrophy (SMA), which occurs in children with degeneration of the motorneurons. In the nervous system, NAIP is expressed by specific classes of neurons including spinal motorneurons. Recently, NAIP was shown to interact with hippocalcin, which belongs to the neuronal calcium sensor (NCS) protein family. Here we have studied this interaction in more detail, using deletions and a mutagenesis of the third baculovirus inhibitory repeat (BIR) motif in NAIP, and functional assays for neuronal death. The results showed that specific amino acids and the zinc finger domain in BIR3 are needed for efficient interaction of NAIP with hippocalcin. Cotransfections of NAIP-BIR3 and hippocalcin resulted in translocation and colocalisation of the two proteins in neuroblastoma cells. This was accompanied by an enhanced resistance towards cell death induced by high levels of calcium. In contrast, expression of NAIP-BIR3 and hippocalcin in sympathetic neurons did not protect against death induced by nerve growth factor (NGF) withdrawal. The results demonstrate a functional interaction of hippocalcin with NAIP-BIR3, which in neuroblastoma cells leads to rescue of cells after high intracellular calcium, but which in sympathetic neurons had no significant effect. The results indicate that NAIP in conjunction with hippocalcin can affect the survival of some, but not all neural cells, and this interaction may play a role in the neurodegenerative processes in SMA, and possible other human disorders.
Collapse
Affiliation(s)
- Dan Lindholm
- Department of Neuroscience, Neurobiology, Uppsala University, Biomedical Centre, Box 587, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
23
|
Xu M, Okada T, Sakai H, Miyamoto N, Yanagisawa Y, MacKenzie AE, Hadano S, Ikeda JE. Functional human NAIP promoter transcription regulatory elements for the NAIP and PsiNAIP genes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:35-50. [PMID: 11955612 DOI: 10.1016/s0167-4781(01)00343-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuronal apoptosis inhibitory protein (NAIP) has been shown to inhibit apoptosis in vitro and in vivo with an expression which is regulated in a variety of cells and tissues and may be modulated by a variety of external stimuli. To understand the molecular basis of the transcriptional regulation of the NAIP gene, we have analyzed the 5'-flanking region and transcription of the human NAIP gene. The functional promoter and silencer elements were identified by luciferase reporter constructs in transient transfection experiments using four different human cells. Although the location of the functional elements were shared among the different cells used, the activities for the NAIP promoter varied. Further, cell type-specific protein binding activities were observed by an electrophoretic mobility shift assay (EMSA). EMSA analysis with specific antibodies and DNA sequence analysis identified the POU domain transcription factor Brn-2 as a candidate transcriptional regulator of the NAIP gene. The DNA sequence of the promoter region of the PsiNAIP gene, a copy gene for NAIP, was nearly identical to that of the NAIP gene, indicating a common regulatory mechanism for transcription of the NAIP and PsiNAIP genes. Indeed, the transcript of the PsiNAIP gene was identified. These results provided the first evidence for the functional promoter and candidate transcriptional factor for the NAIP gene and transcription of the PsiNAIP gene.
Collapse
Affiliation(s)
- Ming Xu
- NeuroGenes, International Cooperative Research Project, Japan Science and Technology Corporation, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Corcia P, Mayeux-Portas V, Khoris J, de Toffol B, Autret A, Müh JP, Camu W, Andres C. Abnormal SMN1 gene copy number is a susceptibility factor for amyotrophic lateral sclerosis. Ann Neurol 2002; 51:243-6. [PMID: 11835381 DOI: 10.1002/ana.10104] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The etiology of amyotrophic lateral sclerosis remains unknown in the majority of cases. Homozygous SMN1 (survival motor neuron) gene deletion causes spinal muscular atrophy, and SMN2 gene deletions are possible risk factors in lower motor neuron disease. We studied SMN1 and SMN2 genes copy numbers in 167 amyotrophic lateral sclerosis patients and in 167 matched controls. We noted that 16% of amyotrophic lateral sclerosis patients had an abnormal copy number of the SMN1 gene (1 or 3 copies), compared with 4% of controls. An abnormal SMN1 gene locus may be a susceptibility factor for amyotrophic lateral sclerosis.
