2
|
Liu J, Wu N, Yang N, Takeda K, Chen W, Li W, Du R, Liu S, Zhou Y, Zhang L, Liu Z, Zuo Y, Zhao S, Blank R, Pehlivan D, Dong S, Zhang J, Shen J, Si N, Wang Y, Liu G, Li S, Zhao Y, Zhao H, Chen Y, Zhao Y, Song X, Hu J, Lin M, Tian Y, Yuan B, Yu K, Niu Y, Yu B, Li X, Chen J, Yan Z, Zhu Q, Meng X, Chen X, Su J, Zhao X, Wang X, Ming Y, Li X, Raggio CL, Zhang B, Weng X, Zhang S, Zhang X, Watanabe K, Matsumoto M, Jin L, Shen Y, Sobreira NL, Posey JE, Giampietro PF, Valle D, Liu P, Wu Z, Ikegawa S, Lupski JR, Zhang F, Qiu G. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model. Genet Med 2019; 21:1548-1558. [PMID: 30636772 DOI: 10.1038/s41436-018-0377-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To characterize clinically measurable endophenotypes, implicating the TBX6 compound inheritance model. METHODS Patients with congenital scoliosis (CS) from China(N = 345, cohort 1), Japan (N = 142, cohort 2), and the United States (N = 10, cohort 3) were studied. Clinically measurable endophenotypes were compared according to the TBX6 genotypes. A mouse model for Tbx6 compound inheritance (N = 52) was investigated by micro computed tomography (micro-CT). A clinical diagnostic algorithm (TACScore) was developed to assist in clinical recognition of TBX6-associated CS (TACS). RESULTS In cohort 1, TACS patients (N = 33) were significantly younger at onset than the remaining CS patients (P = 0.02), presented with one or more hemivertebrae/butterfly vertebrae (P = 4.9 × 10‒8), and exhibited vertebral malformations involving the lower part of the spine (T8-S5, P = 4.4 × 10‒3); observations were confirmed in two replication cohorts. Simple rib anomalies were prevalent in TACS patients (P = 3.1 × 10‒7), while intraspinal anomalies were uncommon (P = 7.0 × 10‒7). A clinically usable TACScore was developed with an area under the curve (AUC) of 0.9 (P = 1.6 × 10‒15). A Tbx6-/mh (mild-hypomorphic) mouse model supported that a gene dosage effect underlies the TACS phenotype. CONCLUSION TACS is a clinically distinguishable entity with consistent clinically measurable endophenotypes. The type and distribution of vertebral column abnormalities in TBX6/Tbx6 compound inheritance implicate subtle perturbations in gene dosage as a cause of spine developmental birth defects responsible for about 10% of CS.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China. .,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | | | - Nan Yang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Kazuki Takeda
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.,Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Weiyu Li
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Renqian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sen Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangzhong Zhou
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Internal Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Zhenlei Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Robert Blank
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shuangshuang Dong
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Nuo Si
- The McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yipeng Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Shugang Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanxue Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Hong Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yixin Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Yu Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jianhua Hu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mao Lin
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Ye Tian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Keyi Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Qiankun Zhu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xiaolu Meng
- The McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Jianzhong Su
- College of Biomedical Engineering, The Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuli Zhao
- The McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyue Wang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Ming
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cathleen L Raggio
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Baozhong Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuyang Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Zhang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,The McKusick-Zhang Center for Genetic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kota Watanabe
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | - Li Jin
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yiping Shen
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Nara L Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Philip F Giampietro
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics Laboratory, Houston, TX, USA
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Departments of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.,NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China. .,Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Chen W, Liu J, Yuan D, Zuo Y, Liu Z, Liu S, Zhu Q, Qiu G, Huang S, Giampietro PF, Zhang F, Wu N, Wu Z. Progress and perspective of TBX6 gene in congenital vertebral malformations. Oncotarget 2018; 7:57430-57441. [PMID: 27437870 PMCID: PMC5302999 DOI: 10.18632/oncotarget.10619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/16/2016] [Indexed: 02/05/2023] Open
Abstract
Congenital vertebral malformation is a series of significant health problems affecting a large number of populations. It may present as an isolated condition or as a part of an underlying syndromes occurring with other malformations and/or clinical features. Disruption of the genesis of paraxial mesoderm, somites or axial bones can result in spinal deformity. In the course of somitogenesis, the segmentation clock and the wavefront are the leading factors during the entire process in which TBX6 gene plays an important role. TBX6 is a member of the T-box gene family, and its important pathogenicity in spinal deformity has been confirmed. Several TBX6 gene variants and novel pathogenic mechanisms have been recently revealed, and will likely have significant impact in understanding the genetic basis for CVM. In this review, we describe the role which TBX6 plays during human spine development including its interaction with other key elements during the process of somitogenesis. We then systematically review the association between TBX6 gene variants and CVM associated phenotypes, highlighting an important and emerging role for TBX6 and human malformations.
