1
|
Varisli L, Javed A, Ozturk BE, Akyuz GK, Takir G, Roumelioti FM, Gagos S, Yorukoglu K, Korkmaz KS. HN1 interacts with γ-tubulin to regulate centrosomes in advanced prostate cancer cells. Cell Cycle 2021; 20:1723-1744. [PMID: 34382911 DOI: 10.1080/15384101.2021.1962624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Prostate cancer is one of the most common cancer for men worldwide with advanced forms showing supernumerary or clustered centrosomes. Hematological and neurological expressed 1 (HN1) also known as Jupiter Microtubule Associated Homolog 1 (JPT1) belongs to a small poorly understood family of genes that are evolutionarily conserved across vertebrate species. The co-expression network of HN1 from the TCGA PRAD dataset indicates the putative role of HN1 in centrosome-related processes in the context of prostate cancer. HN1 expression is low in normal RWPE-1 cells as compared to cancerous androgen-responsive LNCaP and androgen insensitive PC-3 cells. HN1 overexpression resulted in differential response for cell proliferation and cell cycle changes in RWPE-1, LNCaP, and PC-3 cells. Since HN1 overexpression increased the proliferation rate in PC-3 cells, these cells were used for functional characterization of HN1 in advanced prostate carcinogenesis. Furthermore, alterations in HN expression led to an increase in abnormal to normal nuclei ratio and increased chromosomal aberrations in PC-3 cells. We observed the co-localization of HN1 with γ-tubulin foci in prostate cancer cells, further validated by immunoprecipitation. HN1 was observed as physically associated with γ-tubulin and its depletion led to increased γ-tubulin foci and disruption in microtubule spindle assembly. Higher HN1 expression was correlated with prostate cancer as compared to normal tissues. The restoration of HN1 expression after silencing suggested that it has a role in centrosome clustering, implicating a potential role of HN1 in cell division as well as in prostate carcinogenesis warranting further studies.
Collapse
Affiliation(s)
- Lokman Varisli
- Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir, Turkey
| | - Aadil Javed
- Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir, Turkey
| | - Bilge Esin Ozturk
- Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir, Turkey
| | - Gencer Kaan Akyuz
- Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir, Turkey
| | - Gulevin Takir
- Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir, Turkey
| | - Fani-Marlen Roumelioti
- Biomedical Research Foundation of the Academy of Athens, Basic Research II, Laboratory of Genetics, Greece (BRFAA), Izmir, Turkey
| | - Sarantis Gagos
- Biomedical Research Foundation of the Academy of Athens, Basic Research II, Laboratory of Genetics, Greece (BRFAA), Izmir, Turkey
| | - Kutsal Yorukoglu
- Faculty of Medicine, Department of Pathology, Dokuz Eylul University, Izmir, Turkey
| | - Kemal Sami Korkmaz
- Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Ege University, Izmir, Turkey
| |
Collapse
|
2
|
The cisplatin-induced lncRNA PANDAR dictates the chemoresistance of ovarian cancer via regulating SFRS2-mediated p53 phosphorylation. Cell Death Dis 2018; 9:1103. [PMID: 30375398 PMCID: PMC6207559 DOI: 10.1038/s41419-018-1148-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023]
Abstract
As a component of p53-dependent lncRNA (long non-coding RNA), PANDAR (the promoter of CDKN1A antisense DNA damage activated RNA) participates in the epigenetic regulation in human cancer. However, the involvement of PANDAR in cancer chemoresistance is unknown. In this study, we report that PANDAR serves as a negative regulator of cisplatin sensitivity in human ovarian cancer via PANDAR-SRFS2-p53 feedback regulation in nuclear. Our data showed that among the drugs commonly used in ovarian cancer therapy, cisplatin induces higher levels of PANDAR compared with doxorubicin and paclitaxel. We also proved that PANDAR exhibited higher expression in cisplatin-resistant ovarian cancer tissues and cells, compared with cisplatin-sensitive ones, and this expression pattern depends on wild-type p53 (wt-p53), not mutant-p53 (mt-p53). In vitro and in vivo, PANDAR overexpression improved cell survival rate and tumor growth in response to cisplatin, while depletion of PANDAR leads to a reduced tumor growth. Further investigation revealed that PANDAR-reduced cisplatin sensitivity was likely or partly due to the PANDAR-binding protein SFRS2 (arginine/serine-rich 2), a splicing factor with the ability to negative regulate p53 and its phosphorylation at Serine 15 (Ser15). This feedback regulation of PANDAR–SFRS2–p53 leads to a reduced transactivation of p53-related pro-apoptotic genes, such as PUMA (p53-upregulated modulator of apoptosis). In addition, in platinum-treated patients with relapsed ovarian cancer, resistant period was positively correlated with the expression of PANDAR and SFRS2, and inversely associated with expression of p53-Ser15 and PUMA in these clinical tissues. Last but not least, the role of PANDAR in chemoresistance was confirmed in patients with ovarian cancer. These findings reveal a novel regulatory maneuver of cancer cells in response to chemostress, and might shed light on overcoming cisplatin resistance in ovarian cancer.
