1
|
Guo Y, Kasai Y, Tanaka Y, Ohashi‐Kumagai Y, Sakamoto T, Ito T, Murakami Y. IGSF3 is a homophilic cell adhesion molecule that drives lung metastasis of melanoma by promoting adhesion to vascular endothelium. Cancer Sci 2024; 115:1936-1947. [PMID: 38590281 PMCID: PMC11145127 DOI: 10.1111/cas.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
The immunoglobulin superfamily (IgSF) is one of the largest families of cell-surface molecules involved in various cell-cell interactions, including cancer-stromal interactions. In this study, we undertook a comprehensive RT-PCR-based screening for IgSF molecules that promote experimental lung metastasis in mice. By comparing the expression of 325 genes encoding cell-surface IgSF molecules between mouse melanoma B16 cells and its highly metastatic subline, B16F10 cells, we found that expression of the immunoglobulin superfamily member 3 gene (Igsf3) was significantly enhanced in B16F10 cells than in B16 cells. Knockdown of Igsf3 in B16F10 cells significantly reduced lung metastasis following intravenous injection into C57BL/6 mice. IGSF3 promoted adhesion of B16F10 cells to vascular endothelial cells and functioned as a homophilic cell adhesion molecule between B16F10 cells and vascular endothelial cells. Notably, the knockdown of IGSF3 in either B16F10 cells or vascular endothelial cells suppressed the transendothelial migration of B16F10 cells. Moreover, IGSF3 knockdown suppressed the extravasation of B16F10 cells into the lungs after intravenous injection. These results suggest that IGSF3 promotes the metastatic potential of B16F10 cells in the lungs by facilitating their adhesion to vascular endothelial cells.
Collapse
Affiliation(s)
- Yue Guo
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yutaka Kasai
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yuto Tanaka
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yuki Ohashi‐Kumagai
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Takeharu Sakamoto
- Department of Cancer BiologyInstitute of Biomedical Science, Kansai Medical UniversityHirakataJapan
| | - Takeshi Ito
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yoshinori Murakami
- Division of Molecular PathologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
2
|
Sjöblom A, Jouhi L, Laakkonen P, Randén-Brady R, Tarkkanen J, Haglund C, Mattila P, Carpén T, Hagström J, Mäkitie A. IGSF3 tissue expression in squamous cell carcinoma of the oropharynx: a novel tool for prognosis assessment in HPV-related and HPV-unrelated disease. APMIS 2024. [PMID: 38623593 DOI: 10.1111/apm.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Biomarkers are not broadly used in the management of head and neck cancers (HNCs). Biomarkers have been beneficial in the management of other cancers, however, not in HNCs. Therefore, we observed the immunopositivity of a novel biomarker called immunoglobulin superfamily member 3 (IGSF3) in tumor tissues in HPV-related and HPV-unrelated OPSCC. Two patient cohorts (C1 and C2) from separate time periods were available for this study (total N = 282). Both consisted of OPSCC patients treated at the Helsinki University Hospital (HUS, Helsinki, Finland) during 2000-2016. For HPV determination, HPV mRNA in situ hybridization was used. Immunohistochemistry was used to assess IGSF3 immunopositivity in cancer tissues. Overall survival (OS) was used as endpoint in the statistical analysis. In C1, stronger immunopositivity of IGSF3 in tumor-infiltrating lymphocytes (TILs) correlated with favorable OS (p = 0.005). Stronger IGSF3 immunopositivity in tumor cells (TCs) was associated with HPV negativity (p = 0.017). Stronger IGSF3 immunopositivity in TILs correlated with HPV positivity (p < 0.001). Elevated IGSF3 immunopositivity in TILs associates with HPV-related tumors and may signify favorable prognosis. The immunopositivity of IGSF3 differs between HPV-related and HPV-unrelated OPSCC.
