1
|
Kim YJ, Lee Y, Shin H, Hwang S, Park J, Song EJ. Ubiquitin-proteasome system as a target for anticancer treatment-an update. Arch Pharm Res 2023; 46:573-597. [PMID: 37541992 DOI: 10.1007/s12272-023-01455-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
As the ubiquitin-proteasome system (UPS) regulates almost every biological process, the dysregulation or aberrant expression of the UPS components causes many pathological disorders, including cancers. To find a novel target for anticancer therapy, the UPS has been an active area of research since the FDA's first approval of a proteasome inhibitor bortezomib in 2003 for treating multiple myeloma (MM). Here, we summarize newly described UPS components, including E3 ubiquitin ligases, deubiquitinases (DUBs), and immunoproteasome, whose malfunction leads to tumorigenesis and whose inhibitors have been investigated in clinical trials as anticancer therapy since 2020. We explain the mechanism and effects of several inhibitors in depth to better comprehend the advantages of targeting UPS components for cancer treatment. In addition, we describe attempts to overcome resistance and limited efficacy of some launched proteasome inhibitors, as well as an emerging PROTAC-based tool targeting UPS components for anticancer therapy.
Collapse
Affiliation(s)
- Yeon Jung Kim
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yeonjoo Lee
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyungkyung Shin
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - SuA Hwang
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jinyoung Park
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
2
|
Ren Y, Song Z, Rieser J, Ackermann J, Koch I, Lv X, Ji T, Cai X. USP15 Represses Hepatocellular Carcinoma Progression by Regulation of Pathways of Cell Proliferation and Cell Migration: A System Biology Analysis. Cancers (Basel) 2023; 15:cancers15051371. [PMID: 36900163 PMCID: PMC10000201 DOI: 10.3390/cancers15051371] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) leads to 600,000 people's deaths every year. The protein ubiquitin carboxyl-terminal hydrolase 15 (USP15) is a ubiquitin-specific protease. The role of USP15 in HCC is still unclear. METHOD We studied the function of USP15 in HCC from the viewpoint of systems biology and investigated possible implications using experimental methods, such as real-time polymerase chain reaction (qPCR), Western blotting, clustered regularly interspaced short palindromic repeats (CRISPR), and next-generation sequencing (NGS). We investigated tissues samples of 102 patients who underwent liver resection between January 2006 and December 2010 at the Sir Run Run Shaw Hospital (SRRSH). Tissue samples were immunochemically stained; a trained pathologist then scored the tissue by visual inspection, and we compared the survival data of two groups of patients by means of Kaplan-Meier curves. We applied assays for cell migration, cell growth, and wound healing. We studied tumor formation in a mouse model. RESULTS HCC patients (n = 26) with high expression of USP15 had a higher survival rate than patients (n = 76) with low expression. We confirmed a suppressive role of USP15 in HCC using in vitro and in vivo tests. Based on publicly available data, we constructed a PPI network in which 143 genes were related to USP15 (HCC genes). We combined the 143 HCC genes with results of an experimental investigation to identify 225 pathways that may be related simultaneously to USP15 and HCC (tumor pathways). We found the 225 pathways enriched in the functional groups of cell proliferation and cell migration. The 225 pathways determined six clusters of pathways in which terms such as signal transduction, cell cycle, gene expression, and DNA repair related the expression of USP15 to tumorigenesis. CONCLUSION USP15 may suppress tumorigenesis of HCC by regulating pathway clusters of signal transduction for gene expression, cell cycle, and DNA repair. For the first time, the tumorigenesis of HCC is studied from the viewpoint of the pathway cluster.
Collapse
Affiliation(s)
- Yiyue Ren
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine and Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou 310016, China
| | - Zhen Song
- Molecular Bioinformatics Group, Institute of Computer Science, Faculty of Computer Science and Mathematics, Goethe University Frankfurt, 60325 Frankfurt am Main, Germany
- Correspondence: (Z.S.); (T.J.); (X.C.)
| | - Jens Rieser
- Molecular Bioinformatics Group, Institute of Computer Science, Faculty of Computer Science and Mathematics, Goethe University Frankfurt, 60325 Frankfurt am Main, Germany
| | - Jörg Ackermann
- Molecular Bioinformatics Group, Institute of Computer Science, Faculty of Computer Science and Mathematics, Goethe University Frankfurt, 60325 Frankfurt am Main, Germany
| | - Ina Koch
- Molecular Bioinformatics Group, Institute of Computer Science, Faculty of Computer Science and Mathematics, Goethe University Frankfurt, 60325 Frankfurt am Main, Germany
| | - Xingyu Lv
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine and Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou 310016, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine and Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou 310016, China
- Correspondence: (Z.S.); (T.J.); (X.C.)
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine and Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou 310016, China
- Correspondence: (Z.S.); (T.J.); (X.C.)
| |
Collapse
|
3
|
Hypoxia-induced paclitaxel resistance in cervical cancer modulated by miR-100 targeting of USP15. Gynecol Oncol Rep 2023; 45:101138. [PMID: 36714373 PMCID: PMC9873580 DOI: 10.1016/j.gore.2023.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Objective Hypoxia, which occurs during the development of cervical cancer, confers chemotherapy resistance. MicroRNA expression is regulated by hypoxia and is associated with the onset and progression of certain types of cancer. MicroRNA-100 (miR-100) is a microRNA, associated with nasopharyngeal and oral squamous cell carcinomas, whose expression is decreased in cervical cancer. This study aims to ascertain the effect of hypoxia on expression levels of both miR-100 and its target genes, as well as exploring the sensitivity to paclitaxel under hypoxic conditions. Methods We investigated the effect of hypoxia on miR-100 expression. We also explored the regulators of paclitaxel response under hypoxic conditions of cervical cancer. Results Using RT-qPCR, we found that expression of miR-100 in cervical cancer cell lines SiHa and HeLa is significantly higher under hypoxic conditions (1% O2). We also confirmed that human ubiquitin-specific protease 15 (USP15) is the one of the target proteins of miR-100. Hypoxia and overexpression of miR-100 both reduced the activity of the luciferase reporter containing the 3'-untranslated region of USP15, which contains the miR-100 binding site. Furthermore, a western blot analysis showed that hypoxia suppresses the expression of the USP15 protein, while RT-qPCR showed hypoxia-induced downregulation of USP15 mRNA levels. We also discovered that overexpression of miR-100 induces paclitaxel resistance, thereby reducing the drug's therapeutic effect on cell death. Conclusions Our results are consistent with the hypothesis that cervical cancer cells overexpress miR-100 in response to hypoxia and that miR-100 is a facilitator of USP15 downregulation and inactivation.
Collapse
|
4
|
Xu E, Yin C, Yi X, Liu Y. Inhibition of USP15 ameliorates high-glucose-induced oxidative stress and inflammatory injury in podocytes through regulation of the Keap1/Nrf2 signaling. ENVIRONMENTAL TOXICOLOGY 2022; 37:765-775. [PMID: 34931430 DOI: 10.1002/tox.23441] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Ubiquitin-specific peptidase 15 (USP15) is implicated in the pathogenesis of numerous diseases. However, whether USP15 plays a role in diabetic nephropathy remains undetermined. This project was designed to determine the potential role of USP15 in mediating high glucose (HG)-induced podocyte injury, a key event in the pathogenesis of diabetic nephropathy. We found that USP15 levels were elevated in podocytes after HG stimulation. Inhibition of USP15 led to decreases in HG-evoked apoptosis, oxidative stress, and inflammation in podocytes. Further investigation showed that inhibition of USP15 enhanced the activation of NF-E2-related factor 2 (Nrf2) and expression of Nrf2 target genes in HG-simulated podocytes. Moreover, depletion of Kelch-like ECH-associated protein 1 (Keap1) diminished the regulatory effect of USP15 inhibition on Nrf2 activation. In addition, Nrf2 suppression reversed USP15-inhibition-induced protective effects in HG-injured podocytes. Taken together, these data indicate that USP15 inhibition protects podocytes from HG-induced injury by enhancing Nrf2 activation via Keap1.
Collapse
Affiliation(s)
- Erdi Xu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqing Yi
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuesheng Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Li YC, Cai SW, Shu YB, Chen MW, Shi Z. USP15 in Cancer and Other Diseases: From Diverse Functionsto Therapeutic Targets. Biomedicines 2022; 10:474. [PMID: 35203682 PMCID: PMC8962386 DOI: 10.3390/biomedicines10020474] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/10/2022] Open
Abstract
The process of protein ubiquitination and deubiquitination plays an important role in maintaining protein stability and regulating signal pathways, and protein homeostasis perturbations may induce a variety of diseases. The deubiquitination process removes ubiquitin molecules from the protein, which requires the participation of deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 15 (USP15) is a DUB that participates in many biological cell processes and regulates tumorigenesis. A dislocation catalytic triplet was observed in the USP15 structure, a conformation not observed in other USPs, except USP7, which makes USP15 appear to be unique. USP15 has been reported to be involved in the regulation of various cancers and diseases, and the reported substrate functions of USP15 are conflicting, suggesting that USP15 may act as both an oncogene and a tumor suppressor in different contexts. The importance and complexity of USP15 in the pathological processes remains unclear. Therefore, we reviewed the diverse biological functions of USP15 in cancers and other diseases, suggesting the potential of USP15 as an attractive therapeutic target.