Collapse
|
25
|
Obexer P, Certa U, Kofler R, Helmberg A. Expression profiling of glucocorticoid-treated T-ALL cell lines: rapid repression of multiple genes involved in RNA-, protein- and nucleotide synthesis. Oncogene 2001; 20:4324-36. [PMID: 11466613 DOI: 10.1038/sj.onc.1204573] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2001] [Revised: 04/02/2001] [Accepted: 04/03/2001] [Indexed: 11/08/2022]
Abstract
To arrive at a better understanding of the effects of the glucocorticoid component of chemotherapy protocols on lymphocytic leukemia cells, we analysed early responses of T-lymphocytic leukemia cell lines Jurkat and CEM-C7, both of which undergo apoptosis in response to dexamethasone, via gene chips. Among genes identified as repressed, a notable cluster seemed to be of importance for the processes of transcription, mRNA splicing and protein synthesis. Consequently, we assessed time-resolved uptake of uridine and methionine to monitor RNA and protein synthesis, along with parameters quantifying apoptosis. Repression of uptake to about 65% of that in untreated cells preceded the first sign of apoptosis by several hours in both cell lines. In addition to this general repression of RNA and protein synthesis, several genes were found to be regulated that may contribute to synergistic action of glucocorticoids with other components of frequently used chemotherapy protocols such as antimetabolites, methotrexate and alkylating agents.
Collapse
Affiliation(s)
- P Obexer
- Institute of Pathophysiology, University of Innsbruck, Medical School, A 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
26
|
Seidl R, Bidmon B, Bajo M, Yoo PC, Cairns N, LaCasse EC, Lubec G. Evidence for apoptosis in the fetal Down syndrome brain. J Child Neurol 2001; 16:438-42. [PMID: 11417611 DOI: 10.1177/088307380101600610] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In Down syndrome, enhanced apoptosis (programmed cell death) may play a role in the pathogenesis of characteristic early mental retardation and precocious neurodegeneration of Alzheimer type. Various apoptosis-associated proteins (Bax, Bcl-2, Fas, p53, Hsp70, neuronal apoptosis inhibitory protein-like immunoreactivity) were investigated in four different cortical regions and the cerebellum of one fetal Down syndrome (35 weeks' gestation) postmortem brain sample compared with a control brain sample. The most impressive finding was an at least fivefold elevation of Bax protein together with decreased Bcl-2 values in all Down syndrome cerebral regions investigated. In addition, antiapoptotic, presumably caspase-inhibitory, principles like heat shock protein 70 and neuronal apoptosis inhibitory protein were also reduced. Whereas Fas protein, an important member of receptor-mediated apoptosis, was inconsistently altered, a rather surprising finding was reduced proapoptotic, regulatory protein p53 in four of five regions. The findings are in good agreement with the proposed role of the Bcl-2 protein family in regulating developmental (naturally occurring) apoptotic neuronal death and further suggest that developmental apoptosis may be inappropriately commandeered by so far undefined pathologic processes in Down syndrome.
Collapse
Affiliation(s)
- R Seidl
- Department of Pediatrics, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
27
|
Kelter AR, Herchenbach J, Wirth B. The transcription factor-like nuclear regulator (TFNR) contains a novel 55-amino-acid motif repeated nine times and maps closely to SMN1. Genomics 2000; 70:315-26. [PMID: 11161782 DOI: 10.1006/geno.2000.6396] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcription factor-like nuclear regulator (TFNR) is a novel human gene that maps on 5q13, distal to the duplicated region that includes SMN1, the spinal muscular atrophy (SMA) determining gene. The location of TFNR allowed us to design an evolutionary model of the SMA region. The 9.5-kb TFNR transcript is highly expressed in cerebellum and weakly in all other tissues tested. TFNR encodes a protein of 2254 amino acids (aa) and contains nine repeats of a novel 55-aa motif, of yet unknown function. The coding region is organized in 32 exons. Alternative splicing of exon 15 results in a truncated protein of 796 aa. TFNR comprises a series of polypeptides that range from 55 to 250 kDa. Immunocytological studies showed that the TFNR protein is present exclusively in the nucleus, where it is concentrated in several nuclear structures. Amino acids 155-474 show significant homology to TFC5, a subunit of the yeast transcription factor TFIIIB, suggesting that TFNR is a putative transcription factor. Based on its proximity to SMN1 and its expression pattern, TFNR may be a candidate gene for atypical forms of SMA with cerebral atrophy and axonal neuropathy that have been shown to carry large deletions in the SMA region.