Collapse
Affiliation(s)
- Anni Sjöblom
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lauri Jouhi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Reija Randén-Brady
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jussi Tarkkanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Petri Mattila
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Carpén
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Oral Pathology and Oral Radiology, University of Turku, Turku, Finland
| | - Antti Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Tanjore Ramanathan J, Zárybnický T, Filppu P, Monzo HJ, Monni O, Tervonen TA, Klefström J, Kerosuo L, Kuure S, Laakkonen P. Immunoglobulin superfamily member 3 is required for the vagal neural crest cell migration and enteric neuronal network organization. Sci Rep 2023; 13:17162. [PMID: 37821496 PMCID: PMC10567708 DOI: 10.1038/s41598-023-44093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
The immunoglobulin (Ig) superfamily members are involved in cell adhesion and migration, complex multistep processes that play critical roles in embryogenesis, wound healing, tissue formation, and many other processes, but their specific functions during embryonic development remain unclear. Here, we have studied the function of the immunoglobulin superfamily member 3 (IGSF3) by generating an Igsf3 knockout (KO) mouse model with CRISPR/Cas9-mediated genome engineering. By combining RNA and protein detection methodology, we show that during development, IGSF3 localizes to the neural crest and a subset of its derivatives, suggesting a role in normal embryonic and early postnatal development. Indeed, inactivation of Igsf3 impairs the ability of the vagal neural crest cells to migrate and normally innervate the intestine. The small intestine of Igsf3 KO mice shows reduced thickness of the muscularis externa and diminished number of enteric neurons. Also, misalignment of neurons and smooth muscle cells in the developing intestinal villi is detected. Taken together, our results suggest that IGSF3 functions contribute to the formation of the enteric nervous system. Given the essential role of the enteric nervous system in maintaining normal gastrointestinal function, our study adds to the pool of information required for further understanding the mechanisms of gut innervation and etiology behind bowel motility disorders.
Collapse
Affiliation(s)
| | - Tomáš Zárybnický
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauliina Filppu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hector J Monzo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Outi Monni
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Topi A Tervonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish genome editing center (FinGEEC), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Juha Klefström
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Cancer Institute & FICAN South, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Laura Kerosuo
- Neural Crest Development and Disease Unit, Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- GM-unit, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- iCAN Flagship Program, University of Helsinki, Helsinki, Finland.
- Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Niroomand A, Ghaidan H, Hallgren O, Hansson L, Larsson H, Wagner D, Mackova M, Halloran K, Hyllén S, Lindstedt S. Corticotropin releasing hormone as an identifier of bronchiolitis obliterans syndrome. Sci Rep 2022; 12:8413. [PMID: 35589861 PMCID: PMC9120482 DOI: 10.1038/s41598-022-12546-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Lung transplantion (LTx) recipients have low long-term survival and a high incidence of bronchiolitis obliterans syndrome (BOS), an inflammation of the small airways in chronic rejection of a lung allograft. There is great clinical need for a minimally invasive biomarker of BOS. Here, 644 different proteins were analyzed to detect biomarkers that distinguish BOS grade 0 from grades 1–3. The plasma of 46 double lung transplant patients was analyzed for proteins using a high-component, multiplex immunoassay that enables analysis of protein biomarkers. Proximity Extension Assay (PEA) consists of antibody probe pairs which bind to targets. The resulting polymerase chain reaction (PCR) reporter sequence can be quantified by real-time PCR. Samples were collected at baseline and 1-year post transplantation. Enzyme-linked immunosorbent assay (ELISA) was used to validate the findings of the PEA analysis across both time points and microarray datasets from other lung transplantation centers demonstrated the same findings. Significant decreases in the plasma protein levels of CRH, FERC2, IL-20RA, TNFB, and IGSF3 and an increase in MMP-9 and CTSL1 were seen in patients who developed BOS compared to those who did not. In this study, CRH is presented as a novel potential biomarker in the progression of disease because of its decreased levels in patients across all BOS grades. Additionally, biomarkers involving the remodeling of the extracellular matrix (ECM), such as MMP-9 and CTSL1, were increased in BOS patients.
Collapse
Affiliation(s)
- Anna Niroomand
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Haider Ghaidan
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, 221 85, Lund, Sweden
| | - Oskar Hallgren
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lennart Hansson
- Department of Pulmonology and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Hillevi Larsson
- Department of Pulmonology and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Darcy Wagner
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Lund Stem Cell Center, Lund University, Lund, Sweden.,Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden
| | - Martina Mackova
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Kieran Halloran
- Alberta Transplant Applied Genomics Center, University of Alberta, Edmonton, Canada
| | - Snejana Hyllén
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Cardiothoracic Anaesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden. .,Department of Clinical Sciences, Lund University, Lund, Sweden. .,Lund Stem Cell Center, Lund University, Lund, Sweden. .,Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, 221 85, Lund, Sweden.