Collapse
Affiliation(s)
- Yan-Chi Li
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| | - Song-Wang Cai
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China;
| | - Yu-Bin Shu
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 519000, China;
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Y.-C.L.); (Y.-B.S.)
| |
Collapse
|
6
|
USP15: a review of its implication in immune and inflammatory processes and tumor progression. Genes Immun 2021; 22:12-23. [PMID: 33824497 DOI: 10.1038/s41435-021-00125-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023]
Abstract
The covalent post-translational modification of proteins by ubiquitination not only influences protein stability and half-life, but also several aspects of protein function including enzymatic activity, sub-cellular localization, and interactions with binding partners. Protein ubiquitination status is determined by the action of large families of ubiquitin ligases and deubiquitinases, whose combined activities regulate many physiological and cellular pathways. The Ubiquitin Specific Protease (USP) family is one of 8 subfamilies of deubiquitinating enzymes composed of more than 50 members. Recent studies have shown that USP15 plays a critical role in regulating many aspects of immune and inflammatory function of leukocytes in response to a broad range of infectious and autoimmune insults and following tissue damage. USP15 regulated pathways reviewed herein include TLR signaling, RIG-I signaling, NF-kB, and IRF3/IRF7-dependent transcription for production of pro-inflammatory cytokines and type I interferons. In addition, USP15 has been found to regulate pathways implicated in tumor onset and progression such as p53, and TGF-β signaling, but also influences the leukocytes-determined immune and inflammatory microenvironment of tumors to affect progression and outcome. Hereby reviewed are recent studies of USP15 in model cell lines in vitro, and in mutant mice in vivo with reference to available human clinical datasets.
Collapse
|
7
|
Pan A, Li Y, Guan J, Zhang P, Zhang C, Han Y, Zhang T, Cheng Y, Sun L, Lu S, Weng J, Ren Q, Fan S, Wang W, Wang J. USP18-deficiency in cervical carcinoma is crucial for the malignant behavior of tumor cells in an ERK signal-dependent manner. Oncol Lett 2021; 21:421. [PMID: 33850562 PMCID: PMC8025074 DOI: 10.3892/ol.2021.12682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
Ubiquitin-specific peptidase (USP)18 belongs to the USP family, and is involved in cleaving and removing ubiquitin or ubiquitin-like molecules from their target molecules. Recently, increasing evidence has suggested that USP18 is constitutively expressed in different types of human tumors, and ectopic expression or downregulation of USP18 expression may contribute to tumorigenesis. However, the role of USP18 in uterine cervical cancer (UCC) remains unclear. Thus, the present study aimed to investigate USP18 expression in a human tissue microarray constructed using UCC and non-cancer cervical tissues, and to determine the potential role and molecular mechanism by which USP18 is implicated in the tumor biology of human UCC HeLa cells. Microarray analysis demonstrated that USP18 protein expression was downregulated in tumor tissues compared with in normal tissues. In addition, in vitro analysis revealed that USP18-knockdown markedly promoted the proliferation, colony formation, migration and aggressiveness of HeLa cells. Mechanistic analysis demonstrated that USP18-knockdown increased the levels of Bcl-2, STAT3 and phosphorylated-ERK in HeLa cells. Notably, USP18 silencing-induced malignant phenotypes were interrupted following exogenous administration of the ERK1/2 inhibitor PD98059. Overall, the results of the present study suggested that USP18 may be a potent inhibitor involved in UCC tumor-associated biological behaviors, which are associated with the ERK signaling pathway.
Collapse
Affiliation(s)
- Aonan Pan
- Department of Clinical Medicine, The Affiliated Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yue Li
- Departments of Immunology and Etiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Jian Guan
- Department of Maxillofacial Surgery, Stomatological College, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Pengxia Zhang
- Department of Biochemistry and Cell and Molecular Biology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Chunbin Zhang
- Department of Biochemistry and Cell and Molecular Biology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Yupeng Han
- Department of Gastroenterology, The First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Tao Zhang
- Departments of Immunology and Etiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Yao Cheng
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Luo Sun
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shizhen Lu
- Department of Biochemistry and Cell and Molecular Biology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Jinru Weng
- Department of Maxillofacial Surgery, Stomatological College, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Qiaosheng Ren
- Department of Maxillofacial Surgery, Stomatological College, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shengjie Fan
- Department of Rehabilitation Medicine, Rehabilitation Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Weiqun Wang
- Department of Physiology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Jingtao Wang
- Department of Human Anatomy, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
8
|
Xia X, Huang C, Liao Y, Liu Y, He J, Shao Z, Hu T, Yu C, Jiang L, Liu J, Huang H. The deubiquitinating enzyme USP15 stabilizes ERα and promotes breast cancer progression. Cell Death Dis 2021; 12:329. [PMID: 33771975 PMCID: PMC7997968 DOI: 10.1038/s41419-021-03607-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer has the highest incidence and mortality in women worldwide. There are 70% of breast cancers considered as estrogen receptor α (ERα) positive. Therefore, the ERα-targeted therapy has become one of the most effective solution for patients with breast cancer. Whereas a better understanding of ERα regulation is critical to shape evolutional treatments for breast cancer. By exploring the regulatory mechanisms of ERα at levels of post-translational modifications, we identified the deubiquitinase USP15 as a novel protector for preventing ERα degradation and a critical driver for breast cancer progression. Specifically, we demonstrated that USP15 promoted the proliferation of ERα+, but not ERα- breast cancer, in vivo and in vitro. Meanwhile, USP15 knockdown notably enhanced the antitumor activities of tamoxifen on breast cancer cells. Importantly, USP15 knockdown induced the downregulation of ERα protein via promoting its K48-linked ubiquitination, which is required for proliferative inhibition of breast cancer cells. These findings not only provide a novel treatment for overcoming resistance to endocrine therapy, but also represent a therapeutic strategy on ERα degradation by targeting USP15-ERα axis.
Collapse
Affiliation(s)
- Xiaohong Xia
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chuyi Huang
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuning Liao
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan Liu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinchan He
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhenlong Shao
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Tumei Hu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cuifu Yu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lili Jiang
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinbao Liu
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Hongbiao Huang
- Affiliated Cancer Hospital & institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
9
|
van den Berk P, Lancini C, Company C, Serresi M, Sanchez-Bailon MP, Hulsman D, Pritchard C, Song JY, Schmitt MJ, Tanger E, Popp O, Mertins P, Huijbers IJ, Jacobs H, van Lohuizen M, Gargiulo G, Citterio E. USP15 Deubiquitinase Safeguards Hematopoiesis and Genome Integrity in Hematopoietic Stem Cells and Leukemia Cells. Cell Rep 2020; 33:108533. [PMID: 33378683 PMCID: PMC7788286 DOI: 10.1016/j.celrep.2020.108533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Altering ubiquitination by disruption of deubiquitinating enzymes (DUBs) affects hematopoietic stem cell (HSC) maintenance. However, comprehensive knowledge of DUB function during hematopoiesis in vivo is lacking. Here, we systematically inactivate DUBs in mouse hematopoietic progenitors using in vivo small hairpin RNA (shRNA) screens. We find that multiple DUBs may be individually required for hematopoiesis and identify ubiquitin-specific protease 15 (USP15) as essential for HSC maintenance in vitro and in transplantations and Usp15 knockout (KO) mice in vivo. USP15 is highly expressed in human hematopoietic tissues and leukemias. USP15 depletion in murine progenitors and leukemia cells impairs in vitro expansion and increases genotoxic stress. In leukemia cells, USP15 interacts with and stabilizes FUS (fused in sarcoma), a known DNA repair factor, directly linking USP15 to the DNA damage response (DDR). Our study underscores the importance of DUBs in preserving normal hematopoiesis and uncovers USP15 as a critical DUB in safeguarding genome integrity in HSCs and leukemia cells. In vivo shRNAs screens for deubiquitinases identify regulators of murine hematopoiesis Usp15 deletion compromises HSC maintenance and reconstitution potential in vivo USP15 loss affects genome integrity and growth of mHSPCs and human leukemia cells In human leukemia cells, USP15 stabilizes its interactor, FUS, a DNA repair factor
Collapse
Affiliation(s)
- Paul van den Berk
- Division of Tumor Biology and Immunology, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Cesare Lancini
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Carlos Company
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Michela Serresi
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | | | - Danielle Hulsman
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands; ONCODE Institute, Utrecht, the Netherlands
| | - Colin Pritchard
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Ellen Tanger
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Oliver Popp
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Berlin Institute of Health, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Berlin Institute of Health, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Ivo J Huijbers
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Maarten van Lohuizen
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands; ONCODE Institute, Utrecht, the Netherlands
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| | - Elisabetta Citterio
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands; ONCODE Institute, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Nie ZY, Yao M, Yang Z, Yang L, Liu XJ, Yu J, Ma Y, Zhang N, Zhang XY, Liu MH, Jiang LL, Luo JM. De-regulated STAT5A/miR-202-5p/USP15/Caspase-6 regulatory axis suppresses CML cell apoptosis and contributes to Imatinib resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:17. [PMID: 31952546 PMCID: PMC6969434 DOI: 10.1186/s13046-019-1502-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND STAT5 plays an important role in the transformation of hematopoietic cells by BCR-ABL. However, the downstream target genes activated by STAT5 in chronic myeloid leukemia (CML) cells remain largely unclear. Here, we investigated the mechanistic functional relationship between STAT5A-regulated microRNA and CML cell apoptosis. METHODS The expression of USP15, Caspase-6, STAT5A-regulated miR-202-5p and STAT5A was detected by qRT-PCR and Western blotting in CML cell lines and PBMCs of CML patients. Cell apoptosis was evaluated by flow cytometry. Both gain- and loss-of-function experiments were used to investigate the roles of USP15, miR-202-5p and STAT5A in CML. Luciferase reporter assay detected the effect of miR-202-5p on USP15 expression. Xenograft animal model was used to test the effect of anti-miR-202-5p and pimozide on K562 cell xenograft growth. RESULTS USP15 expression was significantly downregulated in CML cell lines and PBMCs of CML patients. Depletion of USP15 increased, whereas overexpression of USP15 reduced the resistance of CML cells to Imatinib. Further, decreased deubiquitinating activity of USP15 by USP15 downregulation led to reduced caspase-6 level, thus attenuating CML cell apoptosis. Mechanistically, miR-202-5p was upregulated in K562G cells and negatively regulated USP15 expression by directly targeting USP15 3'-UTR. Correspondingly, upregulation of miR-202-5p enhanced the resistance of CML cells to Imatinib by inhibiting cell apoptosis. Importantly, STAT5A was upregulated in CML cells and directly activated miR-202-5p transcription by binding to the pre-miR-202 promoter. Pimozide induced CML cell apoptosis and significantly reduced K562 cell xenograft growth in vivo by blocking STAT5A/miR-202-5p/USP15/Caspase-6 regulatory axis. CONCLUSIONS we provide the first evidence that de-regulated STAT5A/miR-202-5p/USP15/Caspase-6 regulatory axis suppresses the apoptosis of CML cells, targeting this pathway might be a promising therapeutic approach for the treatment of CML.