Collapse
Affiliation(s)
- A R Kelter
- Institute of Human Genetics, Wilhelmstrasse 31, Bonn, D-53111, Germany
| | | | | |
Collapse
|
28
|
Abstract
Spinal muscular atrophy (SMA) is characterized by degeneration of motor neurons in the spinal cord, causing progressive weakness of the limbs and trunk, followed by muscle atrophy. SMA is one of the most frequent autosomal recessive diseases, with a carrier frequency of 1 in 50 and the most common genetic cause of childhood mortality. The phenotype is extremely variable, and patients have been classified in type I-III SMA based on age at onset and clinical course. All three types of SMA are caused by mutations in the survival motor neuron gene (SMN1). There are two almost identical copies, SMN1 and SMN2, present on chromosome 5q13. Only homozygous absence of SMN1 is responsible for SMA, while homozygous absence of SMN2, found in about 5% of controls, has no clinical phenotype. Ninety-six percent of SMA patients display mutations in SMN1, while 4% are unlinked to 5q13. Of the 5q13-linked SMA patients, 96.4% show homozygous absence of SMN1 exons 7 and 8 or exon 7 only, whereas 3. 6% present a compound heterozygosity with a subtle mutation on one chromosome and a deletion/gene conversion on the other chromosome. Among the 23 different subtle mutations described so far, the Y272C missense mutation is the most frequent one, at 20%. Given this uniform mutation spectrum, direct molecular genetic testing is an easy and rapid analysis for most of the SMA patients. Direct testing of heterozygotes, while not trivial, is compromised by the presence of two SMN1 copies per chromosome in about 4% of individuals. The number of SMN2 copies modulates the SMA phenotype. Nevertheless, it should not be used for prediction of severity of the SMA.
Collapse
Affiliation(s)
- B Wirth
- Institute of Human Genetics, Bonn, Germany.
| |
Collapse
|
29
|
Seidl R, Bajo M, Böhm K, LaCasse EC, MacKenzie AE, Cairns N, Lubec G. Neuronal apoptosis inhibitory protein (NAIP)-like immunoreactivity in brains of adult patients with Down syndrome. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2000; 57:283-91. [PMID: 10666683 DOI: 10.1007/978-3-7091-6380-1_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
In Down syndrome (DS), enhanced apoptosis (programmed cell death) may play a role in the pathogenesis of characteristic early mental retardation and precocious neurodegeneration of Alzheimer-type. The human IAP (inhibitor of apoptosis proteins) genes (NAIP, c-IAP-2/HIAP-1, c-IAP-1/Hiap-2, XIAP, survivin) are an evolutionary conserved family of proteins which prevent cell death across species, implying that they act at a central, highly conserved point in the cell death cascade. Evidence for downregulation of NAIP-mRNA in fetal DS (23rd week of gestation), as found by subtractive hybridization technique challenged studies at the protein level in adult DS brain specimen. NAIP-like immunoreactivity was determined in four different regions of cerebral cortex and cerebellum in 9 adult DS patients with Alzheimer-like neuropathologic lesions, 9 Alzheimer disease (AD) patients as compared to 9 controls. For the first time, NAIP-IR could be demonstrated in different cortical regions of the human brain. Compared to control subjects, western blotting demonstrated significantly decreased levels in parietal and occipital cortex in DS and in frontal and occipital cortex in AD. While the mode of NAIP action is unknown, inhibition of certain caspases has already been demonstrated for other IAP-family members (c-IAP1, c-IAP2 and XIAP). Although decreased NAIP-IR of certain brain regions in DS and AD awaits further confirmation, the results suggest that alterations of apoptosis regulatory (inhibitory) proteins may be another feature of neurodegeneration in DS and AD.