Collapse
Affiliation(s)
- Weisheng Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Breast Surgical Oncology, Cancer Hospital of Chinese Academy of Medical Sciences, Beijing, China
| | - Dongtang Yuan
- Department of Orthopaedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yuzhi Zuo
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenlei Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Qiankun Zhu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Shishu Huang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Philip F Giampietro
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Barnby G, Abbott A, Sykes N, Morris A, Weeks DE, Mott R, Lamb J, Bailey AJ, Monaco AP. Candidate-gene screening and association analysis at the autism-susceptibility locus on chromosome 16p: evidence of association at GRIN2A and ABAT. Am J Hum Genet 2005; 76:950-66. [PMID: 15830322 PMCID: PMC1196454 DOI: 10.1086/430454] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 03/23/2005] [Indexed: 01/04/2023] Open
Abstract
Autism is a highly heritable neurodevelopmental disorder whose underlying genetic causes have yet to be identified. To date, there have been eight genome screens for autism, two of which identified a putative susceptibility locus on chromosome 16p. In the present study, 10 positional candidate genes that map to 16p11-13 were examined for coding variants: A2BP1, ABAT, BFAR, CREBBP, EMP2, GRIN2A, MRTF-B, SSTR5, TBX6, and UBN1. Screening of all coding and regulatory regions by denaturing high-performance liquid chromatography identified seven nonsynonymous changes. Five of these mutations were found to cosegregate with autism, but the mutations are not predicted to have deleterious effects on protein structure and are unlikely to represent significant etiological variants. Selected variants from candidate genes were genotyped in the entire International Molecular Genetics Study of Autism Consortium collection of 239 multiplex families and were tested for association with autism by use of the pedigree disequilibrium test. Additionally, genotype frequencies were compared between 239 unrelated affected individuals and 192 controls. Patterns of linkage disequilibrium were investigated, and the transmission of haplotypes across candidate genes was tested for association. Evidence of single-marker association was found for variants in ABAT, CREBBP, and GRIN2A. Within these genes, 12 single-nucleotide polymorphisms (SNPs) were subsequently genotyped in 91 autism trios (one affected individual and two unaffected parents), and the association was replicated within GRIN2A (Fisher's exact test, P<.0001). Logistic regression analysis of SNP data across GRIN2A and ABAT showed a trend toward haplotypic differences between cases and controls.
Collapse
Affiliation(s)
- Gabrielle Barnby
- Wellcome Trust Centre for Human Genetics, University of Oxford, and Section of Child and Adolescent Psychiatry, University Department of Psychiatry, Park Hospital for Children, Oxford, United Kingdom; and Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Aaron Abbott
- Wellcome Trust Centre for Human Genetics, University of Oxford, and Section of Child and Adolescent Psychiatry, University Department of Psychiatry, Park Hospital for Children, Oxford, United Kingdom; and Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Nuala Sykes
- Wellcome Trust Centre for Human Genetics, University of Oxford, and Section of Child and Adolescent Psychiatry, University Department of Psychiatry, Park Hospital for Children, Oxford, United Kingdom; and Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Andrew Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, and Section of Child and Adolescent Psychiatry, University Department of Psychiatry, Park Hospital for Children, Oxford, United Kingdom; and Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Daniel E. Weeks
- Wellcome Trust Centre for Human Genetics, University of Oxford, and Section of Child and Adolescent Psychiatry, University Department of Psychiatry, Park Hospital for Children, Oxford, United Kingdom; and Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Richard Mott
- Wellcome Trust Centre for Human Genetics, University of Oxford, and Section of Child and Adolescent Psychiatry, University Department of Psychiatry, Park Hospital for Children, Oxford, United Kingdom; and Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Janine Lamb
- Wellcome Trust Centre for Human Genetics, University of Oxford, and Section of Child and Adolescent Psychiatry, University Department of Psychiatry, Park Hospital for Children, Oxford, United Kingdom; and Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Anthony J. Bailey
- Wellcome Trust Centre for Human Genetics, University of Oxford, and Section of Child and Adolescent Psychiatry, University Department of Psychiatry, Park Hospital for Children, Oxford, United Kingdom; and Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | - Anthony P. Monaco
- Wellcome Trust Centre for Human Genetics, University of Oxford, and Section of Child and Adolescent Psychiatry, University Department of Psychiatry, Park Hospital for Children, Oxford, United Kingdom; and Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh
| | | |
Collapse
|