Collapse
Affiliation(s)
- Zi-Yuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Min Yao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Zhan Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China.,Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Lin Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Xiao-Jun Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Jing Yu
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Ying Ma
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Xiao-Yan Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Meng-Han Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Ling-Ling Jiang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China.
| | - Jian-Min Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China.
| |
Collapse
|
11
|
Chen X, Bao G, Liu F. Inhibition of USP15 Prevent Glutamate-Induced Oxidative Damage by Activating Nrf2/HO-1 Signaling Pathway in HT22 Cells. Cell Mol Neurobiol 2020; 40:999-1010. [PMID: 31933062 DOI: 10.1007/s10571-020-00789-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been identified as the significant mediator in epilepsy, which is a chronic disorder in central nervous system. About 30% of epilepsy patients are refractory to antiepileptic drug treatment. However, the underlying mechanism of oxidative damage in epilepsy needs further investigation. In our study, we first find that ubiquitin-specific peptidase 15 (USP15) expression was upregulated in a pentylenetetrazole (PTZ) kindled rat model of epilepsy. Silencing USP15 protected against glutamate-mediated neuronal cell death, and inhibited the high expression levels of cleaved caspase-3. Knockout of USP15 significantly reduced intracellular reactive oxygen species (ROS) levels and enhanced superoxide dismutase (SOD) activity in HT22 cells under the exposure to glutamate treatment. Furthermore, USP15 inhibition induced nuclear factor erythroid-derived 2-related factor2 (Nrf2) nuclear translocation and promoted protein expression level of heme oxygenase (HO-1). Taken together, our findings first reveal a role of USP15 in the pathogenesis of epilepsy, and silencing USP15 in vitro protects against glutamate-mediated cytotoxicity in HT22 cells. Pharmacological inhibition of USP15 may alleviate epileptic seizures via fighting against oxidative damage, providing a novel antiepileptic target.
Collapse
Affiliation(s)
- Xiaojie Chen
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201999, China
| | - Guanshui Bao
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201999, China.
| | - Fangfang Liu
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201999, China
| |
Collapse
|
12
|
Rawlings ND. Twenty-five years of nomenclature and classification of proteolytic enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140345. [PMID: 31838087 DOI: 10.1016/j.bbapap.2019.140345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
Proteolytic enzymes and their homologues have been classified into clans by comparing the tertiary structures of the peptidase domains, into families by comparing the protein sequences of the peptidase domains, and into protein-species by comparing various attributes including domain architecture, substrate preference, inhibitor interactions, subcellular location, and phylogeny. The results are compared with the earlier classification (Rawlings and Barrett, 1993 [1]). The numbers of sequences, protein-species, families, clans and even catalytic type have substantially increased during the intervening 26 years. The alternative classifications by catalytic type and/or activity are shown not to reflect evolutionary relationships.
Collapse
Affiliation(s)
- Neil D Rawlings
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK.
| |
Collapse
|
13
|
Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019; 26:42. [PMID: 31133011 PMCID: PMC6537419 DOI: 10.1186/s12929-019-0522-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
14
|
Zhao Y, Wang Z, Ho C, Zhang G, Li Q. Ubiquitin-Specific Protease 15 Maintains Transforming Growth Factor-β Pathway Activity by Deubiquitinating Transforming Growth Factor-β Receptor I during Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1351-1362. [PMID: 30980801 DOI: 10.1016/j.ajpath.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Wound healing is a process of cutaneous barrier reconstruction that occurs after skin injury and involves diverse cytokines and cell types. Similar to several deubiquitinating enzymes, ubiquitin-specific protease 15 (USP15) can remove ubiquitin chains from specific proteins to rescue them from degradation. However, the regulatory role of USP15 in wound healing remains unclear. We investigated the dynamic function of USP15 in wound healing. First, in USP15 knockout mice, we observed a significant delay in wound closure. In addition, inhibition of cell proliferation and migration was observed in USP15-silenced human dermal fibroblasts. Through RNA sequencing, it was revealed that the transforming growth factor-β (TGF-β) pathway was suppressed after USP15 knockdown. Furthermore, coimmunoprecipitation demonstrated that USP15 could interact with TGF-β receptor I and promote its deubiquitination, thereby maintaining TGF-β signaling pathway activity by enhancing TGF-β receptor I stability. These observations shed light on the function and mechanisms of USP15-mediated modulation of the TGF-β signaling pathway during wound healing, thus providing a novel potential target for the treatment of refractory wounds.
Collapse
Affiliation(s)
- Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zi Wang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Guoyou Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
The deubiquitylase USP15 regulates topoisomerase II alpha to maintain genome integrity. Oncogene 2018; 37:2326-2342. [PMID: 29429988 PMCID: PMC5916918 DOI: 10.1038/s41388-017-0092-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/25/2017] [Accepted: 11/24/2017] [Indexed: 02/04/2023]
Abstract
Ubiquitin-specific protease 15 (USP15) is a widely expressed deubiquitylase that has been implicated in diverse cellular processes in cancer. Here we identify topoisomerase II (TOP2A) as a novel protein that is regulated by USP15. TOP2A accumulates during G2 and functions to decatenate intertwined sister chromatids at prophase, ensuring the replicated genome can be accurately divided into daughter cells at anaphase. We show that USP15 is required for TOP2A accumulation, and that USP15 depletion leads to the formation of anaphase chromosome bridges. These bridges fail to decatenate, and at mitotic exit form micronuclei that are indicative of genome instability. We also describe the cell cycle-dependent behaviour for two major isoforms of USP15, which differ by a short serine-rich insertion that is retained in isoform-1 but not in isoform-2. Although USP15 is predominantly cytoplasmic in interphase, we show that both isoforms move into the nucleus at prophase, but that isoform-1 is phosphorylated on its unique S229 residue at mitotic entry. The micronuclei phenotype we observe on USP15 depletion can be rescued by either USP15 isoform and requires USP15 catalytic activity. Importantly, however, an S229D phospho-mimetic mutant of USP15 isoform-1 cannot rescue either the micronuclei phenotype, or accumulation of TOP2A. Thus, S229 phosphorylation selectively abrogates this role of USP15 in maintaining genome integrity in an isoform-specific manner. Finally, we show that USP15 isoform-1 is preferentially upregulated in a panel of non-small cell lung cancer cell lines, and propose that isoform imbalance may contribute to genome instability in cancer. Our data provide the first example of isoform-specific deubiquitylase phospho-regulation and reveal a novel role for USP15 in guarding genome integrity.
Collapse
|
16
|
Ubiquitin Specific Peptidase 15 (USP15) suppresses glioblastoma cell growth via stabilization of HECTD1 E3 ligase attenuating WNT pathway activity. Oncotarget 2017; 8:110490-110502. [PMID: 29299163 PMCID: PMC5746398 DOI: 10.18632/oncotarget.22798] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023] Open
Abstract
Expression based prediction of new genomic alterations in glioblastoma identified the de-ubiquitinase Ubiquitin Specific Peptidase 15 (USP15) as potential tumor suppressor gene associated with genomic deletions (11%). Ectopic expression of USP15 in glioblastoma cell-lines reduced colony formation and growth in soft agar, while overexpression of its functional mutant had the opposite effect. Evaluation of the protein binding network of USP15 by Mass Spectrometry in glioblastoma cells uncovered eight novel interacting proteins, including HECT Domain Containing E3 Ubiquitin Protein Ligase 1 (HECTD1), whose mouse homologue has been associated with an inhibitory effect on the WNT-pathway. USP15 de-ubiquitinated and thereby stabilized HECTD1 in glioblastoma cells, while depletion of USP15 led to decreased HECTD1 protein levels. Expression of USP15 in glioblastoma cells attenuated WNT-pathway activity, while expression of the functional mutant enhanced the activity. Modulation of HECTD1 expression pheno-copied the effects observed for USP15. In accordance, human glioblastoma display a weak but significant negative correlation between USP15 and AXIN2 expression. Taken together, the data provide evidence that USP15 attenuates the canonical WNT pathway mediated by stabilization of HECTD1, supporting a tumor suppressing role of USP15 in a subset of glioblastoma.