Collapse
Affiliation(s)
- R Seidl
- Department of Pediatrics, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
30
|
Growney JD, Scharf JM, Kunkel LM, Dietrich WF. Evolutionary divergence of the mouse and human Lgn1/SMA repeat structures. Genomics 2000; 64:62-81. [PMID: 10708519 DOI: 10.1006/geno.1999.6111] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The orthologous genomic segments on mouse chromosome 13D1-D3 and human chromosome 5q11.2-q13.3 have been extensively studied because of their involvement in two distinct disease phenotypes, spinal muscular atrophy (SMA) in human and susceptibility to Legionella pneumophila (determined by Lgn1) in mice. The overlapping intervals in both species contain genomic amplifications of distinct structure, indicating an independent origin. We have endeavored to construct a comprehensive comparative gene map of the mouse and human Lgn1/SMA intervals in the hopes that the origins and maintenance of the genomic amplifications may become clear. Our comparative gene map demonstrates that the only regional gene in common between the amplified segments in mouse and human is the Lgn1 candidate Naip/NAIP. We have also determined that mice of the 129 haplotype harbor seven intact and three partial Naip transcription units arranged in a closely linked direct repeat on chromosome 13. Several, but not all, of these Naip loci are contained within the Lgn1 critical interval. We present a model for the origins of the mouse and human repetitive arrays from a common ancestral haplotype.
Collapse
Affiliation(s)
- J D Growney
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
31
|
Yamamoto K, Sakai H, Hadano S, Gondo Y, Ikeda JE. Identification of two distinct transcripts for the neuronal apoptosis inhibitory protein gene. Biochem Biophys Res Commun 1999; 264:998-1006. [PMID: 10544044 DOI: 10.1006/bbrc.1999.1615] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spinal muscular atrophies (SMA), characterized by motor neuron loss and progressive paralysis, are among the most common autosomal recessive disorders. Recently, two SMA candidate genes, NAIP (neuronal apoptosis inhibitory protein) and survival motor neuron (SMN), were reported and a 131-kb genomic sequence of 5q13.1 encompassing these two genes was determined. Based upon this genomic sequence, the original NAIP cDNA sequence published in 1995 was shown to contain foreign fragments. We therefore conducted an extensive cDNA cloning of NAIP from a human fetal brain library. Our studies confirmed that the cDNA sequence deduced from the 131-kb genomic sequence was the major transcript in the human fetal brain. In addition, a shorter and minor transcript was also newly identified. We thus designated the longer and shorter transcripts as NAIPl and NAIPs, respectively. The cDNA clones for NAIPl and NAIPs should facilitate the functional analysis of the NAIP gene and its association with neuronal apoptosis and SMA.
