1
|
Ma S, Liu H, Sun W, Mustafa A, Xi Y, Pu F, Li Y, Han C, Bai L, Hua H. Molecular evolution of the ATP-binding cassette subfamily G member 2 gene subfamily and its paralogs in birds. BMC Evol Biol 2020; 20:85. [PMID: 32664916 PMCID: PMC7362505 DOI: 10.1186/s12862-020-01654-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Background ATP-binding cassette (ABC) transporters are involved in the active transportation of various endogenous or exogenous substances. Two ABCG2 gene subfamily members have been identified in birds. A detailed comparative study of the ABCG2 and ABCG2-like genes aid our understanding of their evolutionary history at the molecular level and provide a theoretical reference for studying the specific functions of ABCG2 and ABCG2-like genes in birds. Results We first identified 77 ABCG2/ABCG2-like gene sequences in the genomes of 41 birds. Further analysis showed that both the nucleic acid and amino acid sequences of ABCG2 and ABCG2-like genes were highly conserved and exhibited high homology in birds. However, significant differences in the N-terminal structure were found between the ABCG2 and ABCG2-like amino acid sequences. A selective pressure analysis showed that the ABCG2 and ABCG2-like genes were affected by purifying selection during the process of bird evolution. Conclusions We believe that multiple members of the ABCG2 gene subfamily exist on chromosome 4 in the ancestors of birds. Over the long course of evolution, only the ABCG2 gene was retained on chromosome 4 in birds. The ABCG2-like gene on chromosome 6 might have originated from chromosome replication or fusion. The structural differences between the N terminus of ABCG2 protein and those of ABCG2-like proteins might lead to functional differences between the corresponding genes.
Collapse
Affiliation(s)
- Shengchao Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Ahsan Mustafa
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, P.R. China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Fajun Pu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Yanying Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - He Hua
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| |
Collapse
|
2
|
Kartout-Benmessaoud Y, Ladjali-Mohammedi K. Banding cytogenetics of chimeric hybrids Coturnixcoturnix × Coturnixjaponica and comparative analysis with the domestic fowl. COMPARATIVE CYTOGENETICS 2018; 12:445-470. [PMID: 30364889 PMCID: PMC6199345 DOI: 10.3897/compcytogen.v12i4.27341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The Common quail Coturnixcoturnix Linnaeus, 1758 is a wild migratory bird which is distributed in Eurasia and North Africa, everywhere with an accelerating decline in population size. This species is protected by the Bonn and Berne conventions (1979) and by annex II/1 of the Birds Directive (2009). In Algeria, its breeding took place at the hunting centre in the west of the country. Breeding errors caused uncontrolled crosses between the Common quail and Japanese quail Coturnixjaponica Temminck & Schlegel, 1849. In order to help to preserve the natural genetic heritage of the Common quail and to lift the ambiguity among the populations of quail raised in Algeria, it seemed essential to begin to describe the chromosomes of this species in the country since no cytogenetic study has been reported to date. Fibroblast cultures from embryo and adult animal were initiated. Double synchronization with excess thymidine allowed us to obtain high resolution chromosomes blocked at prometaphase stage. The karyotype and the idiogram in GTG morphological banding (G-bands obtained with trypsin and Giemsa) corresponding to larger chromosomes 1-12 and ZW pair were thus established. The diploid set of chromosomes was estimated as 2N=78. Cytogenetic analysis of expected hybrid animals revealed the presence of a genetic introgression and cellular chimerism. This technique is effective in distinguishing the two quail taxa. Furthermore, the comparative chromosomal analysis of the two quails and domestic chicken Gallusgallusdomesticus Linnaeus, 1758 has been conducted. Differences in morphology and/or GTG band motifs were observed on 1, 2, 4, 7, 8 and W chromosomes. Neocentromere occurrence was suggested for Common quail chromosome 1 and Chicken chromosomes 4 and W. Double pericentric inversion was observed on the Common quail chromosome 2 while pericentric inversion hypothesis was proposed for Chicken chromosome 8. A deletion on the short arm of the Common quail chromosome 7 was also found. These results suggest that Common quail would be a chromosomally intermediate species between Chicken and Japanese quail. The appearance of only a few intrachromosomal rearrangements that occurred during evolution suggests that the organization of the genome is highly conserved between these three galliform species.