Collapse
|
17
|
Finding the 'ubiquitous' threads in infection and autoimmune neuroinflammation. Nat Immunol 2017; 18:7-8. [PMID: 27984564 DOI: 10.1038/ni.3633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
The deubiquitinating enzymes USP4 and USP17 target hyaluronan synthase 2 and differentially affect its function. Oncogenesis 2017; 6:e348. [PMID: 28604766 PMCID: PMC5519194 DOI: 10.1038/oncsis.2017.45] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/01/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
The levels of hyaluronan, a ubiquitous glycosaminoglycan prominent in the extracellular matrix, is balanced through the actions of hyaluronan-synthesizing enzymes (HAS1, 2 and 3) and degrading hyaluronidases (Hyal 1, 2, 3 and PH20). Hyaluronan accumulates in rapidly remodeling tissues, such as breast cancer, due to deregulated expression of the HAS2 gene and/or alterations of HAS2 activity. The activity of HAS2 is regulated by post-translational modifications, including ubiquitination. In order to identify deubiquitinating enzymes (DUBs) that are involved in de-ubiquitination of HAS2, a complementary (cDNA) library of 69 Flag-HA-tagged human DUBs cloned into retroviral vectors was screened in human embryonic kidney (HEK) 293T cells for their ability to de-ubiquitinate myc-tagged HAS2. Several DUBs were found to decrease the ubiquitination of 6myc-HAS2, among which, the most effective were USP17 and USP4. USP17 efficiently removed polyubiquitination, whereas USP4 preferentially removed monoubiquitination of 6myc-HAS2. Co-immunoprecipitation studies revealed interactions between HAS2 and USP17, as well as between HAS2 and USP4, in membrane preparations of HEK293T cells. USP17 significantly stabilized 6myc-HAS2 protein levels, whereas USP4 did not. The silencing of USP17 led to decreased hyaluronan production, whereas the suppression of USP4 increased hyaluronan synthesis. Importantly, high levels of USP17 and HAS2 were detected in a panel of cancer cell lines compared to normal cells, and immunohistochemical stainings revealed higher expression of USP17 and HAS2 in tissues of lung cancer patients compared to normal tissue. In conclusion, USP17 and USP4 differently affect HAS2 ubiquitination, and the stability and function of HAS2.
Collapse
|
19
|
The Regulations of Deubiquitinase USP15 and Its Pathophysiological Mechanisms in Diseases. Int J Mol Sci 2017; 18:ijms18030483. [PMID: 28245560 PMCID: PMC5372499 DOI: 10.3390/ijms18030483] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/14/2017] [Accepted: 02/18/2017] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinases (DUBs) play a critical role in ubiquitin-directed signaling by catalytically removing the ubiquitin from substrate proteins. Ubiquitin-specific protease 15 (USP15), a member of the largest subfamily of cysteine protease DUBs, contains two conservative cysteine (Cys) and histidine (His) boxes. USP15 harbors two zinc-binding motifs that are essential for recognition of poly-ubiquitin chains. USP15 is grouped into the same category with USP4 and USP11 due to high degree of homology in an N-terminal region consisting of domains present in ubiquitin-specific proteases (DUSP) domain and ubiquitin-like (UBL) domain. USP15 cooperates with COP9 signalosome complex (CSN) to maintain the stability of cullin-ring ligase (CRL) adaptor proteins by removing the conjugated ubiquitin chains from RBX1 subunit of CRL. USP15 is also implicated in the stabilization of the human papillomavirus type 16 E6 oncoprotein, adenomatous polyposis coli, and IκBα. Recently, reports have suggested that USP15 acts as a key regulator of TGF-β receptor-signaling pathways by deubiquitinating the TGF-β receptor itself and its downstream transducers receptor-regulated SMADs (R-SMADs), including SMAD1, SMAD2, and SMAD3, thus activating the TGF-β target genes. Although the importance of USP15 in pathologic processes remains ambiguous so far, in this review, we endeavor to summarize the literature regarding the relationship of the deubiquitinating action of USP15 with the proteins involved in the regulation of Parkinson’s disease, virus infection, and cancer-related signaling networks.
Collapse
|
20
|
Su ZJ, Cao JS, Wu YF, Chen WN, Lin X, Wu YL, Lin X. Deubiquitylation of hepatitis B virus X protein (HBx) by ubiquitin-specific peptidase 15 (USP15) increases HBx stability and its transactivation activity. Sci Rep 2017; 7:40246. [PMID: 28074857 PMCID: PMC5225491 DOI: 10.1038/srep40246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus X protein (HBx) plays important roles in viral replication and the development of hepatocellular carcinoma. HBx is a rapid turnover protein and ubiquitin-proteasome pathway has been suggested to influence HBx stability as treatment with proteasome inhibitors increases the levels of HBx protein and causes accumulation of the polyubiquitinated forms of HBx. Deubiquitinases (DUBs) are known to act by removing ubiquitin moieties from proteins and thereby reverse their stability and/or activity. However, no information is available regarding the involvement of DUBs in regulation of ubiquitylation-dependent proteasomal degradation of HBx protein. This study identified the deubiquitylating enzyme USP15 as a critical regulator of HBx protein level. USP15 was found to directly interact with HBx via binding to the HBx region between amino acid residues 51 and 80. USP15 increased HBx protein levels in a dose-dependent manner and siRNA-mediated knockdown of endogenous USP15 reduced HBx protein levels. Increased HBx stability and steady-state level by USP15 were attributable to reduced HBx ubiquitination and proteasomal degradation. Importantly, the transcriptional transactivation function of HBx is enhanced by overexpression of USP15. These results suggest that USP15 plays an essential role in stabilizing HBx and subsequently affects the biological function of HBx.
Collapse
Affiliation(s)
- Zhi-Jun Su
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Department of Infectious Diseases, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Jia-Shou Cao
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yan-Fang Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Wan-Nan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Yun-Li Wu
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Department of Infectious Diseases, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| |
Collapse
|
21
|
Honke N, Shaabani N, Zhang DE, Hardt C, Lang KS. Multiple functions of USP18. Cell Death Dis 2016; 7:e2444. [PMID: 27809302 PMCID: PMC5260889 DOI: 10.1038/cddis.2016.326] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/12/2022]
Abstract
Since the discovery of the ubiquitin system and the description of its important role in the degradation of proteins, many studies have shown the importance of ubiquitin-specific peptidases (USPs). One special member of this family is the USP18 protein (formerly UBP43). In the past two decades, several functions of USP18 have been discovered: this protein is not only an isopeptidase but also a potent inhibitor of interferon signaling. Therefore, USP18 functions as 'a' maestro of many biological pathways in various cell types. This review outlines multiple functions of USP18 in the regulation of various immunological processes, including pathogen control, cancer development, and autoimmune diseases.
Collapse
Affiliation(s)
- Nadine Honke
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - Namir Shaabani
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Cornelia Hardt
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, Essen 45147, Germany
| |
Collapse
|
22
|
Yun SI, Kim HH, Yoon JH, Park WS, Hahn MJ, Kim HC, Chung CH, Kim KK. Ubiquitin specific protease 4 positively regulates the WNT/β-catenin signaling in colorectal cancer. Mol Oncol 2015; 9:1834-51. [PMID: 26189775 DOI: 10.1016/j.molonc.2015.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/12/2022] Open
Abstract
β-catenin is a key signal transducer in the canonical WNT pathway and is negatively regulated by ubiquitin-dependent proteolysis. Through screening of various deubiquitinating enzymes (DUBs), we identified ubiquitin specific protease 4 (USP4) as a candidate for β-catenin-specific DUB. The effects of USP4 overexpression or knockdown suggested that USP4 positively controls the stability of β-catenin and enhances β-catenin-regulated transcription. Domain mapping results revealed that the C-terminal catalytic domain is responsible for β-catenin binding and nuclear transport. Examination of colon cancer tissues from patients revealed a correlation between elevated expression levels of USP4 and β-catenin. Consistent with this correlation, USP4 knockdown in HCT116, a colon cancer cell line, reduced invasion and migration activity. These observations indicate that USP4 acts as a positive regulator of the WNT/β-catenin pathway by deubiquitination and facilitates nuclear localization of β-catenin. Therefore, we propose that USP4 is a potential target for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Sun-Il Yun
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul 135-710, South Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 135-710, South Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, South Korea
| | - Myong-Joon Hahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea
| | - Hee Cheol Kim
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | - Chin Ha Chung
- School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul 135-710, South Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 135-710, South Korea.
| |
Collapse
|
23
|
Feng AP, He YM, Liu XX, Li JW, Tu YT, Hu F, Chen SJ. Expression of USP15, TβR-I and Smad7 in psoriasis. ACTA ACUST UNITED AC 2014; 34:415-419. [PMID: 24939309 DOI: 10.1007/s11596-014-1293-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/04/2014] [Indexed: 12/29/2022]
Abstract
The deubiquitinating enzyme ubiquitin specific peptidase 15 (USP15) is regarded as a regulator of TGFβ signaling pathway. This process depends on Smad7, the inhibitory factor of the TGFβ signal, and type I TGFβ receptor (TβR-I), one of the receptors of TGFβ. The expression level of USP15 seems to play vital roles in the pathogenesis of many neoplasms, but so far there has been no report about USP15 in psoriasis. In this study, immunohistochemical staining of USP15, TβR-I and Smad7 was performed in 30 paraffin-embedded psoriasis specimens and 10 normal specimens to investigate the expression of USP15, TβR-I and Smad7 in psoriasis and to explore the relevance among them. And USP15 small interfering RNA (USP15 siRNA) was used to transfect Hacat cells to detect the mRNA expression of TβR-I and Smad7. Of 30 cases of psoriasis in active stage, 28, 24 and 26 cases were positive for USP15, TβR-I and Smad7 staining, respectively. The positive rates of USP15 and Smad7 were significantly higher in psoriasis specimens than in normal skin specimens (44.1%±26.0% vs. 6.1%±6.6%, 47.2%±27.1% vs. 6.6%±7.1%), and positive rate of TβR-I (20.3%±22.2%) in psoriasis was lower than that in normal skin specimens (46.7%±18.2%). There was a significant positive correlation between USP15 and Smad7 expression, and significant negative correlations between USP15 and TβR-expression, an I d between TβR- and Smad7 expression I in psoriasis. After transfection of USP15 siRNA in Hacat cells, the expression of TβR-mRNA was up I -regulated and that of Smad7 was down-regulated. It is concluded that USP15 may play a role in the pathogenesis of psoriasis through regulating the TβR-I/Smad7 pathway and there may be other cell signaling pathways interacting with USP15 to take part in the development of psoriasis.