| |
Collapse
|
5
|
Wang F, Tao H, Han C, Bai F, Wang P, Zhou XB, Wang LH, Liu C. Preliminary report on screening IGSF3 gene mutation in families with congenital absence of lacrimal puncta and canaliculi. Int J Ophthalmol 2020; 13:1351-1355. [PMID: 32953570 DOI: 10.18240/ijo.2020.09.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/17/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the variation of IGSF3 gene in three families with congenital absence of lacrimal puncta and canaliculi, and to lay a foundation for further research on the pathogenic gene of congenital lacrimal duct agenesis. METHODS The members of the three families were recruited. The ophthalmologic examinations in details, including slit-lamp biomicroscope, intraocular pressure and fundus examination, etc. were carried out. All patients were checked with paracentesis of puncta membrane and lacrimal duct probing, as well as the computed tomography-dacryocystography (CT-DCG). Peripheral blood of 14 participants (3 normal) from three families were collected, 4 mL each, for genomic DNA extraction, and 11 exon fragments of IGSF3 gene were amplified and sequenced by polymerase chain reaction (PCR) to determine whether there were IGSF3 genetic variation. RESULTS A total of 14 members from three families were screened for 4 synonymous variants: c.930C>T (p.Pro366=), c.1359T>C (p.Ser709=), c.1797G>A (p.Ser855=), c.1539G>A (p.Ser769=), and 6 missense variants: c.1507G>A (p.Gly759Ser), c.1783T>C (p.Trp851Arg), c.1952G>T (p.Ser 907Ile), c.3120C>G (p.Asp1040Glu), c.3123C>G (p.Asp1041Glu), c.3139_3140insGAC (p.Asp1046_Pro1047insAsp), and the latter three were only found in two patients with absence of lacrimal puncta and canaliculi combined with congenital osseous nasolacrimal canal obstruction from the first family. CONCLUSION The same IGSF3 gene mutation c.3139_3140insGAC is found in the patients with congenital absence of lacrimal puncta and canaliculi combine with osseous nasolacrimal canal obstruction.
Collapse
Affiliation(s)
- Fei Wang
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Hai Tao
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Cui Han
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Fang Bai
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Peng Wang
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xi-Bin Zhou
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Li-Hua Wang
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Chuan Liu
- Lacrimal Center of Ophthalmology, the Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| |
Collapse
|
6
|
Schweitzer KS, Jinawath N, Yonescu R, Ni K, Rush N, Charoensawan V, Bronova I, Berdyshev E, Leach SM, Gillenwater LA, Bowler RP, Pearse DB, Griffin CA, Petrache I. IGSF3 mutation identified in patient with severe COPD alters cell function and motility. JCI Insight 2020; 5:138101. [PMID: 32573489 DOI: 10.1172/jci.insight.138101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022] Open
Abstract
Cigarette smoking (CS) and genetic susceptibility determine the risk for development, progression, and severity of chronic obstructive pulmonary diseases (COPD). We posited that an incidental balanced reciprocal chromosomal translocation was linked to a patient's risk of severe COPD. We determined that 46,XX,t(1;4)(p13.1;q34.3) caused a breakpoint in the immunoglobulin superfamily member 3 (IGSF3) gene, with markedly decreased expression. Examination of COPDGene cohort identified 14 IGSF3 SNPs, of which rs1414272 and rs12066192 were directly and rs6703791 inversely associated with COPD severity, including COPD exacerbations. We confirmed that IGSF3 is a tetraspanin-interacting protein that colocalized with CD9 and integrin B1 in tetraspanin-enriched domains. IGSF3-deficient patient-derived lymphoblastoids exhibited multiple alterations in gene expression, especially in the unfolded protein response and ceramide pathways. IGSF3-deficient lymphoblastoids had high ceramide and sphingosine-1 phosphate but low glycosphingolipids and ganglioside levels, and they were less apoptotic and more adherent, with marked changes in multiple TNFRSF molecules. Similarly, IGSF3 knockdown increased ceramide in lung structural cells, rendering them more adherent, with impaired wound repair and weakened barrier function. These findings suggest that, by maintaining sphingolipid and membrane receptor homeostasis, IGSF3 is required for cell mobility-mediated lung injury repair. IGSF3 deficiency may increase susceptibility to CS-induced lung injury in COPD.