Collapse
Affiliation(s)
- Yasmine Kartout-Benmessaoud
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Team of Developmental Genetics. USTHB, PO box 32 El-Alia, Bab-Ezzouar, 16110 Algiers, AlgeriaUniversity of Sciences and Technology Houari BoumedieneBab-EzzouarAlgeria
- University of Bejaia, Faculty of Nature and Life Sciences, Department of Physico-Chemical Biology, 06000, Bejaia, AlgeriaUniversity of BejaiaBejaiaAlgeria
| | - Kafia Ladjali-Mohammedi
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Team of Developmental Genetics. USTHB, PO box 32 El-Alia, Bab-Ezzouar, 16110 Algiers, AlgeriaUniversity of Sciences and Technology Houari BoumedieneBab-EzzouarAlgeria
| |
Collapse
|
3
|
Ouchia-Benissad S, Ladjali-Mohammedi K. Banding cytogenetics of the Barbary partridge Alectoris barbara and the Chukar partridge Alectoris chukar (Phasianidae): a large conservation with Domestic fowl Gallus domesticus revealed by high resolution chromosomes. COMPARATIVE CYTOGENETICS 2018; 12:171-199. [PMID: 29896323 PMCID: PMC5995975 DOI: 10.3897/compcytogen.v12i2.23743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
The development of avian cytogenetics is significantly behind that of mammals. In fact, since the advent of cytogenetic techniques, fewer than 1500 karyotypes have been established. The Barbary partridge Alectoris barbara Bonnaterre, 1790 is a bird of economic interest but its genome has not been studied so far. This species is endemic to North Africa and globally declining. The Chukar partridge Alectoris chukar Gray, 1830 is an introduced species which shares the same habitat area as the Barbary partridge and so there could be introgressive hybridisation. A cytogenetic study has been initiated in order to contribute to the Barbary partridge and the Chukar partridge genome analyses. The GTG, RBG and RHG-banded karyotypes of these species have been described. Primary fibroblast cell lines obtained from embryos were harvested after simple and double thymidine synchronisation. The first eight autosomal pairs and Z sex chromosome have been described at high resolution and compared to those of the domestic fowl Gallus domesticus Linnaeus, 1758. The diploid number was established as 2n = 78 for both partridges, as well as for most species belonging to the Galliformes order, underlying the stability of chromosome number in avian karyotypes. Wide homologies were observed for macrochromosomes and gonosome except for chromosome 4, 7, 8 and Z which present differences in morphology and/or banding pattern. Neocentromere occurrence was suggested for both partridges chromosome 4 with an assumed paracentric inversion in the Chukar partridge chromosome 4. Terminal inversion in the long arm of the Barbary partridge chromosome Z was also found. These rearrangements confirm that the avian karyotypes structure is conserved interchromosomally, but not at the intrachromosomal scale.
Collapse
Affiliation(s)
- Siham Ouchia-Benissad
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, LBCM lab., Team: Genetics of Development. USTHB, PO box 32 El-Alia, Bab-Ezzouar, 16110 Algiers, Algeria
| | - Kafia Ladjali-Mohammedi
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, LBCM lab., Team: Genetics of Development. USTHB, PO box 32 El-Alia, Bab-Ezzouar, 16110 Algiers, Algeria
| |
Collapse
|
4
|
Wójcik E, Smalec E. Constitutive heterochromatin in chromosomes of duck hybrids and goose hybrids. Poult Sci 2016; 96:18-26. [PMID: 27664202 DOI: 10.3382/ps/pew318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/14/2016] [Accepted: 07/28/2016] [Indexed: 02/05/2023] Open
Abstract
Constitutive heterochromatin is a highly condensed fraction of chromatin in chromosomes. It is characterized by a high degree of polymorphism. Heterochromatin is located in the centromeric, telomeric, and interstitial parts of chromosomes. We used the CBG ( C: banding using B: arium hydroxide by G: iemsa) staining technique to identify heterochromatin in chromosomes. Analysis of karyotypes of F1 hybrids resulting from intergeneric hybridization of ducks (A. platyrhynchos × C. moschata) and interspecific crosses of geese (A. anser × A. cygnoides) were used to compare the karyotypes of 2 species of duck and 2 species of geese, as well as to compare the hybrids with the parent species. The localization of C-bands and their size were determined. In the duck hybrid, greater amounts of heterochromatin were noted in the homologous chromosomes from the duck A. platyrhynchos than in the chromosomes from the duck C. moschata. In the goose hybrid more heterochromatin was observed in the homologous chromosomes from the goose A. cygnoides than in the chromosomes from the goose A. anser. Comparison of chromosomes from the duck hybrid with chromosomes of the ducks A. platyrhynchos and C. moschata revealed nearly twice as much constitutive heterochromatin in the chromosomes of the hybrid. When chromosomes from the goose hybrid were compared with those of the geese A. anser and A. cygnoides, differences in the average content of heterochromatin were observed on only a few chromosomes.