Collapse
|
3
|
Abstract
Neuralgic amyotrophy--also known as Parsonage-Turner syndrome or brachial plexus neuritis--is a distinct and painful peripheral neuropathy that causes episodes of multifocal paresis and sensory loss in a brachial plexus distribution with concomitant involvement of other PNS structures (such as the lumbosacral plexus or phrenic nerve) in a large number of patients. The phenotype can be limited or extensive and the amount of disability experienced also varies between patients, but many are left with residual disabilities that affect their ability to work and their everyday life. Both idiopathic and hereditary forms exist. The latter form is genetically heterogeneous, but in 55% of affected families, neuralgic amyotrophy is associated with a point mutation or duplication in the SEPT9 gene on chromosome 17q25. The disease is thought to result from an underlying genetic predisposition, a susceptibility to mechanical injury of the brachial plexus (possibly representing disturbance of the epineurial blood-nerve barrier), and an immune or autoimmune trigger for the attacks. The precise pathophysiological mechanisms are still unclear; treatment is empirical, and preventive measures are not yet available. This Review provides an overview of the current clinical and pathophysiological concepts and research topics in neuralgic amyotrophy.
Collapse
|
4
|
Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia 2009; 23:1515-27. [PMID: 19357701 DOI: 10.1038/leu.2009.65] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is an open question whether in multiple myeloma (MM) bone marrow stromal cells contain genomic alterations, which may contribute to the pathogenesis of the disease. We conducted an array-based comparative genomic hybridization (array-CGH) analysis to compare the extent of unbalanced genomic alterations in mesenchymal stem cells from 21 myeloma patients (MM-MSCs) and 12 normal donors (ND-MSCs) after in vitro culture expansion. Whereas ND-MSCs were devoid of genomic imbalances, several non-recurrent chromosomal gains and losses (>1 Mb size) were detected in MM-MSCs. Using real-time reverse transcription PCR, we found correlative deregulated expression for five genes encoded in regions for which genomic imbalances were detected using array-CGH. In addition, only MM-MSCs showed a specific pattern of 'hot-spot' regions with discrete (<1 Mb) genomic alterations, some of which were confirmed using fluorescence in situ hybridization (FISH). Within MM-MSC samples, unsupervised cluster analysis did not correlate with particular clinicobiological features of MM patients. We also explored whether cytogenetic abnormalities present in myelomatous plasma cells (PCs) were shared by matching MSCs from the same patients using FISH. All MM-MSCs were cytogenetically normal for the tested genomic alterations. Therefore we cannot support a common progenitor for myeloma PCs and MSCs.
Collapse
|
5
|
Characterization of a SEPT9 interacting protein, SEPT14, a novel testis-specific septin. Mamm Genome 2007; 18:796-807. [PMID: 17922164 DOI: 10.1007/s00335-007-9065-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 08/21/2007] [Indexed: 01/08/2023]
Abstract
Septins are a highly conserved family of GTP-binding cytoskeletal proteins implicated in multiple cellular functions, including membrane transport, apoptosis, cell polarity, cell cycle regulation, cytokinesis, and oncogenesis. Here we describe the characterization of a novel interacting partner of the septin family, initially cloned from a human testis expression library following yeast two-hybrid isolation to identify SEPT9 binding partners. Upon further genomic characterization and bioinformatics analyses it was determined that this novel septin-interacting partner was also a new member of the mammalian septin family, named SEPT14. SEPT14 maps to 7p11.2 in humans and includes a conserved GTPase domain and a predicted carboxy-terminus coiled-coil domain characteristic of other septins. Three potential translational start methionines were identified by 5' RACE-PCR encoding proteins of 432-, 427-, and 425-residue peptides, respectively. SEPT14 shares closest homology to SEPT10, a human dendritic septin, and limited homology to SEPT9 isoforms. SEPT14 colocalized with SEPT9 when coexpressed in cell lines, and epitope-tagged forms of these proteins coimmunoprecipitated. Moreover, SEPT14 was coimmunoprecipitated from rat testes using SEPT9 antibodies, and yeast two-hybrid analysis suggested SEPT14 interactions with nine additional septins. Multitissue Northern blotting showed testis-specific expression of a single 5.0-kb SEPT14 transcript. RT-PCR analysis revealed that SEPT14 was not detectable in normal or cancerous ovarian, breast, prostate, bladder, or kidney cell lines and was only faintly detected in fetal liver, tonsil, and thymus samples. Interestingly, SEPT14 was expressed in testis but not testicular cancer cell lines by RT-PCR, suggesting that further investigation of SEPT14 as a testis-specific tumor suppressor is necessary.