Collapse
Affiliation(s)
- Kelly S Schweitzer
- Department of Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, and.,Integrative Computational Bioscience Center, Mahidol University, Nakhon Pathom, Thailand
| | - Raluca Yonescu
- Department of Pathology, Division of Molecular Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Kevin Ni
- Department of Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Natalia Rush
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Varodom Charoensawan
- Integrative Computational Bioscience Center, Mahidol University, Nakhon Pathom, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Irina Bronova
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Sonia M Leach
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | | | - Russel P Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - David B Pearse
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Constance A Griffin
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, and
| | - Irina Petrache
- Department of Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Sheng P, Zhu H, Zhang W, Xu Y, Peng W, Sun J, Gu M, Jiang H. The immunoglobulin superfamily member 3 (IGSF3) promotes hepatocellular carcinoma progression through activation of the NF-κB pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:378. [PMID: 32355822 PMCID: PMC7186720 DOI: 10.21037/atm.2020.02.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Patients with hepatocellular carcinoma (HCC) suffer from a high fatality rate, likely due to increased incidence of tumor relapse and metastasis. Understanding the molecular mechanisms that contribute to HCC development and progression is vital for the discovery of new treatment targets. This study aims to explore the expression profiles and functions of immunoglobulin superfamily member 3 (IGSF3) in HCC. Methods We evaluated IGSF3 levels in HCC and normal tissues using bioinformatics, western blot, quantitative real-time PCR (qRT-PCR), and immunohistochemistry. We also conducted proliferation assays, colony formation assays, flow cytometry, cell migration assay, cell invasion assay, qRT-PCR, and western blotting in HCC cell lines. Immunofluorescence and western blotting further used to study the IGSF3 pathway. A mouse xenograft model was utilized to examine the influence of IGSF3 on HCC growth in vivo. Results IGSF3 levels were higher in HCC tissues and cell lines. Silencing of IGSF3 via lentiviral vector system (LV) inhibited migration, invasion, and growth of HCC cell lines in vitro as well as tumor growth in vivo. Overexpression of IGSF3 promoted result in vitro. Importantly, we found that IGSF3 activates the NF-κB pathway to promote tumorigenic features in HCC cell lines. Conclusions We found that IGSF3 can be used as a novel biomarker for HCC detection. Moreover, IGSF3 elicits HCC progression by activating the NF-κB pathway. As such, our data provides potential options for therapeutic targets in patients with HCC.
Collapse
Affiliation(s)
- Ping Sheng
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Huirong Zhu
- Department of Pathology, The Yanan Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Wenxiu Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, China
| | - Yanan Xu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wenxue Peng
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jing Sun
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Mingqi Gu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Hongchi Jiang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
8
|
Wu W, Zhai G, Xu Z, Hou B, Liu D, Liu T, Liu W, Ren F. Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese. Hum Genet 2019; 138:601-611. [PMID: 30968251 PMCID: PMC6554238 DOI: 10.1007/s00439-019-02008-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/02/2019] [Indexed: 11/30/2022]
Abstract
Facial shape differences are one of the most significant phenotypes in humans. It is affected largely by skull shape. However, research into the genetic basis of the craniofacial morphology has rarely been reported. The present study aimed to identify genetic variants influencing craniofacial morphology in northern Han Chinese through whole-exome sequencing (WES). Phenotypic data of the volunteers’ faces and skulls were obtained through three-dimensional CT scan of the skull. A total of 48 phenotypes (35 facial and 13 cranial phenotypes) were used for the bioinformatics analysis. Four genetic loci were identified affecting the craniofacial shapes. The four candidate genes are RGPD3, IGSF3, SLC28A3, and USP40. Four single-nucleotide polymorphism (SNP) site mutations in RGPD3, IGSF3, and USP40 were significantly associated with the skull shape (p < 1×10−6), and three SNP site mutations in RGPD3, IGSF3, and SLC28A3 were significantly associated with the facial shape (p < 1×10−6). The rs62152530 site mutation in the RGPD3 gene may be closely associated with the nasal length, ear length, and alar width. The rs647711 site mutation in the IGSF3 gene may be closely associated with the nasal length, mandibular width, and width between the mental foramina. The rs10868138 site mutation in the SLC28A3 gene may be associated with the nasal length, alar width, width between tragus, and width between the mental foramina. The rs1048603 and rs838543 site mutations in the USP40 gene may be closely associated with the pyriform aperture width. Our findings provide useful genetic information for the determination of face morphology.