Collapse
Affiliation(s)
- E Wójcik
- Department of Animal Genetics and Horse Breeding, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - E Smalec
- Department of Animal Genetics and Horse Breeding, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| |
Collapse
|
5
|
Graphodatsky A, Ferguson-Smith MA, Stanyon R. A short introduction to cytogenetic studies in mammals with reference to the present volume. Cytogenet Genome Res 2012; 137:83-96. [PMID: 22846392 DOI: 10.1159/000341502] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Genome diversity has long been studied from the comparative cytogenetic perspective. Early workers documented differences between species in diploid chromosome number and fundamental number. Banding methods allowed more detailed descriptions of between-species rearrangements and classes of differentially staining chromosome material. The infusion of molecular methods into cytogenetics provided a third revolution, which is still not exhausted. Chromosome painting has provided a global view of the translocation history of mammalian genome evolution, well summarized in the contributions to this special volume. More recently, FISH of cloned DNA has provided details on defining breakpoint and intrachromosomal marker order, which have helped to document inversions and centromere repositioning. The most recent trend in comparative molecular cytogenetics is to integrate sequencing information in order to formulate and test reconstructions of ancestral genomes and phylogenomic hypotheses derived from comparative cytogenetics. The integration of comparative cytogenetics and sequencing promises to provide an understanding of what drives chromosome rearrangements and genome evolution in general. We believe that the contributions in this volume, in no small way, point the way to the next phase in cytogenetic studies.
Collapse
Affiliation(s)
- A Graphodatsky
- Institute of Molecular and Cellular Biology, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | |
Collapse
|
6
|
Skinner BM, Griffin DK. Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints. Heredity (Edinb) 2011; 108:37-41. [PMID: 22045382 DOI: 10.1038/hdy.2011.99] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
It is generally believed that the organization of avian genomes remains highly conserved in evolution as chromosome number is constant and comparative chromosome painting demonstrated there to be very few interchromosomal rearrangements. The recent sequencing of the zebra finch (Taeniopygia guttata) genome allowed an assessment of the number of intrachromosomal rearrangements between it and the chicken (Gallus gallus) genome, revealing a surprisingly high number of intrachromosomal rearrangements. With the publication of the turkey (Meleagris gallopavo) genome it has become possible to describe intrachromosomal rearrangements between these three important avian species, gain insight into the direction of evolutionary change and assess whether breakpoint regions are reused in birds. To this end, we aligned entire chromosomes between chicken, turkey and zebra finch, identifying syntenic blocks of at least 250 kb. Potential optimal pathways of rearrangements between each of the three genomes were determined, as was a potential Galliform ancestral organization. From this, our data suggest that around one-third of chromosomal breakpoint regions may recur during avian evolution, with 10% of breakpoints apparently recurring in different lineages. This agrees with our previous hypothesis that mechanisms of genome evolution are driven by hotspots of non-allelic homologous recombination.
Collapse
Affiliation(s)
- B M Skinner
- School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|
7
|
Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma 2011; 120:455-68. [PMID: 21725690 DOI: 10.1007/s00412-011-0322-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/18/2011] [Accepted: 04/25/2011] [Indexed: 01/20/2023]
Abstract
The divergence of lineages leading to extant squamate reptiles (lizards, snakes, and amphisbaenians) and birds occurred about 275 million years ago. Birds, unlike squamates, have karyotypes that are typified by the presence of a number of very small chromosomes. Hence, a number of chromosome rearrangements might be expected between bird and squamate genomes. We used chromosome-specific DNA from flow-sorted chicken (Gallus gallus) Z sex chromosomes as a probe in cross-species hybridization to metaphase spreads of 28 species from 17 families representing most main squamate lineages and single species of crocodiles and turtles. In all but one case, the Z chromosome was conserved intact despite very ancient divergence of sauropsid lineages. Furthermore, the probe painted an autosomal region in seven species from our sample with characterized sex chromosomes, and this provides evidence against an ancestral avian-like system of sex determination in Squamata. The avian Z chromosome synteny is, therefore, conserved albeit it is not a sex chromosome in these squamate species.
Collapse
|
8
|
Krylov V, Kubickova S, Rubes J, Macha J, Tlapakova T, Seifertova E, Sebkova N. Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH. Chromosome Res 2010; 18:431-9. [PMID: 20390340 DOI: 10.1007/s10577-010-9127-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/16/2010] [Indexed: 11/26/2022]
Abstract
Laser microdissection was used for the preparation of whole chromosome painting probes in Silurana (Xenopus) tropicalis. Subsequent cross-species fluorescence in situ hybridization (Zoo-FISH) on its tetraploid relative Xenopus laevis revealed persistence of chromosomal quartets even after 50-65 million years of separate evolution. Their arrangement is in a partial concordance with previous experiments based on similarity of a high-resolution replication banding pattern. Further support for an allotetraploid origin of X. laevis was given by hybridization with a probe derived from the smallest X. tropicalis chromosome (Xt10). Here, pericentric areas of both arms of Xl 14 and 18 were stained, indicating intrachromosomal rearrangements. The positions of signals were not in agreement with the chromosomal quartets revealed by painting probes Xt 8 and 9 (Xl 11 + 14 and Xl 15 + 18, respectively). This suggests that both X. tropicalis chromosomes underwent non-reciprocal translocation of Xt10 separately in at least two different ancient ancestors. In addition, the observed translocation events could explain the origin of individuals with 18 chromosomes in diploid karyotypes, probably extinct after the genesis of the allotetraploid X. laevis (2n = 36).
