1
|
Jones JM, Datta P, Srinivasula SM, Ji W, Gupta S, Zhang Z, Davies E, Hajnóczky G, Saunders TL, Van Keuren ML, Fernandes-Alnemri T, Meisler MH, Alnemri ES. Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 2003; 425:721-7. [PMID: 14534547 DOI: 10.1038/nature02052] [Citation(s) in RCA: 281] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 09/15/2003] [Indexed: 11/09/2022]
Abstract
The mouse mutant mnd2 (motor neuron degeneration 2) exhibits muscle wasting, neurodegeneration, involution of the spleen and thymus, and death by 40 days of age. Degeneration of striatal neurons, with astrogliosis and microglia activation, begins at around 3 weeks of age, and other neurons are affected at later stages. Here we have identified the mnd2 mutation as the missense mutation Ser276Cys in the protease domain of the nuclear-encoded mitochondrial serine protease Omi (also known as HtrA2 or Prss25). Protease activity of Omi is greatly reduced in tissues of mnd2 mice but is restored in mice rescued by a bacterial artificial chromosome transgene containing the wild-type Omi gene. Deletion of the PDZ domain partially restores protease activity to the inactive recombinant Omi protein carrying the Ser276Cys mutation, suggesting that the mutation impairs substrate access or binding to the active site pocket. Loss of Omi protease activity increases the susceptibility of mitochondria to induction of the permeability transition, and increases the sensitivity of mouse embryonic fibroblasts to stress-induced cell death. The neurodegeneration and juvenile lethality in mnd2 mice result from this defect in mitochondrial Omi protease.
Collapse
Affiliation(s)
- Julie M Jones
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109-0618, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Rathke-Hartlieb S, Schlomann U, Heimann P, Meisler MH, Jockusch H, Bartsch JW. Progressive loss of striatal neurons causes motor dysfunction in MND2 mutant mice and is not prevented by Bcl-2. Exp Neurol 2002; 175:87-97. [PMID: 12009762 DOI: 10.1006/exnr.2002.7868] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse mutant "motoneuron disease 2" (MND2, mnd2 on Chr 6) was originally characterized as a spinal muscular atrophy (SMA) because degenerating motoneurons were observed in late stages of the disease. MND2 mutants exhibit a progressive phenotype with neurological symptoms that begin at postnatal day (dP) 20 and include involuntary movements, abnormal postures, akinesis, and death between dP 30 and 40. Unexpectedly, there was no induction of acetylcholine receptor alpha subunit mRNA in skeletal muscle of MND2 mice, an indicator of muscle denervation due to motoneuron loss. Rather, we found a massive loss of striatal neurons beginning at dP 25. Histochemical and ultrastructural analysis revealed nuclear pyknosis, chromatin condensation, and organelle disintegration, combined features of apoptosis and necrosis, characteristic for excitotoxic cell death. Striatal neurodegeneration was accompanied by a pronounced astrogliosis and activation of microglia with macrophage morphology. Motor abnormalities and neuronal loss in MND2 mice were not prevented by neuronal overexpression of a Bcl-2 transgene. Transcripts of several cytokines, including Interleukin-1beta and tumor necrosis factor alpha, were upregulated in the CNS, as well as in lung and spleen, indicating that the mnd2 mutation causes additional pathological effects outside the CNS. Since a 50% reduction in the number of striatal neurons is sufficient to account for the neurological phenotype of MND2 mice, MND2 may be classified as striatal atrophy rather than a primary motor neuron disease. Thus, MND2 mutant mice may provide useful insights into molecular events underlying striatal cell death.