Collapse
Affiliation(s)
- K Yamamoto
- Department of Psychiatry, Tokai University School of Medicine, Isehara, 259-1193, Japan
| | | | | | | | | |
Collapse
|
32
|
Endrizzi M, Huang S, Scharf JM, Kelter AR, Wirth B, Kunkel LM, Miller W, Dietrich WF. Comparative sequence analysis of the mouse and human Lgn1/SMA interval. Genomics 1999; 60:137-51. [PMID: 10486205 DOI: 10.1006/geno.1999.5910] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human chromosome 5q11.2-q13.3 and its ortholog on mouse chromosome 13 contain candidate genes for an inherited human neurodegenerative disorder called spinal muscular atrophy (SMA) and for an inherited mouse susceptibility to infection with Legionella pneumophila (Lgn1). These homologous genomic regions also have unusual repetitive organizations that create practical difficulties in mapping and raise interesting issues about the evolutionary origin of the repeats. In an attempt to analyze this region in detail, and as a way to identify additional candidate genes for these diseases, we have determined the sequence of 179 kb of the mouse Lgn1/SMA interval. We have analyzed this sequence using BLAST searches and various exon prediction programs to identify potential genes. Since these methods can generate false-positive exon declarations, our alignments of the mouse sequence with available human orthologous sequence allowed us to discriminate rapidly among this collection of potential coding regions by indicating which regions were well conserved and were more likely to represent actual coding sequence. As a result of our analysis, we accurately mapped two additional genes in the SMA interval that can be tested for involvement in the pathogenesis of SMA. While no new Lgn1 candidates emerged, we have identified new genetic markers that exclude Smn as an Lgn1 candidate. In addition to providing important resources for studying SMA and Lgn1, our data provide further evidence of the value of sequencing the mouse genome as a means to help with the annotation of the human genomic sequence and vice versa.
Collapse
Affiliation(s)
- M Endrizzi
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lahiri DK, Nall C, Ge YW. Promoter activity of the beta-amyloid precursor protein gene is negatively modulated by an upstream regulatory element. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:32-41. [PMID: 10407184 DOI: 10.1016/s0169-328x(99)00150-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is characterized by the aggregation of the amyloid beta-peptide (Abeta) which is generated from a larger beta-amyloid precursor protein (betaAPP). An overexpression of the betaAPP gene in certain areas of the AD brain has been suggested to be an important factor in the neuropathology of AD. Here we have further characterized an upstream regulatory element (URE) located between -2257 and -2234 of the human betaAPP promoter. In addition to its location in the promoter, BLAST search reveals that URE is present in several introns of the betaAPP gene and is also detected in many other genes. For functional studies, two promoter regions were cloned upstream of the reporter gene, chloramphenicol acetyl transferase (CAT): (i) phbetaE-B - the plasmid that contains the human (h) promoter region (-2832 to +101) including URE, and (ii) prhbetaE-B - the plasmid that contains the rhesus (rh) promoter region excluding URE as it lacks a 270 bp region of the hbetaAPP promoter (-2435 to -2165). Transient transfection studies indicate that phbetaE-B displayed significantly less CAT-promoter activity than prhbetaE-B in C6, PC12 and SK-N-SH cells. To determine the role of URE in a heterologous promoter, a pbetaURE construct was made by subcloning URE in an enhancerless promoter vector pCATP. The pbetaURE-CAT construct displayed threefold to fourfold less promoter activity than pCATP when different cell lines were transfected with the plasmids. URE interacts with a novel protein(s) as determined by the electrophoretic mobility shift assay (EMSA). Although the core DNA region of URE resembles with the NF-kB element, URE-binding protein is not related to the NF-kB transcription factor. When EMSA was performed with specific competitors in different cell lines, the labeled URE probe was not competed by the oligonucleotides specific for either the AP3, NF-1 or NF-kB transcription factor. The migration of the URE-protein complex was different from the NF-kB-protein complex in the EMSA gel. A distinct URE-specific nuclear factor was also detected in frontal cortex of a normal human brain. These results suggest that the URE region acts as a repressor element, that the URE-binding protein is not related to the known transcription factors tested, and that the protein is present in astrocytic, neuroblastoma, PC12 cells and in the human brain.
Collapse
Affiliation(s)
- D K Lahiri
- Laboratory of Molecular Neurogenetics, Institute of Psychiatric Research, Department of Psychiatry and of Medical and Molecular Genetics, Room No. PR-313, 791 Union Drive, Indiana University School of Medicine, Indianapolis, IN 46202-488.