Collapse
Affiliation(s)
- Vladimir Krylov
- Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague 2, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
9
|
Skinner BM, Robertson LBW, Tempest HG, Langley EJ, Ioannou D, Fowler KE, Crooijmans RPMA, Hall AD, Griffin DK, Völker M. Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis. BMC Genomics 2009; 10:357. [PMID: 19656363 PMCID: PMC2907691 DOI: 10.1186/1471-2164-10-357] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 08/05/2009] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The availability of the complete chicken (Gallus gallus) genome sequence as well as a large number of chicken probes for fluorescent in-situ hybridization (FISH) and microarray resources facilitate comparative genomic studies between chicken and other bird species. In a previous study, we provided a comprehensive cytogenetic map for the turkey (Meleagris gallopavo) and the first analysis of copy number variants (CNVs) in birds. Here, we extend this approach to the Pekin duck (Anas platyrhynchos), an obvious target for comparative genomic studies due to its agricultural importance and resistance to avian flu. RESULTS We provide a detailed molecular cytogenetic map of the duck genome through FISH assignment of 155 chicken clones. We identified one inter- and six intrachromosomal rearrangements between chicken and duck macrochromosomes and demonstrated conserved synteny among all microchromosomes analysed. Array comparative genomic hybridisation revealed 32 CNVs, of which 5 overlap previously designated "hotspot" regions between chicken and turkey. CONCLUSION Our results suggest extensive conservation of avian genomes across 90 million years of evolution in both macro- and microchromosomes. The data on CNVs between chicken and duck extends previous analyses in chicken and turkey and supports the hypotheses that avian genomes contain fewer CNVs than mammalian genomes and that genomes of evolutionarily distant species share regions of copy number variation ("CNV hotspots"). Our results will expedite duck genomics, assist marker development and highlight areas of interest for future evolutionary and functional studies.
Collapse
Affiliation(s)
| | - Lindsay BW Robertson
- Department of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
- Institute of Cancer Research, Belmont, Surrey, SM2 5NG, UK
| | - Helen G Tempest
- Department of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
- Bridge Genoma, 1 St Thomas Street, London Bridge, London, SE1 9RY, UK
| | | | - Dimitris Ioannou
- Department of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Katie E Fowler
- Department of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Richard PMA Crooijmans
- Animal Breeding and Genomics Centre, Wageningen University, Marijkeweg 40, 6709 PG Wageningen, The Netherlands
| | - Anthony D Hall
- Cherry Valley Ltd, Rothwell, Market Rasen, Lincolnshire, LN7 6BJ, UK
| | - Darren K Griffin
- Department of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Martin Völker
- Department of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| |
Collapse
|
10
|
Nanda I, Karl E, Griffin DK, Schartl M, Schmid M. Chromosome repatterning in three representative parrots (Psittaciformes) inferred from comparative chromosome painting. Cytogenet Genome Res 2007; 117:43-53. [PMID: 17675844 DOI: 10.1159/000103164] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 02/16/2007] [Indexed: 11/19/2022] Open
Abstract
Parrots (order: Psittaciformes) are the most common captive birds and have attracted human fascination since ancient times because of their remarkable intelligence and ability to imitate human speech. However, their genome organization, evolution and genomic relation with other birds are poorly understood. Chromosome painting with DNA probes derived from the flow-sorted macrochromosomes (1-10) of chicken (Gallus gallus, GGA) has been used to identify and distinguish the homoeologous chromosomal segments in three species of parrots, i.e., Agapornis roseicollis (peach-faced lovebird); Nymphicus hollandicus (cockatiel) and Melopsittacus undulatus (budgerigar). The ten GGA macrochromosome paints unequivocally recognize 14 to 16 hybridizing regions delineating the conserved chromosomal segments for the respective chicken macrochromosomes in these representative parrot species. The cross-species chromosome painting results show that, unlike in many other avian karyotypes with high homology to chicken chromosomes, dramatic rearrangements of the macrochromosomes have occurred in parrot lineages. Among the larger GGA macrochromosomes (1-5), chromosomes 1 and 4 are conserved on two chromosomes in all three species. However, the hybridization pattern for GGA 4 in A. roseicollis and M. undulatus is in sharp contrast to the most common pattern known from hybridization of chicken macrochromosome 4 in other avian karyotypes. With the exception of A. roseicollis, chicken chromosomes 2, 3 and 5 hybridized either completely or partially to a single chromosome. In contrast, the smaller GGA macrochromosomes 6, 7 and 8 displayed a complex hybridization pattern: two or three of these macrochromosomes were found to be contiguously arranged on a single chromosome in all three parrot species. Overall, the study shows that translocations and fusions in conjunction with intragenomic rearrangements have played a major role in the karyotype evolution of parrots. Our inter-species chromosome painting results unequivocally illustrate the dynamic reshuffling of ancestral chromosomes among the karyotypes of Psittaciformes.