Collapse
Affiliation(s)
- Wei Wu
- School of Humanities and Management, Jinzhou Medical University, Jinzhou, 121001, Liaoning, People's Republic of China.,Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China.,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China
| | - Guiying Zhai
- Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China.,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China
| | - Zejun Xu
- Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China.,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China
| | - Bo Hou
- Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China.,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China
| | - Dahua Liu
- Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China.,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China
| | - Tianyi Liu
- Department of Plastic and Maxillofacial Surgery, Uppsala University, Uppsala, Sweden
| | - Wei Liu
- Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China.,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China
| | - Fu Ren
- Biological Anthropology Institute, Jinzhou Medical University, No. 40, Section 3, Songpo Road, Linghe District, Jinzhou, 121001, Liaoning, People's Republic of China. .,Liaoning Province Key Laboratory of Chinese Physical Characteristics Research (LPKL-CPCR), Jinzhou, 121001, Liaoning, People's Republic of China.
| |
Collapse
|
9
|
Usardi A, Iyer K, Sigoillot SM, Dusonchet A, Selimi F. The immunoglobulin-like superfamily member IGSF3 is a developmentally regulated protein that controls neuronal morphogenesis. Dev Neurobiol 2016; 77:75-92. [PMID: 27328461 DOI: 10.1002/dneu.22412] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 01/06/2023]
Abstract
The establishment of a functional brain depends on the fine regulation and coordination of many processes, including neurogenesis, differentiation, dendritogenesis, axonogenesis, and synaptogenesis. Proteins of the immunoglobulin-like superfamily (IGSF) are major regulators during this sequence of events. Different members of this class of proteins play nonoverlapping functions at specific developmental time-points, as shown in particular by studies of the cerebellum. We have identified a member of the little studied EWI subfamily of IGSF, the protein IGSF3, as a membrane protein expressed in a neuron specific- and time-dependent manner during brain development. In the cerebellum, it is transiently found in membranes of differentiating granule cells, and is particularly concentrated at axon terminals. There it co-localizes with other IGSF proteins with well-known functions in cerebellar development: TAG-1 and L1. Functional analysis shows that IGSF3 controls the differentiation of granule cells, more precisely axonal growth and branching. Biochemical experiments demonstrate that, in the developing brain, IGSF3 is in a complex with the tetraspanin TSPAN7, a membrane protein mutated in several forms of X-linked intellectual disabilities. In cerebellar granule cells, TSPAN7 promotes axonal branching and the size of TSPAN7 clusters is increased by downregulation of IGSF3. Thus IGSF3 is a novel regulator of neuronal morphogenesis that might function through interactions with multiple partners including the tetraspanin TSPAN7. This developmentally regulated protein might thus be at the center of a new signaling pathway controlling brain development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 75-92, 2017.
Collapse
Affiliation(s)
- Alessia Usardi
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Keerthana Iyer
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Séverine M Sigoillot
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Antoine Dusonchet
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| | - Fekrije Selimi
- Team Mice, Molecules and Synapse Formation, CIRB, Collège de France, CNRS, INSERM, PSL* Research University, Paris, France, 75231, Cedex 05
| |
Collapse
|
10
|
Foster J, Kapoor S, Diaz-Horta O, Singh A, Abad C, Rastogi A, Moharana R, Tekeli O, Walz K, Tekin M. Identification of an IGSF3 mutation in a family with congenital nasolacrimal duct obstruction. Clin Genet 2013; 86:589-91. [PMID: 24372406 DOI: 10.1111/cge.12321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/04/2013] [Accepted: 11/12/2013] [Indexed: 11/30/2022]
Affiliation(s)
- J Foster
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Horvath JE, Gulden CL, Vallente RU, Eichler MY, Ventura M, McPherson JD, Graves TA, Wilson RK, Schwartz S, Rocchi M, Eichler EE. Punctuated duplication seeding events during the evolution of human chromosome 2p11. Genome Res 2005; 15:914-27. [PMID: 15965031 PMCID: PMC1172035 DOI: 10.1101/gr.3916405] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Primate genomic sequence comparisons are becoming increasingly useful for elucidating the evolutionary history and organization of our own genome. Such studies are particularly informative within human pericentromeric regions--areas of particularly rapid change in genomic structure. Here, we present a systematic analysis of the evolutionary history of one approximately 700-kb region of 2p11, including the first autosomal transition from pericentromeric sequence to higher-order alpha-satellite DNA. We show that this region is composed of segmental duplications corresponding to 14 ancestral segments ranging in size from 4 kb to approximately 115 kb. These duplicons show 94%-98.5% sequence identity to their ancestral loci. Comparative FISH and phylogenetic analysis indicate that these duplicons are differentially distributed in human, chimpanzee, and gorilla genomes, whereas baboon has a single putative ancestral locus for all but one of the duplications. Our analysis supports a model where duplicative transposition events occurred during a narrow window of evolution after the separation of the human/ape lineage from the Old World monkeys (10-20 million years ago). Although dramatic secondary dispersal events occurred during the radiation of the human, chimpanzee, and gorilla lineages, duplicative transposition seeding events of new material to this particular pericentromeric region abruptly ceased after this time period. The multiplicity of initial duplicative transpositions prior to the separation of humans and great-apes suggests a punctuated model for the formation of highly duplicated pericentromeric regions within the human genome. The data further indicate that factors other than sequence are important determinants for such bursts of duplicative transposition from the euchromatin to pericentromeric regions.