Collapse
|
6
|
Díaz-Perales A, Quesada V, Peinado JR, Ugalde AP, Alvarez J, Suárez MF, Gomis-Rüth FX, López-Otín C. Identification and characterization of human archaemetzincin-1 and -2, two novel members of a family of metalloproteases widely distributed in Archaea. J Biol Chem 2005; 280:30367-75. [PMID: 15972818 DOI: 10.1074/jbc.m504533200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Systematic analysis of degradomes, the complete protease repertoires of organisms, has demonstrated the large and growing complexity of proteolytic systems operating in all cells and tissues. We report here the identification of two new human metalloproteases that have been called archaemetzincin-1 (AMZ1) and archaemetzincin-2 (AMZ2) to emphasize their close relationship to putative proteases predicted by bioinformatic analysis of archaeal genomes. Both human proteins contain a catalytic domain with a core motif (HEXXHXXGX3CX4CXMX17CXXC) that includes an archetypal zinc-binding site, the methionine residue characteristic of metzincins, and four conserved cysteine residues that are not present at the equivalent positions of other human metalloproteases. Analysis of genome sequence databases revealed that AMZs are widely distributed in Archaea and vertebrates and contribute to the defining of a new metalloprotease family that has been called archaemetzincin. However, AMZ-like sequences are absent in a number of model organisms from bacteria to nematodes. Phylogenetic analysis showed that these enzymes have undergone a complex evolutionary process involving a series of lateral gene transfer, gene loss, and genetic duplication events that have shaped this novel family of metalloproteases. Northern blot analysis showed that AMZ1 and AMZ2 exhibit distinct expression patterns in human tissues. AMZ1 is mainly detected in liver and heart whereas AMZ2 is predominantly expressed in testis and heart, although both are also detectable at lower levels in other tissues. Both human enzymes were produced in Escherichia coli, and the purified recombinant proteins hydrolyzed synthetic substrates and bioactive peptides, demonstrating that they are functional proteases. Finally, these activities were abolished by inhibitors of metalloproteases, providing further evidence that AMZs belong to this catalytic class of proteolytic enzymes.
Collapse
Affiliation(s)
- Araceli Díaz-Perales
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Presneau N, Dewar K, Forgetta V, Provencher D, Mes-Masson AM, Tonin PN. Loss of heterozygosity and transcriptome analyses of a 1.2 Mb candidate ovarian cancer tumor suppressor locus region at 17q25.1-q25.2. Mol Carcinog 2005; 43:141-54. [PMID: 15937959 DOI: 10.1002/mc.20096] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Loss of heterozygosity (LOH) analysis was performed in epithelial ovarian cancers (EOC) to further characterize a previously identified candidate tumor suppressor gene (TSG) region encompassing D17S801 at chromosomal region 17q25.1. LOH of at least one informative marker was observed for 100 (71%) of 140 malignant EOC samples in an analysis of 6 polymorphic markers (cen-D17S1839-D17S785-D17S1817-D17S801-D17S751-D17S722-tel). The combined LOH analysis revealed a 453 kilobase (Kb) minimal region of deletion (MRD) bounded by D17S1817 and D17S751. Human and mouse genome assemblies were used to resolve marker inconsistencies in the D17S1839-D17S722 interval and identify candidates. The region contains 32 known and strongly predicted genes, 9 of which overlap the MRD. The reference genomic sequences share nearly identical gene structures and the organization of the region is highly collinear. Although, the region does not show any large internal duplications, a 1.5 Kb inverted duplicated sequence of 87% nucleotide identity was observed in a 13 Kb region surrounding D17S801. Transcriptome analysis by Affymetrix GeneChip and reverse transcription (RT)-polymerase chain reaction (PCR) methods of 3 well characterized EOC cell lines and primary cultures of normal ovarian surface epithelial (NOSE) cells was performed with 32 candidates spanning D17S1839-D17S722 interval. RT-PCR analysis of 8 known or strongly predicted genes residing in the MRD in 10 EOC samples, that exhibited LOH of the MRD, identified FLJ22341 as a strong candidate TSG. The proximal repeat sequence of D17S801 occurs 8 Kb upstream of the putative promoter region of FLJ22341. RT-PCR analysis of the EOC samples and cell lines identified DKFZP434P0316 that maps proximal to the MRD, as a candidate. While Affymetrix technology was useful for initially eliminating less promising candidates, subsequent RT-PCR analysis of well-characterized EOC samples was essential to prioritize TSG candidates for further study.