Collapse
Affiliation(s)
- I Nanda
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
11
|
Griffin DK, Robertson LBW, Tempest HG, Skinner BM. The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet Genome Res 2007; 117:64-77. [PMID: 17675846 DOI: 10.1159/000103166] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 09/04/2006] [Indexed: 12/15/2022] Open
Abstract
Birds are characterised by feathers, flight, a small genome and a very distinctive karyotype. Despite the large numbers of chromosomes, the diploid count of 2n approximately 80 has remained remarkably constant with 63% of birds where 2n = 74-86, 24% with 2n = 66-74 and extremes of 2n = 40 and 2n = 142. Of these, the most studied is the chicken (2n = 78), and molecular cytogenetic probes generated from this species have been used to further understand the evolution of the avian genome. The ancestral karyotype is, it appears, very similar to that of the chicken, with chicken chromosomes 1, 2, 3, 4q, 5, 6, 7, 8, 9, 4p and Z representing the ancestral avian chromosomes 1-10 + Z; chromosome 4 being the most ancient. Avian evolution occurred primarily in three stages: the divergence of the group represented by extant ratites (emu, ostrich etc.) from the rest; divergence of the Galloanserae (chicken, turkey, duck, goose etc.)--the most studied group; and divergence of the 'land' and 'water' higher birds. Other than sex chromosome differentiation in the first divergence there are no specific changes associated with any of these evolutionary milestones although certain families and orders have undergone multiple fusions (and some fissions), which has reduced their chromosome number; the Falconiformes are the best described. Most changes, overall, seem to involve chromosomes 1, 2, 4, 10 and Z where the Z changes are intrachromosomal; there are also some recurring (convergent) events. Of these, the most puzzling involves chromosomes 4 and 10, which appear to have undergone multiple fissions and/or fusions throughout evolution - three possible hypotheses are presented to explain the findings. We conclude by speculating as to the reasons for the strange behaviour of these chromosomes as well as the role of telomeres and nuclear organisation in avian evolution.
Collapse
Affiliation(s)
- D K Griffin
- University of Kent, Department of Biosciences, Canterbury, UK.
| | | | | | | |
Collapse
|
12
|
Nishida-Umehara C, Tsuda Y, Ishijima J, Ando J, Fujiwara A, Matsuda Y, Griffin DK. The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Res 2007; 15:721-34. [PMID: 17605112 DOI: 10.1007/s10577-007-1157-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Revised: 04/28/2007] [Accepted: 04/28/2007] [Indexed: 11/25/2022]
Abstract
Palaeognathous birds (Struthioniformes and Tinamiformes) have morphologically conserved karyotypes and less differentiated ZW sex chromosomes. To delineate interspecific chromosome orthologies in palaeognathous birds we conducted comparative chromosome painting with chicken (Gallus gallus, GGA) chromosome 1-9 and Z chromosome paints (GGA1-9 and GGAZ) for emu, double-wattled cassowary, ostrich, greater rhea, lesser rhea and elegant crested tinamou. All six species showed the same painting patterns: each probe was hybridized to a single pair of chromosomes with the exception that the GGA4 was hybridized to the fourth largest chromosome and a single pair of microchromosomes. The GGAZ was also hybridized to the entire region of the W chromosome, indicating that extensive homology remains between the Z and W chromosomes on the molecular level. Comparative FISH mapping of four Z- and/or W-linked markers, the ACO1/IREBP, ZOV3 and CHD1 genes and the EE0.6 sequence, revealed the presence of a small deletion in the proximal region of the long arm of the W chromosome in greater rhea and lesser rhea. These results suggest that the karyotypes and sex chromosomes of palaeognathous birds are highly conserved not only morphologically, but also at the molecular level; moreover, palaeognathous birds appear to retain the ancestral lineage of avian karyotypes.