Collapse
Affiliation(s)
- Ai-Ping Feng
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi-Min He
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin-Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Wen Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Ting Tu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Hu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shan-Juan Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
24
|
Zou Q, Jin J, Hu H, Li HS, Romano S, Xiao Y, Nakaya M, Zhou X, Cheng X, Yang P, Lozano G, Zhu C, Watowich SS, Ullrich SE, Sun SC. USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses. Nat Immunol 2014; 15:562-70. [PMID: 24777531 PMCID: PMC4032322 DOI: 10.1038/ni.2885] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/01/2014] [Indexed: 12/14/2022]
Abstract
Deubiquitinases (DUBs) are a new class of drug targets, although the physiological function of only few DUBs has been characterized. Here we identified the DUB USP15 as a crucial negative regulator of T cell activation. USP15 stabilized the E3 ubiquitin ligase MDM2, which in turn negatively regulated T cell activation by targeting the degradation of the transcription factor NFATc2. USP15 deficiency promoted T cell activation in vitro and enhanced T cell responses to bacterial infection and tumor challenge in vivo. USP15 also stabilized MDM2 in cancer cells and regulated p53 function and cancer-cell survival. Our results suggest that inhibition of USP15 may both induce tumor cell apoptosis and boost antitumor T cell responses.
Collapse
Affiliation(s)
- Qiang Zou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jin Jin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hongbo Hu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Simona Romano
- 1] Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. [2] Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Yichuan Xiao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mako Nakaya
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peirong Yang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guillermina Lozano
- 1] Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. [2] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Chengming Zhu
- 1] Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. [2] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Stephanie S Watowich
- 1] Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. [2] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Stephen E Ullrich
- 1] Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. [2] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Shao-Cong Sun
- 1] Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. [2] The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
25
|
Dou QP. Deubiquitinating Enzymes as Novel Targets for Cancer Therapies. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2014. [PMCID: PMC7123001 DOI: 10.1007/978-3-319-06752-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Most ubiquitinated proteins can be recognized and degraded by the 26S proteasome. In the meantime, protein deubiquitination by various deubiquitinating enzymes (DUBs) regulates protein stability within cells, and it can counterbalance intracellular homeostasis mediated by ubiquitination. Numerous reports have demonstrated that an aberrant process of the ubiquitin-proteasome pathway (UPP) regulated by the ubiquitination and deubiquitination systems results in failure of balancing between protein stability and degradation, and this failure can lead to tumorigenesis in various organs and tissues of mammals. The identification of molecular properties for various DUBs is very critical to understand cancer development and tumorigenesis. Therefore, knowledge of DUBs and their association with cancer and diseases is indispensible for developing effective inhibitors for DUBs. This chapter describes various features and functions of cancer-related DUBs. In addition, we summarize several inhibitors that specifically target certain DUBs in cancer and suggest that DUBs may be one of the most ideal and attractive therapeutic targets.
Collapse
Affiliation(s)
- Q. Ping Dou
- Wayne State University, Detroit, Michigan USA
| |
Collapse
|
26
|
Börner C, Kraus J. Inhibition of NF-κB by opioids in T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:4640-7. [PMID: 24068670 DOI: 10.4049/jimmunol.1300320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Opioids potently inhibit a number of physiological and pathophysiological effects such as pain and inflammation in the brain and the periphery. One of the targets of opioids mediating such effects is the proinflammatory transcription factor NF-κB. In neuronal cells, opioids inhibit this factor by inducing I-κB independently on calcium, involving the opioid-mediated activation of the transcription factor AP-1. However, when and how precisely NF-κB is modulated by opioids in T cells are unknown. By using the TNF-triggered, NF-κB-mediated induction of IL-8 mRNA in primary human T cells and Jurkat T cells, in this study we show that opioids inhibit NF-κB in T cells as well, but that the underlying mechanisms are different from those observed in neuronal cells. We found that stimulation of the T cells with opioids resulted in a significant inhibition of the TNF-triggered ubiquitination and degradation of I-κB. Additionally, an opioid-mediated induction of the deubiquitinating enzyme ubiquitin-specific protease 15 was observed, which is known to inhibit the NF-κB pathway by stabilizing I-κB. The induction of ubiquitin-specific protease 15 was dependent on calcium and the transcription factor NFAT. Activation of AP-1 and induction of I-κB in response to the opioids were not observed in the T cells. These results indicate that μ opioid receptors, which mediate the effects in both cell types, might be coupled to different effector cascades in the different cell types, which may then result in cell type-specific effects of the drugs.
Collapse
Affiliation(s)
- Christine Börner
- Department of Pharmacology and Toxicology, University of Magdeburg, 39120 Magdeburg, Germany
| | | |
Collapse
|
27
|
Faronato M, Patel V, Darling S, Dearden L, Clague MJ, Urbé S, Coulson JM. The deubiquitylase USP15 stabilizes newly synthesized REST and rescues its expression at mitotic exit. Cell Cycle 2013; 12:1964-77. [PMID: 23708518 PMCID: PMC3735711 DOI: 10.4161/cc.25035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Reversible ubiquitylation of proteins contributes to their integrity, abundance and activity. The RE1-silencing transcription factor (REST) plays key physiological roles and is dysregulated in a spectrum of disease. It is rapidly turned over and is phosphorylated, polyubiquitylated and degraded en masse during neuronal differentiation and cell cycle progression. Through siRNA screening we identified the deubiquitylase USP15 as a key regulator of cellular REST. Both antagonism of REST polyubiquitylation and rescue of endogenous REST levels are dependent on the deubiquitylase activity of USP15. However, USP15 depletion does not destabilize pre-existing REST, but rather specifically impairs de novo REST synthesis. Indeed, we find that a small fraction of endogenous USP15 is associated with polysomes. In accordance with these findings, USP15 does not antagonize the degradation of phosphorylated REST at mitosis. Instead it is required for the rapid accumulation of newly synthesized REST on mitotic exit, thus playing a key role in its cell cycle oscillations. Importantly, this study reveals a novel role for a DUB in specifically promoting new protein synthesis.
Collapse
Affiliation(s)
- Monica Faronato
- Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
Ubiquitin-specific protease 4 inhibits mono-ubiquitination of the master growth factor signaling kinase PDK1. PLoS One 2012; 7:e31003. [PMID: 22347420 PMCID: PMC3274522 DOI: 10.1371/journal.pone.0031003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/29/2011] [Indexed: 11/19/2022] Open
Abstract
Background Phosphorylation by the phospho-inositide-dependent kinase 1 (PDK1) is essential for many growth factor-activated kinases and thus plays a critical role in various processes such as cell proliferation and metabolism. However, the mechanisms that control PDK1 have not been fully explored and this is of great importance as interfering with PDK1 signaling may be useful to treat diseases, including cancer and diabetes. Methodology/Principal Findings In human cells, few mono-ubiquitinated proteins have been described but in all cases this post-translational modification has a key regulatory function. Unexpectedly, we find that PDK1 is mono-ubiquitinated in a variety of human cell lines, indicating that PDK1 ubiquitination is a common and regulated process. Ubiquitination occurs in the kinase domain of PDK1 yet is independent of its kinase activity. By screening a library of ubiquitin proteases, we further identify the Ubiquitin-Specific Protease 4 (USP4) as an enzyme that removes ubiquitin from PDK1 in vivo and in vitro and co-localizes with PDK1 at the plasma membrane when the two proteins are overexpressed, indicating direct deubiquitination. Conclusions The regulated mono-ubiquitination of PDK1 provides an unanticipated layer of complexity in this central signaling network and offers potential novel avenues for drug discovery.
Collapse
|
29
|
Inui M, Manfrin A, Mamidi A, Martello G, Morsut L, Soligo S, Enzo E, Moro S, Polo S, Dupont S, Cordenonsi M, Piccolo S. USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol 2011; 13:1368-75. [PMID: 21947082 DOI: 10.1038/ncb2346] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
The TGFβ pathway is critical for embryonic development and adult tissue homeostasis. On ligand stimulation, TGFβ and BMP receptors phosphorylate receptor-activated SMADs (R-SMADs), which then associate with SMAD4 to form a transcriptional complex that regulates gene expression through specific DNA recognition. Several ubiquitin ligases serve as inhibitors of R-SMADs, yet no deubiquitylating enzyme (DUB) for these molecules has so far been identified. This has left unexplored the possibility that ubiquitylation of R-SMADs is reversible and engaged in regulating SMAD function, in addition to degradation. Here we identify USP15 as a DUB for R-SMADs. USP15 is required for TGFβ and BMP responses in mammalian cells and Xenopus embryos. At the biochemical level, USP15 primarily opposes R-SMAD monoubiquitylation, which targets the DNA-binding domains of R-SMADs and prevents promoter recognition. As such, USP15 is critical for the occupancy of endogenous target promoters by the SMAD complex. These data identify an additional layer of control by which the ubiquitin system regulates TGFβ biology.