Collapse
Affiliation(s)
- Silvia Rathke-Hartlieb
- Developmental Biology and Molecular Pathology, University of Bielefeld, Bielefeld, D-33501, Germany
| | | | | | | | | | | |
Collapse
|
3
|
Iakoubova OA, Olsson CL, Dains KM, Ross DA, Andalibi A, Lau K, Choi J, Kalcheva I, Cunanan M, Louie J, Nimon V, Machrus M, Bentley LG, Beauheim C, Silvey S, Cavalcoli J, Lusis AJ, West DB. Genome-tagged mice (GTM): two sets of genome-wide congenic strains. Genomics 2001; 74:89-104. [PMID: 11374905 DOI: 10.1006/geno.2000.6497] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An important approach for understanding complex disease risk using the mouse is to map and ultimately identify the genes conferring risk. Genes contributing to complex traits can be mapped to chromosomal regions using genome scans of large mouse crosses. Congenic strains can then be developed to fine-map a trait and to ascertain the magnitude of the genotype effect in a chromosomal region. Congenic strains are constructed by repeated backcrossing to the background strain with selection at each generation for the presence of a donor chromosomal region, a time-consuming process. One approach to accelerate this process is to construct a library of congenic strains encompassing the entire genome of one strain on the background of the other. We have employed marker-assisted breeding to construct two sets of overlapping congenic strains, called genome-tagged mice (GTMs), that span the entire mouse genome. Both congenic GTM sets contain more than 60 mouse strains, each with on average a 23-cM introgressed segment (range 8 to 58 cM). C57BL/6J was utilized as a background strain for both GTM sets with either DBA/2J or CAST/Ei as the donor strain. The background and donor strains are genetically and phenotypically divergent. The genetic basis for the phenotypic strain differences can be rapidly mapped by simply screening the GTM strains. Furthermore, the phenotype differences can be fine-mapped by crossing appropriate congenic mice to the background strain, and complex gene interactions can be investigated using combinations of these congenics.
Collapse
Affiliation(s)
- O A Iakoubova
- Pfizer Global Research and Development, 1501 Harbor Bay Parkway, Alameda, California 94502, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Nunes M, Blanc I, Maes J, Fellous M, Robert B, McElreavey K. NSPc1, a novel mammalian Polycomb gene, is expressed in neural crest-derived structures of the peripheral nervous system. Mech Dev 2001; 102:219-22. [PMID: 11287196 DOI: 10.1016/s0925-4773(01)00288-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anterior-posterior (A-P) patterning is a key element in early embryonic development. Polycomb group (PcG) genes act as transcriptional repressors to regulate A-P patterning by either directly or indirectly controlling the coordinated expression of the HOM/Hox homeobox (Curr. Opin. Genet. Dev. 7 (1997) 488; Trends Genet. 13 (1997) 167). We describe the isolation and characterization of a novel mammalian PcG gene, termed Nervous System Polycomb-1 (NSPc1). Human and mouse NSPc1 genes encode proteins with an N-terminal RING finger domain and share homology with Drosophila melanogaster lethal(3)73Ah and the mammalian Mel18 and Bmi1 genes. Transcripts are observed at 10 dpc in the otic vesicle, urogenital bud and dorsal root ganglia. At 11.5 dpc, transcripts are present in a subset of neural crest cell derivatives of the peripheral nervous system, and in the neural tube. NSPc1 expression is ubiquitous in adult tissue.
Collapse
Affiliation(s)
- M Nunes
- Laboratoire d'Immunogénétique Humaine, INSERM E 21, Institut Pasteur, 25 rue du Dr Roux, 75724 Cedex 15, Paris, France.
| | | | | | | | | | | |
Collapse
|
5
|
Park C, Longo CM, Ackerman SL. Genetic and physical mapping of the cerebellar deficient folia (cdf) locus on mouse chromosome 6. Genomics 2000; 69:135-8. [PMID: 11013084 DOI: 10.1006/geno.2000.6322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebellar deficient folia (cdf) is a recessive mouse mutation causing ataxia and cerebellar cytoarchitectural abnormalities, including hypoplasia, foliation defects, and Purkinje cell ectopia. To identify the cdf gene, we have generated a high-resolution genetic map of a 3.24 +/- 0.55 cM (95% CI) region encompassing the cdf gene using 1997 F2 mice generated from a (C3H/HeSnJ-cdf/cdf x CAST/Ei)F1 intercross. Linkage analysis showed that the cdf gene cosegregates with D6Mit208, D6Mit359, and D6Mit225. A contig of five YACs, nine BACs, and three P1s was constructed across the cdf nonrecombinant region. Based on genetic and physical maps, the cdf gene was localized to the 0.28 +/- 0.23 cM (95% CI) interval between D6Mit209 and D6Ack1. These results will greatly facilitate the map-based cloning of the cdf gene, which in turn should further knowledge of the molecular mechanisms of neuronal positioning and foliation during cerebellar development.