Collapse
Affiliation(s)
- Chizuko Nishida-Umehara
- Laboratory of Animal Cytogenetics, Division of Genome Dynamics, Creative Research Initiative Sousei, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Slota E, Wnuk M, Bugno M, Pienkowska-Schelling A, Schelling C, Bratus A, Kotylak Z. The mechanisms determining the nucleolar-organizing regions inactivation of domestic horse chromosomes. J Anim Breed Genet 2007; 124:163-71. [PMID: 17550359 DOI: 10.1111/j.1439-0388.2007.00642.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytogenetic investigations of the nucleolar-organizing regions (NORs) show that there is variation in the transcriptional activity of rDNA in many organisms. As a consequence, genetic polymorphism of these regions has been detected. The aim of the present study was to evaluate the hypothetic genetic mechanisms determining the NORs polymorphism of the domestic horse chromosomes. Molecular cytogenetic analyses were carried out on Hucul horses and the following techniques were used: fluorescence in situ hybridization (FISH), telomere primed in situ synthesis (PRINS), in situ nick-translation with HpaII, silver staining (AgNOR) and C-banding technique (CBG). The obtained results suggest that variation in the number and size of silver deposits is related to the number of rDNA copies, DNA methylation and the localization of ribosomal DNA loci in telomeric regions. Moreover, we have found that chromosome pairs 28 and 31 are characterized by higher variation in the NORs number.
Collapse
Affiliation(s)
- E Slota
- Department of Immuno- and Cytogenetics, National Research Institute of Animal Production, Balice n. Krakow, Poland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Comparative genomics is an important and expanding field of research, and the genome-wide comparison of the chromosome constitution of different species makes a major contribution to this field. Cross-species chromosome painting is a powerful technique for establishing chromosome homology maps, defining the sites of chromosome fusions and fissions, investigating chromosome rearrangements during evolution and constructing ancestral karyotypes. Here the protocol for cross-species chromosome painting is presented. It includes sections on cell culture and metaphase preparation, labeling of chromosome-specific DNA, fluorescent in situ hybridization (chromosome painting) and image analysis. Cell culture and metaphase preparation can take between 1 and 2 wk depending on the cell culture. Labeling of chromosome-specific DNA is completed in 1 d. Fluorescent in situ hybridization can be completed in a maximum of 4 d.
Collapse
Affiliation(s)
- Willem Rens
- Centre for Veterinary Science, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 OES, UK.
| | | | | | | |
Collapse
|
15
|
Itoh Y, Arnold AP. Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosome Res 2005; 13:47-56. [PMID: 15791411 DOI: 10.1007/s10577-005-6602-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 11/11/2004] [Accepted: 11/11/2004] [Indexed: 11/25/2022]
Abstract
The zebra finch (Taeniopygia guttata) is often studied because of its interesting behaviour and neurobiology. Genetic information on this species has been lacking, making analysis of informative mutants difficult. Here we report on an improved cytological method for preparation of metaphase chromosomes suitable for fluorescent in situ hybridization of adult birds. We found that individual chicken chromosome paints usually hybridized to single zebra finch chromosomes, indicating only minor chromosomal rearrangements since the evolutionary divergence of these two species, and suggesting that the genomic location of chicken genes will predict the location of zebra finch orthologues. Chicken chromosome 1 appears to have split into two macrochromosomes in zebra finches, and chicken chromosome 4 paint hybridizes to a zebra finch macrochromosome and a microchromosome. This pattern was confirmed by mapping the androgen receptor (AR), which is located on chicken chromosome 4 but on a zebra finch microchromosome. We detected a telocentric/submetacentric polymorphism of chromosome 6 in our colony of zebra finches, and found that the polymorphism was inherited in a Mendelian pattern.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Department of Physiological Science and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
16
|
Sazanov AA, Romanov MN, Wardecka B, Sazanova AL, Korczak M, Stekol'nikova VA, Kozyreva AA, Smirnov AF, Jaszczak K, Dodgson JB. Chromosomal localization of 15 large insert BAC clones containing three microsatellites on chicken chromosome 4 (GGA4) which refine its centromere position. Anim Genet 2005; 36:161-3. [PMID: 15771730 DOI: 10.1111/j.1365-2052.2004.01225.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A A Sazanov
- Laboratory of Molecular Genome Organization, Institute of Farm Animal Genetics and Breeding, Russian Academy of Agricultural Science, Moskovskoye shosse 55A, St Petersburg-Pushkin 196601, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rabie TSKM, Crooijmans RPMA, Morisson M, Andryszkiewicz J, van der Poel JJ, Vignal A, Groenen MAM. A radiation hybrid map of chicken Chromosome 4. Mamm Genome 2005; 15:560-9. [PMID: 15366376 DOI: 10.1007/s00335-004-2362-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mapping resolution of the physical map for chicken Chromosome 4 (GGA4) was improved by a combination of radiation hybrid (RH) mapping and bacterial artificial chromosome (BAC) mapping. The ChickRH6 hybrid panel was used to construct an RH map of GGA4. Eleven microsatellites known to be located on GGA4 were included as anchors to the genetic linkage map for this chromosome. Based on the known conserved synteny between GGA4 and human Chromosomes 4 and X, sequences were identified for the orthologous chicken genes from these human chromosomes by BLAST analysis. These sequences were subsequently used for the development of STS markers to be typed on the RH panel. Using a logarithm of the odds (LOD) threshold of 5.0, nine linkage groups could be constructed which were aligned with the genetic linkage map of this chromosome. The resulting RH map consisted of the 11 microsatellite markers and 50 genes. To further increase the number of genes on the map and to provide additional anchor points for the physical BAC map of this chromosome, BAC clones were identified for 22 microsatellites and 99 genes. The combined RH and BAC mapping approach resulted in the mapping of 61 genes on GGA4 increasing the resolution of the chicken-human comparative map for this chromosome. This enhanced comparative mapping resolution enabled the identification of multiple rearrangements between GGA4 and human Chromosomes 4q and Xp.