| | | | | |
Collapse
|
34
|
Monani UR, McPherson JD, Burghes AH. Promoter analysis of the human centromeric and telomeric survival motor neuron genes (SMNC and SMNT). BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1445:330-6. [PMID: 10366716 DOI: 10.1016/s0167-4781(99)00060-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proximal spinal muscular atrophy (SMA) is caused by mutations in the telomeric (SMNT), but not centromeric (SMNC), survival motor neuron gene. Here we have identified and analyzed the two SMN promoters. We show that a 750-bp 5'-flanking fragment from each is capable of driving expression from a reporter construct. Within this fragment, we define a approximately 200-bp element that results in high expression in a motor neuron cell line. Sequence comparison of a 3. 4-kb upstream fragment from each gene shows minimal differences. Although these differences produce a 2-fold difference in reporter activity between the two promoters, this is not sufficiently high to explain why SMNT, but not SMNC, is the disease determining gene. Our data thus demonstrate, for the first time, almost complete equivalence between the SMN promoters and rule out the important possibility that differences in them might explain why mutations in only the telomeric SMN gene cause SMA.
Collapse
Affiliation(s)
- U R Monani
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
35
|
Kilpatrick TJ, Soilu-Hänninen M. Molecular mechanisms regulating motor neuron development and degeneration. Mol Neurobiol 1999; 19:205-28. [PMID: 10495104 DOI: 10.1007/bf02821714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Motor neurons are a well-defined, although heterogeneous group of cells responsible for transmitting information from the central nervous system to the locomotor system. Spinal motor neurons are specified by soluble factors produced by structures adjacent to the primordial spinal cord, signaling through homeodomain proteins. Axonal pathfinding is regulated by cell-surface receptors that interact with extracellular ligands and once synaptic connections have formed, the survival of the somatic motor neuron is dependent on the provision of target-derived growth factors, although nontarget-derived factors, produced by either astrocytes or Schwann cells, are also potentially implicated. Somatic motor neuron degeneration leads to profound disability, and multiple pathogenetic mechanisms including aberrant growth factor signaling, abnormal neurofilament accumulation, excitotoxicity, and autoimmunity have been postulated to be responsible. Even when specific deficits have been identified, for example, mutations of the superoxide dismutase-1 gene in familial amyotrophic sclerosis and polyglutamine expansion of the androgen receptor in spinal and bulbar muscular atrophy, the mechanisms by which somatic motor neuronal degeneration occurs remain unclear. In order to treat motor system degeneration effectively, we will need to understand these mechanisms more thoroughly.
Collapse
Affiliation(s)
- T J Kilpatrick
- Development and Neurobiology Group, The Walter and Eliza Hall Institute of Medical Research, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
36
|
Wirth B, Herz M, Wetter A, Moskau S, Hahnen E, Rudnik-Schöneborn S, Wienker T, Zerres K. Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am J Hum Genet 1999; 64:1340-56. [PMID: 10205265 PMCID: PMC1377870 DOI: 10.1086/302369] [Citation(s) in RCA: 276] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Problems with diagnosis and genetic counseling occur for patients with autosomal recessive proximal spinal muscular atrophy (SMA) who do not show the most common mutation: homozygous absence of at least exon 7 of the telomeric survival motor neuron gene (SMN1). Here we present molecular genetic data for 42 independent nondeleted SMA patients. A nonradioactive quantitative PCR test showed one SMN1 copy in 19 patients (45%). By sequencing cloned reverse-transcription (RT) PCR products or genomic fragments of SMN1, we identified nine different mutations in 18 of the 19 patients, six described for the first time: three missense mutations (Y272C, T274I, S262I), three frameshift mutations in exons 2a, 2b, and 4 (124insT, 241-242ins4, 591delA), one nonsense mutation in exon 1 (Q15X), one Alu-mediated deletion from intron 4 to intron 6, and one donor splice site mutation in intron 7 (c.922+6T-->G). The most frequent mutation, Y272C, was found in 6 (33%) of 18 patients. Each intragenic mutation found in at least two patients occurred on the same haplotype background, indicating founder mutations. Genotype-phenotype correlation allowed inference of the effect of each mutation on the function of the SMN1 protein and the role of the SMN2 copy number in modulating the SMA phenotype. In 14 of 23 SMA patients with two SMN1 copies, at least one intact SMN1 copy was sequenced, which excludes a 5q-SMA and suggests the existence of further gene(s) responsible for approximately 4%-5% of phenotypes indistinguishable from SMA. We determined the validity of the test, and we discuss its practical implications and limitations.