Collapse
Affiliation(s)
- Masafumi Inui
- Department of Medical Biotechnologies, Section of Histology and Embryology, University of Padua, viale G. Colombo 3, 35100 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Harper S, Besong TMD, Emsley J, Scott DJ, Dreveny I. Structure of the USP15 N-terminal domains: a β-hairpin mediates close association between the DUSP and UBL domains. Biochemistry 2011; 50:7995-8004. [PMID: 21848306 DOI: 10.1021/bi200726e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ubiquitin specific protease 15 (USP15) functions in COP9 signalosome mediated regulation of protein degradation and cellular signaling through catalyzing the ubiquitin deconjugation reaction of a discrete number of substrates. It influences the stability of adenomatous polyposis coli, IκBα, caspase-3, and the human papillomavirus type 16 E6. USP15 forms a subfamily with USP4 and USP11 related through a shared presence of N-terminal "domain present in ubiquitin specific proteases" (DUSP) and "ubiquitin-like" (UBL) domains (DU subfamily). Here we report the 1.5 Å resolution crystal structure of the human USP15 N-terminal domains revealing a 80 Å elongated arrangement with the DU domains aligned in tandem. This architecture is generated through formation of a defined interface that is dominated by an intervening β-hairpin structure (DU finger) that engages in an intricate hydrogen-bonding network between the domains. The UBL domain is closely related to ubiquitin among β-grasp folds but is characterized by the presence of longer loop regions and different surface characteristics, indicating that this domain is unlikely to act as ubiquitin mimic. Comparison with the related murine USP4 DUSP-UBL crystal structure reveals that the main DU interdomain contacts are conserved. Analytical ultracentrifugation, small-angle X-ray scattering, and gel filtration experiments revealed that USP15 DU is monomeric in solution. Our data provide a framework to advance study of the structure and function of the DU subfamily.
Collapse
Affiliation(s)
- Stephen Harper
- Centre for Biomolecular Sciences, University of Nottingham, University Park Campus, Nottingham, NG7 2RD, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Isumi Y, Hirata T, Saitoh H, Miyakawa T, Murakami K, Kudoh G, Doi H, Ishibashi K, Nakajima H. Transgenic overexpression of USP15 in the heart induces cardiac remodeling in mice. Biochem Biophys Res Commun 2011; 405:216-21. [PMID: 21219870 DOI: 10.1016/j.bbrc.2011.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 01/04/2011] [Indexed: 11/17/2022]
Abstract
We found a novel protein-protein interaction between ubiquitin-specific protease 15 (USP15) and skeletal muscle LIM protein 1 (SLIM1): USP15 and SLIM1 directly bound under cell-free conditions and co-immunoprecipitated from the lysates of the cells, where they were co-expressed; and USP15 deubiquitinated SLIM1, resulting in the increase of protein levels of SLIM1. Because SLIM1 is strongly implicated in the pathogenesis of myopathies and cardiomyopathies, we generated transgenic (TG) mice with cardiac-specific overexpression of human USP15. Heart weight to body weight ratios and mRNA levels of fetal gene markers in the heart were significantly higher in USP15-TG mice than in wild-type (WT) mice. Also, protein levels of endogenous murine SLIM1 in the heart were significantly higher in USP15-TG mice than in WT mice. Furthermore, the protein of alternatively spliced isoform of SLIM1 was only detected in the heart of USP15-TG mice, and mRNA levels of this isoform were higher as compared to WT mice. These results indicate that USP15 is involved in the regulation of hypertrophic responses in cardiac muscle through transcriptional and post-translational modulation of SLIM1.
Collapse
Affiliation(s)
- Yoshitaka Isumi
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Xu M, Takanashi M, Oikawa K, Tanaka M, Nishi H, Isaka K, Kudo M, Kuroda M. USP15 plays an essential role for caspase-3 activation during Paclitaxel-induced apoptosis. Biochem Biophys Res Commun 2009; 388:366-71. [DOI: 10.1016/j.bbrc.2009.08.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/02/2009] [Indexed: 10/20/2022]
|
33
|
The ubiquitin-specific peptidase USP15 regulates human papillomavirus type 16 E6 protein stability. J Virol 2009; 83:8885-92. [PMID: 19553310 DOI: 10.1128/jvi.00605-09] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteomic identification of human papillomavirus type 16 (HPV16) E6-interacting proteins revealed several proteins involved in ubiquitin-mediated proteolysis. In addition to the well-characterized E6AP ubiquitin-protein ligase, a second HECT domain protein (HERC2) and a deubiquitylating enzyme (USP15) were identified by tandem affinity purification of HPV16 E6-associated proteins. This study focuses on the functional consequences of the interaction of E6 with USP15. Overexpression of USP15 resulted in increased levels of the E6 protein, and the small interfering RNA-mediated knockdown of USP15 decreased E6 protein levels. These results implicate USP15 directly in the regulation of E6 protein stability and suggest that ubiquitylated E6 could be a substrate for USP15 ubiquitin peptidase activity. It remains possible that E6 could affect the activity of USP15 on specific cellular substrates, a hypothesis that can be tested as more is learned about the substrates and pathways controlled by USP15.
Collapse
|
34
|
Abstract
Protein modification by ubiquitin and ubiquitin-like molecules is a critical regulatory process. Like most regulated protein modifications, ubiquitination is reversible. Deubiquitination, the reversal of ubiquitination, is quickly being recognized as an important regulatory strategy. Nearly one hundred human DUBs (deubiquitinating enzymes) in five different gene families oppose the action of several hundred ubiquitin ligases, suggesting that both ubiquitination and its reversal are highly regulated and specific processes. It has long been recognized that ubiquitin ligases are modular enzyme systems that often depend on scaffolds and adaptors to deliver substrates to the catalytically active macromolecular complex. Although many DUBs bind ubiquitin with reasonable affinities (in the nM to microM range), a larger number have little affinity but exhibit robust catalytic capability. Thus it is apparent that these DUBs must acquire their substrates by binding the target protein in a conjugate or by associating with other macromolecular complexes. We would then expect that a study of protein partners of DUBs would reveal a variety of substrates, scaffolds, adaptors and ubiquitin receptors. In the present review we suggest that, like ligases, much of the regulation and specificity of deubiquitination arises from the association of DUBs with these protein partners.
Collapse
|
35
|
Lin CH, Chang HS, Yu WCY. USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity. J Biol Chem 2008; 283:15681-8. [PMID: 18408009 DOI: 10.1074/jbc.m708278200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HPV-16E7 is a major transforming protein, which has been implicated in the development of cervical cancer. The stability of E7 is thus important to ensure its fully functional status. Using the yeast two-hybrid system, we found that USP11 (ubiquitin-specific protease 11), a member of a protein family that cleaves polyubiquitin chains and/or ubiquitin precursors, interacts and forms a specific complex with HPV-16E7. Our results indicate that the USP11 can greatly increase the steady state level of HPV-16E7 by reducing ubiquitination and attenuating E7 degradation. In contrast, a catalytically inactive mutant of USP11 abolished the deubiquitinating ability and returned E7 to a normal rate of degradation. Moreover, USP11 not only protected E7 from ubiquitination but also influenced E7 function as a modulator of cell growth status. These results suggest that USP11 plays an important role in regulating the levels of E7 protein and subsequently affects the biological function of E7 as well as its contribution to cell transformation by HPV-16E7.
Collapse
Affiliation(s)
- Ching-Hui Lin
- National Health Research Institutes, 35 Keyan Rd., Zhunan Town, Miaoli County 350, Taiwan
| | | | | |
Collapse
|
36
|
Abstract
Irreversible covalent inhibitors equipped with reporter groups, also termed activity-based probes, allow the study of target enzymes based on catalytic activity instead of expression level, which does not necessarily indicate protein function and subsequent cellular consequences. Activity-based probes offer advantages over traditional techniques: they can be applied to the cell or tissue of choice and molecular imaging and pharmacology applications are possible. Here the design and use of probes directed at enzymatic activities in the ubiquitin proteasome system are discussed. This system holds promise for the development of new, targeted anticancer therapies and the probes discussed here might aid in fulfilling this promise.
Collapse
Affiliation(s)
- Huib Ovaa
- Division of Cellular Biochemistry, Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Mu JJ, Wang Y, Luo H, Leng M, Zhang J, Yang T, Besusso D, Jung SY, Qin J. A Proteomic Analysis of Ataxia Telangiectasia-mutated (ATM)/ATM-Rad3-related (ATR) Substrates Identifies the Ubiquitin-Proteasome System as a Regulator for DNA Damage Checkpoints. J Biol Chem 2007; 282:17330-4. [PMID: 17478428 DOI: 10.1074/jbc.c700079200] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ATM (ataxia telangiectasia-mutated) and ATR (ATM-Rad3-related) are proximal checkpoint kinases that regulate DNA damage response (DDR). Identification and characterization of ATM/ATR substrates hold the keys for the understanding of DDR. Few techniques are available to identify protein kinase substrates. Here, we screened for potential ATM/ATR substrates using phospho-specific antibodies against known ATM/ATR substrates. We identified proteins cross-reacting to phospho-specific antibodies in response to DNA damage by mass spectrometry. We validated a subset of the candidate substrates to be phosphorylated in an ATM/ATR-dependent manner in vivo. Combining with a functional checkpoint screen, we identified proteins that belong to the ubiquitin-proteasome system (UPS) to be required in mammalian DNA damage checkpoint control, particularly the G(1) cell cycle checkpoint, thus revealing protein ubiquitylation as an important regulatory mechanism downstream of ATM/ATR activation for checkpoint control.