Collapse
Affiliation(s)
- Tarik S K M Rabie
- Wageningen Institute of Animal Sciences, Animal Breeding and Genetics Group, Wageningen University, Marijkeweg 40, 6709 PG Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
18
|
Pitel F, Abasht B, Morisson M, Crooijmans RPMA, Vignoles F, Leroux S, Feve K, Bardes S, Milan D, Lagarrigue S, Groenen MAM, Douaire M, Vignal A. A high-resolution radiation hybrid map of chicken chromosome 5 and comparison with human chromosomes. BMC Genomics 2004. [PMID: 15369602 DOI: 10.1186/1471‐2164‐5‐66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The resolution of radiation hybrid (RH) maps is intermediate between that of the genetic and BAC (Bacterial Artificial Chromosome) contig maps. Moreover, once framework RH maps of a genome have been constructed, a quick location of markers by simple PCR on the RH panel is possible. The chicken ChickRH6 panel recently produced was used here to construct a high resolution RH map of chicken GGA5. To confirm the validity of the map and to provide valuable comparative mapping information, both markers from the genetic map and a high number of ESTs (Expressed Sequence Tags) were used. Finally, this RH map was used for testing the accuracy of the chicken genome assembly for chromosome 5. RESULTS A total of 169 markers (21 microsatellites and 148 ESTs) were typed on the ChickRH6 RH panel, of which 134 were assigned to GGA5. The final map is composed of 73 framework markers extending over a 1315.6 cR distance. The remaining 61 markers were placed alongside the framework markers within confidence intervals. CONCLUSION The high resolution framework map obtained in this study has markers covering the entire chicken chromosome 5 and reveals the existence of a high number of rearrangements when compared to the human genome. Only two discrepancies were observed in relation to the sequence assembly recently reported for this chromosome.
Collapse
Affiliation(s)
- Frédérique Pitel
- Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, 31326, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pitel F, Abasht B, Morisson M, Crooijmans RPMA, Vignoles F, Leroux S, Feve K, Bardes S, Milan D, Lagarrigue S, Groenen MAM, Douaire M, Vignal A. A high-resolution radiation hybrid map of chicken chromosome 5 and comparison with human chromosomes. BMC Genomics 2004; 5:66. [PMID: 15369602 PMCID: PMC521070 DOI: 10.1186/1471-2164-5-66] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 09/15/2004] [Indexed: 11/20/2022] Open
Abstract
Background The resolution of radiation hybrid (RH) maps is intermediate between that of the genetic and BAC (Bacterial Artificial Chromosome) contig maps. Moreover, once framework RH maps of a genome have been constructed, a quick location of markers by simple PCR on the RH panel is possible. The chicken ChickRH6 panel recently produced was used here to construct a high resolution RH map of chicken GGA5. To confirm the validity of the map and to provide valuable comparative mapping information, both markers from the genetic map and a high number of ESTs (Expressed Sequence Tags) were used. Finally, this RH map was used for testing the accuracy of the chicken genome assembly for chromosome 5. Results A total of 169 markers (21 microsatellites and 148 ESTs) were typed on the ChickRH6 RH panel, of which 134 were assigned to GGA5. The final map is composed of 73 framework markers extending over a 1315.6 cR distance. The remaining 61 markers were placed alongside the framework markers within confidence intervals. Conclusion The high resolution framework map obtained in this study has markers covering the entire chicken chromosome 5 and reveals the existence of a high number of rearrangements when compared to the human genome. Only two discrepancies were observed in relation to the sequence assembly recently reported for this chromosome.