Collapse
Affiliation(s)
- C Park
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609, USA
| | | | | |
Collapse
|
6
|
Abstract
Genetic lesions in the p53 tumor suppressor gene are the most frequently observed alterations in human cancers. Typically in tumors, one allele of the p53 gene is initially mutated, followed by deletion of the remaining wildtype allele. In human colon cancer, for example, approximately 70% of late stage tumors are hemizygous mutant p53. Since the precise gene environment surrounding the p53 gene is not known, the neighboring genes concomitantly lost with wildtype p53 deletion remain undetermined. A restriction enzyme map and clone array of 1.1 Mb surrounding the p53 gene were constructed using a combination of YAC, BAC, NotI linking, and NotI jumping clones. The resulting physical map and clone array include approximately 400 kb telomeric and 700 kb centromeric to the p53 gene. Sequence determination and analysis adjacent to NotI and AscI sites, indicative of CpG islands, allowed the rapid identification of numerous genes within the cloned region. Twenty-seven transcription units were identified, including 18 characterized genes. Limited analysis of primary human colon tumors, hemizygous for the p53 gene, indicates loss of the entire 1.1-Mb region upon deletion of wildtype p53.
Collapse
Affiliation(s)
- P Cousin
- Institute of Pathology, CHUV, Lausanne, Switzerland
| | | | | | | |
Collapse
|
7
|
Encinas JA, Kikuchi K, Chedotal A, de Castro F, Goodman CS, Kimura T. Cloning, expression, and genetic mapping of Sema W, a member of the semaphorin family. Proc Natl Acad Sci U S A 1999; 96:2491-6. [PMID: 10051670 PMCID: PMC26812 DOI: 10.1073/pnas.96.5.2491] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The semaphorins comprise a large family of membrane-bound and secreted proteins, some of which have been shown to function in axon guidance. We have cloned a transmembrane semaphorin, Sema W, that belongs to the class IV subgroup of the semaphorin family. The mouse and rat forms of Sema W show 97% amino acid sequence identity with each other, and each shows about 91% identity with the human form. The gene for Sema W is divided into 15 exons, up to 4 of which are absent in the human cDNAs that we sequenced. Unlike many other semaphorins, Sema W is expressed at low levels in the developing embryo but was found to be expressed at high levels in the adult central nervous system and lung. Functional studies with purified membrane fractions from COS7 cells transfected with a Sema W expression plasmid showed that Sema W has growth-cone collapse activity against retinal ganglion-cell axons, indicating that vertebrate transmembrane semaphorins, like secreted semaphorins, can collapse growth cones. Genetic mapping of human SEMAW with human/hamster radiation hybrids localized the gene to chromosome 2p13. Genetic mapping of mouse Semaw with mouse/hamster radiation hybrids localized the gene to chromosome 6, and physical mapping placed the gene on bacteria artificial chromosomes carrying microsatellite markers D6Mit70 and D6Mit189. This localization places Semaw within the locus for motor neuron degeneration 2, making it an attractive candidate gene for this disease.
Collapse
Affiliation(s)
- J A Encinas
- Sumitomo Pharmaceuticals Research Center, 3-1-98 Kasugade-Naka, Konohana, Osaka 554-0022, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Jang W, Hua A, Spilson SV, Miller W, Roe BA, Meisler MH. Comparative Sequence of Human and Mouse BAC Clones from the mnd2 Region of Chromosome 2p13. Genome Res 1999. [DOI: 10.1101/gr.9.1.53] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mnd2 mutation on mouse chromosome 6 produces a progressive neuromuscular disorder. To determine the gene content of the 400-kb mnd2 nonrecombinant region, we sequenced 108 kb of mouse genomic DNA and 92 kb of human genomic sequence from the corresponding region of chromosome 2p13.3. Three genes with the indicated sizes and intergenic distances were identified:D6Mm5e (⩾81 kb)–787 bp–DOK (2 kb)–845 bp–LOR2 (⩾6 kb). D6Mm5e is expressed in many tissues at very low abundance and the predicted 526-residue protein contains no known functional domains. DOK encodes the p62dok rasGAP binding protein involved in signal transduction. LOR2 encodes a novel lysyl oxidase-related protein of 757 amino acid residues. We describe a simple search protocol for identification of conserved internal exons in genomic sequence. Evolutionary conservation proved to be a useful criterion for distinguishing between authentic exons and artifactual products obtained by exon amplification, RT–PCR, and 5′ RACE. Conserved noncoding sequence elements longer than 80 bp with ⩾75% nucleotide sequence identity comprise ∼1% of the genomic sequence in this region. Comparative analysis of this human and mouse genomic DNA sequence was an efficient method for gene identification and is independent of developmental stage or quantitative level of gene expression.[The sequence data described in this paper have been submitted to the GenBank data library under the following accession numbers: AC003061, mouse BAC clone 245c12; AC003065, human BAC clone h173(E10); AF053368, mouse Lor2 cDNA; AF084363, 108-kb contig from mouse BAC 245c12; AF084364, mouse D6Mm5ecDNA.]
Collapse
|