Collapse
Affiliation(s)
- Julie E Horvath
- Department of Genetics and Center for Human Genetics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stipp CS, Kolesnikova TV, Hemler ME. EWI-2 is a major CD9 and CD81 partner and member of a novel Ig protein subfamily. J Biol Chem 2001; 276:40545-54. [PMID: 11504738 DOI: 10.1074/jbc.m107338200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A novel Ig superfamily protein, EWI-2, was co-purified with tetraspanin protein CD81 under relatively stringent Brij 96 detergent conditions and identified by mass spectrometric protein sequencing. EWI-2 associated specifically with CD9 and CD81 but not with other tetraspanins or with integrins. Immunodepletion experiments indicated that EWI-2-CD9/CD81 interactions are highly stoichiometric, with approximately 70% of CD9 and CD81 associated with EWI-2 in an embryonic kidney cell line. The EWI-2 molecule was covalently cross-linked (in separate complexes) to both CD81 and CD9, suggesting that association is direct. EWI-2 is part of a novel Ig subfamily that includes EWI-F (F2alpha receptor regulatory protein (FPRP), CD9P-1), EWI-3 (IgSF3), and EWI-101 (CD101). All four members of this Ig subfamily contain a Glu-Trp-Ile (EWI) motif not seen in other Ig proteins. As shown previously, the EWI-F molecule likewise forms highly proximal, specific, and stoichiometric complexes with CD9 and CD81. Human and murine EWI-2 protein sequences are 91% identical, and transcripts in the two species are expressed in virtually every tissue tested. Thus, EWI-2 potentially contributes to a variety of CD9 and CD81 functions seen in different cell and tissue types.
Collapse
Affiliation(s)
- C S Stipp
- Dana-Farber Cancer Institute and the Department of Pathology, Harvard Medical School, Boston, Mssachusetts 02115, USA
| | | | | |
Collapse
|
13
|
Ruault M, Trichet V, Gimenez S, Boyle S, Gardiner K, Rolland M, Roizès G, De Sario A. Juxta-centromeric region of human chromosome 21 is enriched for pseudogenes and gene fragments. Gene 1999; 239:55-64. [PMID: 10571034 DOI: 10.1016/s0378-1119(99)00381-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A physical map including four pseudogenes and 10 gene fragments and spanning 500 kb in the juxta-centromeric region of the long arm of human chromosome 21 is presented. cDNA fragments isolated from a selected cDNA library were characterized and mapped to the 831B6 YAC and to two BAC contigs that cover 250 kb of the region. An 85 kb genomic sequence located in the proximal region of the map was analyzed for putative exons. Four pseudogenes were found, including psiIGSF3, psiEIF3, psiGCT-rel whose functional copies map to chromosome 1p13, chromosome 2 and chromosome 22q11, respectively. The TTLL1 pseudogene corresponds to a new gene whose functional copy maps to chromosome 22q13. Ten gene fragments represent novel sequences that have related sequences on different human chromosomes and show 97-100% nucleotide identity to chromosome 21. These may correspond to pseudogenes on chromosome 21 and to functional genes in other chromosomes. The 85 kb genomic sequence was analyzed also for GC content, CpG islands, and repetitive sequence distribution. A GC-poor L isochore spanning 40 kb from satellite 1 was observed in the most centromeric region, next to a GC-rich H isochore that is a candidate region for the presence of functional genes. The pericentric duplication of a 7.8 kb region that is derived from the 22q13 chromosome band is described. We showed that the juxta-centromeric region of human chromosome 21 is enriched for retrotransposed pseudogenes and gene fragments transferred by interchromosome duplications, but we do not rule out the possibility that the region harbors functional genes also.
Collapse
Affiliation(s)
- M Ruault
- Séquences Répétées et Centromères Humains, CNRS UPR 1142, Institut de Biologie, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|