Collapse
Affiliation(s)
- Frédérique Pitel
- Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, 31326, France
| | - Behnam Abasht
- UMR Génétique Animale, INRA-ENSAR, Route de St Brieuc, Rennes, 35042, France
| | - Mireille Morisson
- Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, 31326, France
| | - Richard PMA Crooijmans
- Animal Breeding and Genetics group, Wageningen University, Wageningen, 6709 PG, The Netherlands
| | - Florence Vignoles
- Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, 31326, France
| | - Sophie Leroux
- Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, 31326, France
| | - Katia Feve
- Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, 31326, France
| | - Suzanne Bardes
- Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, 31326, France
| | - Denis Milan
- Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, 31326, France
| | - Sandrine Lagarrigue
- UMR Génétique Animale, INRA-ENSAR, Route de St Brieuc, Rennes, 35042, France
| | - Martien AM Groenen
- Animal Breeding and Genetics group, Wageningen University, Wageningen, 6709 PG, The Netherlands
| | - Madeleine Douaire
- UMR Génétique Animale, INRA-ENSAR, Route de St Brieuc, Rennes, 35042, France
| | - Alain Vignal
- Laboratoire de Génétique Cellulaire, INRA, Castanet-Tolosan, 31326, France
| |
Collapse
|
20
|
Sazanov AA, Sazanova AL, Tzareva VA, Kozyreva AA, Smirnov AF, Romanov MN, Price JA, Dodgson JB. Chromosomal localization of three GGA4 genes using BAC-based FISH mapping: a region of conserved synteny between the chicken and human genomes. Hereditas 2004; 140:250-2. [PMID: 15198716 DOI: 10.1111/j.1601-5223.2004.01824.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Alexei A Sazanov
- Laboratory of Molecular Genome Organization, Institute of Farm Animal Genetics and Breeding, Russian Academy of Agricultural Science, Moskovskoye shosse 55A, St Petersburg-Pushkin, 196601, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Buitenhuis AJ, Crooijmans RPMA, Bruijnesteijn van Coppenraet ES, Veenendaal A, Groenen MAM, van der Poel JJ. Improvement of the comparative map of chicken chromosome 13. Anim Genet 2002; 33:249-54. [PMID: 12139503 DOI: 10.1046/j.1365-2052.2002.00861.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A comparative map was made of chicken chromosome 13 (GGA13) with a part of human chromosome 5 (HSA5). Microsatellite markers specific for GGA13 were used to screen the Wageningen chicken bacterial artificial chromosome (BAC) library. Selected BAC clones were end sequenced and 57 sequence tag site (STS) markers were designed for contig building. In total, 204 BAC clones were identified which resulted in a coverage of about 20% of GGA13. Identification of genes was performed by a bi-directional approach. The first approach starting with sequencing mapped chicken BAC subclones, where sequences were used to identify orthologous genes in human and mouse by a basic local alignment search tool (BLAST) database search. The second approach started with the identification of chicken orthologues of human genes in the HSA5q23-35 region. The chicken orthologous genes were subsequently mapped by fluorescent in situ hybridisation (FISH) and/or single neucleotide polymorphism typing. The total number of genes mapped on GGA13 is increased from 14 to a total of 20 genes. Genes mapped on GGA13 have their orthologues on HSA5q23-5q35 in human and on Mmu11, Mmu13 and Mmu18 in mouse.
Collapse
Affiliation(s)
- A J Buitenhuis
- Animal Breeding & Genetics Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The NPY system has a multitude of effects and is particularly well known for its role in appetite regulation. We have found that the five presently known receptors in mammals arose very early in vertebrate evolution before the appearance of jawed vertebrates 400 million years ago. The genes Y(1), Y(2) and Y(5) arose by local duplications and are still present on the same chromosome in human and pig. Duplications of this chromosome led to the Y(1)-like genes Y(4) and y(6). We find evidence for two occasions where receptor subtypes probably arose before peptide genes were duplicated. These observations pertain to the discussion whether ligands or receptors tend to appear first in evolution. The roles of Y(1) and Y(5) in feeding may differ between species demonstrating the importance of performing functional studies in additional mammals to mouse and rat.
Collapse
Affiliation(s)
- D Larhammar
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 593, S-75124, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Chowdhary BP, Raudsepp T. Chromosome painting in farm, pet and wild animal species. METHODS IN CELL SCIENCE : AN OFFICIAL JOURNAL OF THE SOCIETY FOR IN VITRO BIOLOGY 2001; 23:37-55. [PMID: 11741143 DOI: 10.1007/978-94-010-0330-8_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
Among the advanced karyotype analysis approaches embraced by animal cytogenetics during the past decade, chromosome painting has had the greatest impact. Generation of chromosome specific paints is considered pivotal to his development. Additionally, ability to use these paints across species (referred to as Zoo-FISH or comparative painting) is undisputedly the most important breakthrough that has contributed to our ability to compare karyotypes of a wide range of evolutionarily highly diverged chromosome painting, and makes them aware of the tools/resources available to carry out this research in a variety of animal species. An overview of the current status of comparative chromosome painting results across closely as well as distantly related species is presented. Findings from different studies show how some segmental syntenies are more conserved as compared to others. The comparisons provide insight into the likely constitution of a vertebrate/mammalian ancestral karyotype and help understand some of the intricacies about karyotype evolution. Importance of comparative painting in setting the stage for rapid development of gene maps in a number of economically important species is elaborated.
Collapse
Affiliation(s)
- B P Chowdhary
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458, USA.
| | | |
Collapse
|