Collapse
Affiliation(s)
- Nadège Presneau
- The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Zhou G, Wang J, Zhang Y, Zhong C, Ni J, Wang L, Guo J, Zhang K, Yu L, Zhao S. Cloning, expression and subcellular localization of HN1 and HN1L genes, as well as characterization of their orthologs, defining an evolutionarily conserved gene family. Gene 2004; 331:115-23. [PMID: 15094197 DOI: 10.1016/j.gene.2004.02.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 01/20/2004] [Accepted: 02/04/2004] [Indexed: 10/26/2022]
Abstract
The present work reported the cloning and characterization of two novel human genes--HN1 (hematopoietic- and neurologic-expressed sequence 1) and HN1L (HN1-like gene) which are proposed to be involved in embryo development. HN1 is mapped on chromosome 17q25.2, with two transcripts (1.0 and 1.6 kb in length, respectively) due to alternative splicing. HN1 is expressed abundantly in testis and skeletal muscle among 16 human tissues, and it is localized in the nucleus indicated by GFP fusion expression. Western blot confirmed that HN1 encodes a 16.5-kDa protein. HN1L is on chromosome 16p13.3, with three splicing in the length of 2.0, 4.0 and 4.2 kb, respectively. HN1L is expressed in a variety of tissues such as liver, kidney, prostate, testis and uterus at varying levels. HN1L gene encodes a 20-kDa protein, which is localized in both the nucleus and cytoplasm. Fourteen of HN1 and sixteen of HN1L homologous genes in different species were determined and analyzed by BLAST searches. Silicon analyses of the 14 orthologous proteins of HN1 and 16 orthologous proteins of HN1L revealed that they share great conservation in vertebrate. Additionally, we identified nine pseudogenes of HN1 (six) and HN1L (three) in the genomes of the human, mouse and rat. Based on sequence alignments and phylogenetic analysis, all these homologous genes and pseudogenes were defined as a HN1 gene family.
Collapse
Affiliation(s)
- Guangjin Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, 220 Handan Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Langan JE, Cole CG, Huckle EJ, Byrne S, McRonald FE, Rowbottom L, Ellis A, Shaw JM, Leigh IM, Kelsell DP, Dunham I, Field JK, Risk JM. Novel microsatellite markers and single nucleotide polymorphisms refine the tylosis with oesophageal cancer (TOC) minimal region on 17q25 to 42.5 kb: sequencing does not identify the causative gene. Hum Genet 2004; 114:534-40. [PMID: 15007728 DOI: 10.1007/s00439-004-1100-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Accepted: 02/05/2004] [Indexed: 11/30/2022]
Abstract
Tylosis (focal non-epidermolytic palmoplantar keratoderma) is associated with the early onset of squamous cell oesophageal cancer in three families. Linkage and haplotype analyses have previously mapped the tylosis with oesophageal cancer ( TOC) locus to a 500-kb region on chromosome 17q25 that has also been implicated in sporadically occurring squamous cell oesophageal cancer. In the current study, 17 additional putative microsatellite markers were identified within this 500-kb region by using sequence data and seven of these were shown to be polymorphic in the UK and US families. In addition, our complete sequence analysis of the non-repetitive parts of the TOC minimal region identified 53 novel and six known single nucleotide polymorphisms (SNPs) in one or both of these families. Further fine mapping of the TOC disease locus by haplotype analysis of the seven polymorphic markers and 21 of the 59 SNPs allowed the reduction of the minimal region to 42.5 kb. One known and two putative genes are located within this region but none of these genes shows tylosis-specific mutations within their protein-coding regions. Alternative mechanisms of disease gene action must therefore be considered.