Collapse
Affiliation(s)
- Jung-Jung Mu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
de Jong RN, Ab E, Diercks T, Truffault V, Daniëls M, Kaptein R, Folkers GE. Solution Structure of the Human Ubiquitin-specific Protease 15 DUSP Domain. J Biol Chem 2006; 281:5026-31. [PMID: 16298993 DOI: 10.1074/jbc.m510993200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-specific proteases (USPs) can remove covalently attached ubiquitin moieties from target proteins and regulate both the stability and ubiquitin-signaling state of their substrates. All USPs contain a conserved catalytic domain surrounded by one or more subdomains, some of which contribute to target recognition. One such specific subdomain, the DUSP domain (domain present in ubiquitin-specific proteases), is present in at least seven different human USPs that regulate the stability of or interact with the hypoxia-inducible transcription factor HIF1-alpha, the Von Hippel-Lindau protein (pVHL), cullin E3 ligases, and BRCA2. We describe the NMR solution structure of the DUSP domain of human USP15, recently implicated in COP9 (constitutive photomorphogenic gene 9)-signalosome regulation. Its tripod-like structure consists of a 3-fold alpha-helical bundle supporting a triple-stranded anti-parallel beta-sheet. The DUSP domain displays a novel fold, an alpha/beta tripod (AB3). DUSP domain surface properties and previously described work suggest a potential role in protein/protein interaction or substrate recognition.
Collapse
Affiliation(s)
- Rob N de Jong
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
Mizuno E, Iura T, Mukai A, Yoshimori T, Kitamura N, Komada M. Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Mol Biol Cell 2005; 16:5163-74. [PMID: 16120644 PMCID: PMC1266416 DOI: 10.1091/mbc.e05-06-0560] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ligand-activated receptor tyrosine kinases undergo endocytosis and are transported via endosomes to lysosomes for degradation. This "receptor down-regulation" process is crucial to terminate the cell proliferation signals produced by activated receptors. During the process, ubiquitination of the receptors serves as a sorting signal for their trafficking from endosomes to lysosomes. Here, we describe the role of a deubiquitinating enzyme UBPY/USP8 in the down-regulation of epidermal growth factor (EGF) receptor (EGFR). Overexpression of UBPY reduced the ubiquitination level of EGFR and delayed its degradation in EGF-stimulated cells. Immunopurified UBPY deubiquitinated EGFR in vitro. In EGF-stimulated cells, UBPY underwent ubiquitination and bound to EGFR. Overexpression of Hrs or a dominant-negative mutant of SKD1, proteins that play roles in the endosomal sorting of ubiquitinated receptors, caused the accumulation of endogenous UBPY on exaggerated endosomes. A catalytically inactive UBPY mutant clearly localized on endosomes, where it overlapped with EGFR when cells were stimulated with EGF. Finally, depletion of endogenous UBPY by RNA interference resulted in elevated ubiquitination and accelerated degradation of EGF-activated EGFR. We conclude that UBPY negatively regulates the rate of EGFR down-regulation by deubiquitinating EGFR on endosomes.
Collapse
Affiliation(s)
- Emi Mizuno
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Soboleva TA, Jans DA, Johnson-Saliba M, Baker RT. Nuclear-cytoplasmic shuttling of the oncogenic mouse UNP/USP4 deubiquitylating enzyme. J Biol Chem 2005; 280:745-52. [PMID: 15494318 DOI: 10.1074/jbc.m401394200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncogenic deubiquitylating enzyme (DUB) Unp/Usp4, which binds to the retinoblastoma family of tumor suppressor proteins, was originally described as a nuclear protein. However, more recent studies have shown it to be cytoplasmic. In addition, analysis of its subcellular localization has been complicated by the existence of the paralog Usp15. In this study, we resolved this controversy by investigating the localization of exogenously expressed Usp4 (using red fluorescent protein-Usp4) and of endogenous Usp4 (using highly specific antibodies that can distinguish Usp4 from Usp15). We found that by inhibiting nuclear export with leptomycin B, both exogenous and endogenous Usp4 accumulate in the nucleus. Further, using a Rev-green fluorescent protein-based export assay, we confirmed the existence of a nuclear export signal ((133)VEVYLLELKL(142)) in Usp4. In addition, a functional nuclear import signal ((766)QPQKKKK(772)) was also identified, which was specifically recognized by importin alpha/beta. Finally, we show that the equilibrium of Usp4 subcellular localization varies between different cell types. Usp4 is thus the first DUB reported to have nucleocytoplasmic shuttling properties. The implications of this shuttling for its function as a DUB are discussed.
Collapse
Affiliation(s)
- Tatiana A Soboleva
- Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | |
Collapse
|
41
|
Baker RT, Catanzariti AM, Karunasekara Y, Soboleva TA, Sharwood R, Whitney S, Board PG. Using deubiquitylating enzymes as research tools. Methods Enzymol 2005; 398:540-54. [PMID: 16275357 DOI: 10.1016/s0076-6879(05)98044-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin is synthesized in eukaryotes as a linear fusion with a normal peptide bond either to itself or to one of two ribosomal proteins and, in the latter case, enhances the yield of these ribosomal proteins and/or their incorporation into the ribosome. Such fusions are cleaved rapidly by a variety of deubiquitylating enzymes. Expression of heterologous proteins as linear ubiquitin fusions has been found to significantly increase the yield of unstable or poorly expressed proteins in either bacterial or eukaryotic hosts. If expressed in bacterial cells, the fusion is not cleaved due to the absence of deubiquitylating activity and can be purified intact. We have developed an efficient expression system, utilizing the ubiquitin fusion technique and a robust deubiquitylating enzyme, which allows convenient high yield and easy purification of authentic proteins. An affinity purification tag on both the ubiquitin fusion and the deubiquitylating enzyme allows their easy purification and the easy removal of unwanted components after cleavage, leaving the desired protein as the only soluble product. Ubiquitin is also conjugated to epsilon amino groups in lysine side chains of target proteins to form a so-called isopeptide linkage. Either a single ubiquitin can be conjugated or other lysines within ubiquitin can be acceptors for further conjugation, leading to formation of a branched, isopeptide-linked ubiquitin chain. Removal of these ubiquitin moieties or chains in vitro would be a valuable tool in the ubiquitinologists tool kit to simplify downstream studies on ubiquitylated targets. The robust deubiquitylating enzyme described earlier is also very useful for this task.
Collapse
Affiliation(s)
- Rohan T Baker
- Molecular Genetics Group, Division of Molecular Medicine, John Curtin School of Medical Research, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Since the discovery of ubiquitin in 1975, the poly-ubiquitylation pathway has earned a prominent place in biomedical research as the "garbage disposal" system of the cell. Modification with poly-ubiquitin chains plays an important role in normal protein turnover and also in removing damaged or misfolded proteins. More recently, the elucidation of mono-ubiquitylation of protein substrates has shown additional important roles for ubiquitylation in processes, such as transcriptional regulation, viral budding, and receptor internalization. Intriguingly, this voyage of discovery is now repeating itself with a new generation of ubiquitin-like (ubl) modifiers, such as SUMO and NEDD8. The functional consequences of SUMO and NEDD8 modification are thus beginning to be revealed. A less known member of this ubiquitin-like family is ISG 15, a modifier encoded by an interferon-stimulated gene. Recent publications have ascribed important functions for this molecule in various biological pathways from pregnancy to innate immune responses. Furthermore, ISG 15 has been found to modify several important molecules and affect type I interferon signal transduction. Here, we review ISG 15-related work and highlight important biological questions which need to be posed in order to further elucidate the biological consequences of ISG15 and ISG15 modification.
Collapse
Affiliation(s)
- Kenneth J Ritchie
- Department of Molecular and Experimental Medicine, MEM-L51, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
43
|
Zhou Y, Zhao Q, Bishop CE, Huang P, Lu B. Identification and characterization of a novel testicular germ cell-specific geneGgnbp1. Mol Reprod Dev 2004; 70:301-7. [PMID: 15625700 DOI: 10.1002/mrd.20214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel gene Ggnbp1 was identified during yeast two-hybrid screening of gametogenetin protein 1 (GGN1)-interacting proteins. Ggnbp1 gene was found in mouse, rat, and human genomes but not in sequenced yeast, worms, fly, or fish genomes. Northern blotting analysis revealed that the gene was specifically expressed in the testis but not expressed in the other tissues. In situ hybridization showed that it was testicular germ cell-specific and was specifically expressed in later primary spermatocytes, meiotic cells, and early round spermatids. Western blotting analysis detected a protein of expected size in and only in the testis. By making membrane and cytosolic fractions of germ cells, we were able to show that GGNBP1 associated with the membrane. The identification and characterization of a novel germ cell-specific gene Ggnbp1 is the first step toward the defining of the functions of Ggnbp1 in spermatogenesis.
Collapse
Affiliation(s)
- Yu Zhou
- Beijing Institute of Biotechnology, 20 Dong Da Jie Street, Beijing, China, 100071
| | | | | | | | | |
Collapse
|
44
|
Tian QB, Okano A, Nakayama K, Miyazawa S, Endo S, Suzuki T. A novel ubiquitin-specific protease, synUSP, is localized at the post-synaptic density and post-synaptic lipid raft. J Neurochem 2003; 87:665-75. [PMID: 14535949 DOI: 10.1046/j.1471-4159.2003.02024.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent reports suggest an important role for protein ubiquitination in synaptic plasticity. We cloned, from the rat brain, a novel gene that encoded an ubiquitin-specific protease (USP), and termed this protein synaptic ubiquitin-specific protease (synUSP, GenBankTM Accession no. AB073880). The homologous human gene was mapped to a locus on chromosome 1p36.12. The deduced synUSP protein consisted of 1036 amino acids, and possessed an ubiquitin-like domain at the C-terminus, Cys- and His-boxes, leucine zipper motifs, and six amino acid-repeats of L/ILCPHG. The protein possessed de-ubiquitinating activity toward a model substrate, as expected from its sequence. The protein of 125 kDa was present in the rat brain; in particular, it was enriched in the post-synaptic density and the dendritic lipid raft fractions. The immunostaining of cortical neurons confirmed the post-synaptic localization. The mRNA for synUSP was localized to dendrites, as well as somas, of neuronal cells. Thus, both the mRNA and the protein were localized in the post-synaptic compartments. These results suggest a regulatory mechanism for the ubiquitin-related system at the post-synaptic sites.