Collapse
Affiliation(s)
- B Wirth
- Institute of Human Genetics, Wilhelmstrasse 31, D-53111 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Spinal muscular atrophy is an autosomal recessive disease characterized by motor neurone loss, muscle atrophy and weakness. Deletion or mutation of the SMN1 gene reduces intracellular survival motor neurone protein levels causes spinal muscular atrophy, most likely by interfering with spliceosome assembly. A range of clinical severity and corresponding survival motor neurone levels is seen because of the presence of copies of the transcriptionally inefficient SMN2 gene and possibly other modifying genes. The delineation of SMN1 as the gene that causes spinal muscular atrophy and the identification of genes that modify spinal muscular atrophy raise the prospect of gene therapy or in-vivo gene activation treatment for this frequently fatal disorder.
Collapse
Affiliation(s)
- N H Gendron
- Children's Hospital of Eastern Ontario Research Institute, Solange Gauthier Karsh Laboratory, Ottawa, Canada.
| | | |
Collapse
|
38
|
Scharf JM, Endrizzi MG, Wetter A, Huang S, Thompson TG, Zerres K, Dietrich WF, Wirth B, Kunkel LM. Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics. Nat Genet 1998; 20:83-6. [PMID: 9731538 DOI: 10.1038/1753] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spinal muscular atrophy (SMA) is a common recessive disorder characterized by the loss of lower motor neurons in the spinal cord. The disease has been classified into three types based on age of onset and severity. SMA I-III all map to chromosome 5q13 (refs 2,3), and nearly all patients display deletions or gene conversions of the survival motor neuron (SMN1) gene. Some correlation has been established between SMN protein levels and disease course; nevertheless, the genetic basis for SMA phenotypic variability remains unclear, and it has been postulated that the loss of an additional modifying factor contributes to the severity of type I SMA. Using comparative genomics to screen for such a factor among evolutionarily conserved sequences between mouse and human, we have identified a novel transcript, H4F5, which lies closer to SMN1 than any previously identified gene in the region. A multi-copy microsatellite marker that is deleted in more than 90% of type I SMA chromosomes is embedded in an intron of this gene, indicating that H4F5 is also highly deleted in type I SMA chromosomes, and thus is a candidate phenotypic modifier for SMA.
Collapse
Affiliation(s)
- J M Scharf
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yaraghi Z, Korneluk RG, MacKenzie A. Cloning and characterization of the multiple murine homologues of NAIP (neuronal apoptosis inhibitory protein). Genomics 1998; 51:107-13. [PMID: 9693038 DOI: 10.1006/geno.1998.5378] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spinal muscular atrophies (SMAs), characterized by degeneration of spinal cord motor neurons, are among the most common autosomal recessive disorders. We have previously reported the characterization of an SMA-associated gene designated NAIP (neuronal apoptosis inhibitory protein). This gene, which encodes a protein homologous to the baculoviral inhibitor of apoptosis proteins, is deleted in a significant proportion of individuals with type I SMA, is expressed in motor neurons, and inhibits apoptosis both in vitro and in vivo. Here we present the cloning and characterization of multiple copies of the mouse homologue of NAIP, Naip1-Naip6. Our analysis of the genomic organization of Naip indicated the existence of a minimum of six distinct Naip loci in the 129/SvJ mouse strain. However, Southern blot analysis revealed that only three of these loci contained the 5'UTR element essential for translation in the CNS. The coding region of one of these three potentially functional loci (Naip1) demonstrates 77% homology to NAIP at the nucleotide level and 68% identity at the amino acid level.
Collapse
Affiliation(s)
- Z Yaraghi
- Solange Gauthier Karsh Laboratory, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, K1H 8L1, Canada
| | | | | |
Collapse
|