Collapse
Affiliation(s)
- Joanne E Langan
- Molecular Genetics and Oncology Group, Department of Clinical Dental Sciences, University of Liverpool, Edward's Building, Daulby Street, L69 3GN, Liverpool, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Risk JM, Evans KE, Jones J, Langan JE, Rowbottom L, McRonald FE, Mills HS, Ellis A, Shaw JM, Leigh IM, Kelsell DP, Field JK. Characterization of a 500 kb region on 17q25 and the exclusion of candidate genes as the familial Tylosis Oesophageal Cancer (TOC) locus. Oncogene 2002; 21:6395-402. [PMID: 12214281 DOI: 10.1038/sj.onc.1205768] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Revised: 06/10/2002] [Accepted: 06/14/2002] [Indexed: 11/09/2022]
Abstract
The locus for a syndrome of focal palmoplantar keratoderma (Tylosis) associated with squamous cell oesophageal cancer (TOC) has been mapped to chromosome 17q25, a region frequently deleted in sporadic squamous cell oesophageal tumours. Further haplotype analysis described here, based on revised maps of marker order, has reduced the TOC minimal region to a genetic interval of 2 cM limited by the microsatellite markers D17S785 and D17S751. Partial sequence data and complete physical maps estimate the actual size of this region to be only 0.5 Mb. This analysis allowed the exclusion of proposed candidate tumour suppressor genes including MLL septin-like fusion (MSF), survivin, and deleted in multiple human cancer (DMC1). Computer analysis of sequence data from the minimal region identified 13 candidate genes and the presence of 50-70 other 'gene fragments' as ESTs and/or predicted exons and genes. Ten of the characterized genes were assayed for mutations but no disease-specific alterations were identified in the coding and promoter sequences. This region of chromosome 17q25 is, therefore, relatively gene-rich, containing 13 known and possibly as many as 50 predicted genes. Further mutation analysis of these predicted genes, and others possibly residing in the region, is required in order to identify the elusive TOC locus.
Collapse
Affiliation(s)
- Janet M Risk
- Molecular Genetics and Oncology Group, Department of Clinical Dental Sciences, The University of Liverpool, Liverpool L69 3GN, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rosenberg MJ, Agarwala R, Bouffard G, Davis J, Fiermonte G, Hilliard MS, Koch T, Kalikin LM, Makalowska I, Morton DH, Petty EM, Weber JL, Palmieri F, Kelley RI, Schäffer AA, Biesecker LG. Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nat Genet 2002; 32:175-9. [PMID: 12185364 DOI: 10.1038/ng948] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The disorder Amish microcephaly (MCPHA) is characterized by severe congenital microcephaly, elevated levels of alpha-ketoglutarate in the urine and premature death. The disorder is inherited in an autosomal recessive pattern and has been observed only in Old Order Amish families whose ancestors lived in Lancaster County, Pennsylvania. Here we show, by using a genealogy database and automated pedigree software, that 23 nuclear families affected with MCPHA are connected to a single ancestral couple. Through a whole-genome scan, fine mapping and haplotype analysis, we localized the gene affected in MCPHA to a region of 3 cM, or 2 Mb, on chromosome 17q25. We constructed a map of contiguous genomic clones spanning this region. One of the genes in this region, SLC25A19, which encodes a nuclear mitochondrial deoxynucleotide carrier (DNC), contains a substitution that segregates with the disease in affected individuals and alters an amino acid that is highly conserved in similar proteins. Functional analysis shows that the mutant DNC protein lacks the normal transport activity, implying that failed deoxynucleotide transport across the inner mitochondrial membrane causes MCPHA. Our data indicate that mitochondrial deoxynucleotide transport may be essential for prenatal brain growth.