Collapse
Affiliation(s)
- Qing Bao Tian
- Department of Neuroplasty, Research Institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Deubiquitinating enzymes--the importance of driving in reverse along the ubiquitin-proteasome pathway. Int J Biochem Cell Biol 2003; 35:590-605. [PMID: 12672452 DOI: 10.1016/s1357-2725(02)00392-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ubiquitination of proteins is now recognized to target proteins for degradation by the proteasome and for internalization into the lysosomal system, as well as to modify functions of some target proteins. Although much progress has been made in characterizing enzymes that link ubiquitin to proteins, our understanding of deubiquitinating enzymes is less developed. These enzymes are involved in processing the products of ubiquitin genes which all encode fusion proteins, in negatively regulating the functions of ubiquitination (editing), in regenerating free ubiquitin after proteins have been targeted to the proteasome or lysosome (recycling) and in salvaging ubiquitin from possible adducts formed with small molecule nucleophiles in the cell. A large number of genes encode deubiquitinating enzymes suggesting that many have highly specific and regulated functions. Indeed, recent findings provide strong support for the concept that ubiquitination is regulated by both specific pathways of ubiquitination and deubiquitination. Interestingly, many of these enzymes are localized to subcellular structures or to molecular complexes. These localizations play important roles in determining specificity of function and can have major influences on their catalytic activities. Future studies, particularly aimed at characterizing the interacting partners and potential substrates in these complexes as well as at determining the effects of loss of function of specific deubiquitinating enzymes will rapidly advance our understanding of the important roles of these enzymes as biological regulators.
Collapse
|
46
|
Gousseva N, Baker RT. Gene structure, alternate splicing, tissue distribution, cellular localization, and developmental expression pattern of mouse deubiquitinating enzyme isoforms Usp2-45 and Usp2-69. Gene Expr 2003; 11:163-79. [PMID: 14686789 PMCID: PMC5991164 DOI: 10.3727/000000003108749053] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2003] [Indexed: 12/20/2022]
Abstract
We have identified a novel mouse gene, Usp2, encoding two ubiquitin-specific proteases (USPs) due to alternate splicing of 5' exons. Usp2-45 consists of 396 amino acids (45.2 kDa), while Usp2-69 is 619 amino acids (69.5 kDa). Usp2-69 results from the splicing of different combinations of untranslated 5' exons (1A, 1B, 1C) onto exon 1D and the 40-kDa catalytic core (exons 3-13), while Usp2-45 has exon 2 spliced onto the core. The catalytic core contains the highly conserved motifs of the UBP family of deubiquitinating enzymes. We can find no evidence for a reported 41-kDa isoform (UBP41) in any sequence databases. Usp2-69 is able to form a complex with Usp2-45 and with itself. Antibodies raised against the catalytic core recognized a 69-kDa protein, but did not detect a 45-kDa protein in mouse tissues. Using Northern blot, Western blot, and immunohistochemistry, Usp2 expression was observed in many adult and embryonic tissues including testis, heart, skeletal muscle, diaphragm, brain, kidney, liver, pancreas, lung, and skin. Both Usp2 isoforms were localized to the cytoplasm when overexpressed in COS-7 and NIH3T3 cells. The Usp2 expression pattern indicates that this protein might be involved in specific processes in different types of cells, especially those that are differentiating, and that its function is not restricted to a development of a particular organ.
Collapse
Affiliation(s)
- Natalia Gousseva
- Ubiquitin Laboratory, Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, GPO Box 334, Canberra, ACT 2601, Australia
| | - Rohan T. Baker
- Ubiquitin Laboratory, Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, GPO Box 334, Canberra, ACT 2601, Australia
- Address correspondence to Dr. Rohan T. Baker, Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, GPO Box 334, Canberra, ACT 2601, Australia. Tel: +61 2 6125 3824; Fax: +61 2 6125 4712; E-mail:
| |
Collapse
|
47
|
Ideguchi H, Ueda A, Tanaka M, Yang J, Tsuji T, Ohno S, Hagiwara E, Aoki A, Ishigatsubo Y. Structural and functional characterization of the USP11 deubiquitinating enzyme, which interacts with the RanGTP-associated protein RanBPM. Biochem J 2002; 367:87-95. [PMID: 12084015 PMCID: PMC1222860 DOI: 10.1042/bj20011851] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2001] [Revised: 06/25/2002] [Accepted: 06/25/2002] [Indexed: 11/17/2022]
Abstract
RanBPM is a RanGTP-binding protein required for correct nucleation of microtubules. To characterize the mechanism, we searched for RanBPM-binding proteins by using a yeast two-hybrid method and isolated a cDNA encoding the ubiquitin-specific protease USP11. The full-length cDNA of USP11 was cloned from a Jurkat cell library. Sequencing revealed that USP11 possesses Cys box, His box, Asp and KRF domains, which are highly conserved in many ubiquitin-specific proteases. By immunoblotting using HeLa cells, we concluded that 921-residue version of USP11 was the predominant form, and USP11 may be a ubiquitous protein in various human tissues. By immunofluorescence assay, USP11 primarily was localized in the nucleus of non-dividing cells, suggesting an association between USP11 and RanBPM in the nucleus. Furthermore, the association between USP11 and RanBPM in vivo was confirmed not only by yeast two-hybrid assay but also by co-immunoprecipitation assays using exogenously expressed USP11 and RanBPM. We next revealed proteasome-dependent degradation of RanBPM by pulse-chase analysis using proteasome inhibitors. In fact, ubiquitinated RanBPM was detected by both in vivo and in vitro ubiquitination assays. Finally, ubiquitin conjugation to RanBPM was inhibited in a dose-dependent manner by the addition of recombinant USP11. We conclude that RanBPM was the enzymic substrate for USP11 and was deubiquitinated specifically.
Collapse
Affiliation(s)
- Haruko Ideguchi
- First Department of Internal Medicine, Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh HL, Kessler BM. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. CHEMISTRY & BIOLOGY 2002; 9:1149-59. [PMID: 12401499 DOI: 10.1016/s1074-5521(02)00248-x] [Citation(s) in RCA: 452] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ubiquitin (Ub)-proteasome system includes a large family of deubiquitinating enzymes (DUBs). Many members are assigned to this enzyme class by sequence similarity but without evidence for biological activity. A panel of novel DUB-specific probes was generated by a chemical ligation method. These probes allowed identification of DUBs and associated components by tandem mass spectrometry, as well as rapid demonstration of enzymatic activity for gene products whose functions were inferred from primary structure. We identified 23 active DUBs in EL4 cells, including the tumor suppressor CYLD1. At least two DUBs tightly interact with the proteasome 19S regulatory complex. An OTU domain-containing protein, with no sequence homology to any known DUBs, was isolated. We show that this polypeptide reacts with the C terminus of Ub, thus demonstrating DUB-like enzymatic activity for this novel superfamily of proteases.
Collapse
Affiliation(s)
- Anna Borodovsky
- Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ, Zhang DE. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem 2002; 277:9976-81. [PMID: 11788588 DOI: 10.1074/jbc.m109078200] [Citation(s) in RCA: 399] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UBP43 shows significant homology to well characterized ubiquitin-specific proteases and previously was shown to hydrolyze ubiquitin-beta-galactosidase fusions in Escherichia coli. In our assays, the activity of UBP43 toward Ub fusions was undetectable in vitro directing us to investigate the possibility of Ub-like proteins such as SUMO, Nedd8, and ISG15 as probable substrates. We consequently demonstrate that UBP43 can efficiently cleave only ISG15 fusions including native ISG15 conjugates linked via isopeptide bonds. In addition to commonly used methods we introduce a new experimental design featuring ISG15-UBP43 fusion self-processing. Deletion of the UBP43 gene in mouse leads to a massive increase of ISG15 conjugates in tissues indicating that UBP43 is a major ISG15-specific protease. UBP43 is the first bona fide ISG15-specific protease reported. Both ISG15 and UBP43 genes are known to be strongly induced by interferon, genotoxic stress, and viral infection. We postulate that UBP43 is necessary to maintain a critical cellular balance of ISG15-conjugated proteins in both healthy and stressed organisms.
Collapse
Affiliation(s)
- Michael P Malakhov
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
50
|
DeSalle LM, Latres E, Lin D, Graner E, Montagnoli A, Baker RT, Pagano M, Loda M. The de-ubiquitinating enzyme Unp interacts with the retinoblastoma protein. Oncogene 2001; 20:5538-42. [PMID: 11571652 DOI: 10.1038/sj.onc.1204824] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2001] [Revised: 04/12/2001] [Accepted: 07/11/2001] [Indexed: 11/08/2022]
Abstract
The ubiquitin pathway is involved in the proteolytic turnover of many short-lived cellular regulatory proteins. Since selective degradation of substrates of this system requires the covalent attachment of a polyubiquitin chain to the substrates, degradation could be counteracted by de-ubiquitinating enzymes (or isopeptidases) which selectively remove the polyubiquitin chain. Unp is a human isopeptidase with still poorly understood biological functions. Here, we show that cellular Unp specifically interacts with the retinoblastoma gene product (pRb).
Collapse
Affiliation(s)
- L M DeSalle
- Department of Pathology and Kaplan Comprehensive Cancer Center, MSB 548, New York University Medical Center, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|