Collapse
Affiliation(s)
- Marjorie J Rosenberg
- National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Bethesda, Maryland 20892-4472, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Dion F, Mes-Masson AM, Seymour RJ, Provencher D, Tonin PN. Allelotyping defines minimal imbalance at chromosomal region 17q25 in non-serous epithelial ovarian cancers. Oncogene 2000; 19:1466-72. [PMID: 10723138 DOI: 10.1038/sj.onc.1203463] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allelic deletions of multiple chromosome 17q loci in sporadic ovarian cancer of epithelial origin suggest that inactivation of tumor suppressor gene(s) in these regions may be important for ovarian tumorigenesis. To further define the pattern of allelic imbalance in epithelial ovarian tumors of different histologies, a PCR-based assay was used to assess loss of heterozygosity (LOH) of polymorphic markers representative of TP53, BRCA1, NME1 and GH1, and region 17q23-25. LOH was observed for at least one marker in 68% of malignant tumors (n=60) and in 18% tumors of borderline malignancy (n=11), but not in benign tumors (n=5). The highest frequency of LOH in malignant tumors (64%) was observed with D17S801 on 17q25. Ten of 39 malignant ovarian tumors displaying LOH of at least one 17q marker, displayed a LOH pattern enabling the determination of a minimal region of overlapping deletion defined by D17S795 and D17S801. One borderline tumor also displayed an interstitial LOH pattern that overlapped this 17q25 minimal region of deletion. The histologies of malignant tumors displaying a pattern indicative of interstitial 17q deletions were of the endometrioid, clear cell and mucinous epithelial types. As the minimal region of overlap defined by these tumors overlap regions deleted in malignant tumors of all histologic types, and in a tumor of borderline malignancy, the 17q25-tumor suppressor may be implicated in the development of all types of epithelial ovarian tumors.
Collapse
Affiliation(s)
- F Dion
- Montreal General Hospital Research Institute, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada
| | | | | | | | | |
Collapse
|
14
|
Kalikin LM, Sims HL, Petty EM. Genomic and expression analyses of alternatively spliced transcripts of the MLL septin-like fusion gene (MSF) that map to a 17q25 region of loss in breast and ovarian tumors. Genomics 2000; 63:165-72. [PMID: 10673329 DOI: 10.1006/geno.1999.6077] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously defined a common region of 17q25 loss in breast and ovarian tumors, suggesting localization of at least one putative tumor suppressor gene. Genomic clones from the interval were used to isolate candidate transcripts. One novel transcript had strong homology to a septin family of GTPase genes involved in cytokinesis. This gene was recently identified as a myeloid/lymphoid leukemia (MLL) fusion protein partner in acute myeloid leukemia and was named MSF (MLL septin-like fusion). As this gene may play roles in both leukemogenesis and tumorigenesis, it is essential to understand its structure and normal expression. We cloned two human alternative transcripts and identified a third database variant of MSF. RNA expression studies with a probe common to the three novel sequences showed differential expression of 4.0- and 3.0-kb transcripts in all adult and fetal tissues tested. A probe spanning sequence unique to one MSF variant detected specific expression of the 4.0-kb transcript in all tissues. Another probe unique to a different MSF variant detected a 4.0-kb transcript only in skeletal muscle. Proteins of 422 and 586 amino acids were predicted from the novel alternate transcripts and included both a xylose isomerase 1 domain and a GTPase domain. Nine common exons, three alternatively spliced exons, and six polymorphisms were identified.
Collapse
Affiliation(s)
- L M Kalikin
- Department of Internal Medicine and Department of Human Genetics, The University of Michigan, Ann Arbor, Michigan 48109-0638, USA
| | | | | |
Collapse
|
15
|
Kuhlenbäumer G, Schirmacher A, Meuleman J, Tissir F, Del-Favero J, Stögbauer F, Young P, Ringelstein B, Van Broeckhoven C, Timmerman V. A sequence-ready BAC/PAC contig and partial transcript map of approximately 1.5 Mb in human chromosome 17q25 comprising multiple disease genes. Genomics 1999; 62:242-50. [PMID: 10610718 DOI: 10.1006/geno.1999.5991] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant recurrent neuropathy mapped to a 4-cM interval on chromosome 17q25 between the short tandem repeat (STR) markers D17S1603 and D17S802. Chromosome 17q25 in general and the 4-cM HNA region in particular are also implicated in the pathogenesis of a number of tumors (tylosis with esophageal cancer, sporadic breast and ovarian tumors) and harbor a psoriasis susceptibility locus. Initial attempts to construct a yeast artificial chromosome contig failed. Therefore, we have now constructed a complete P1 artificial chromosome (PAC) and bacterial artificial chromosome (BAC) contig of the region flanked by the STR markers D17S1603 and D17S802. The contig contains 22 PAC and 64 BAC clones and covers a physical distance of approximately 1. 5 Mb. A total of 83 sequence-tagged site (STS) markers (10 known STSs and STRs, 56 STSs generated from clone end-fragments, 12 expressed sequence tags, and 5 known genes) were mapped on the contig, resulting in an extremely dense physical map with approximately 1 STS per 20 kb. This sequence-ready PAC and BAC contig will be pivotal for the positional cloning of the HNA gene as well as other disease genes mapping to this region.
Collapse
|