1
|
Badminton MN, Anderson KE, Deybach JC, Harper P, Sandberg S, Elder GH. From chemistry to genomics: A concise history of the porphyrias. Liver Int 2024; 44:2144-2155. [PMID: 38767598 DOI: 10.1111/liv.15960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
We describe developments in understanding of the porphyrias associated with each step in the haem biosynthesis pathway and the role of individuals whose contributions led to major advances over the past 150 years. The first case of erythropoietic porphyria was reported in 1870, and the first with acute porphyria in 1889. Photosensitisation by porphyrin was confirmed by Meyer-Betz, who self-injected haematoporphyrin. Günther classified porphyrias into haematoporphyria acuta, acuta toxica, congenita and chronica. This was revised by Waldenström into porphyria congenita, acuta and cutanea tarda, with the latter describing those with late-onset skin lesions. Waldenström was the first to recognise porphobilinogen's association with acute porphyria, although its structure was not solved until 1953. Hans Fischer was awarded the Nobel prize in 1930 for solving the structure of porphyrins and the synthesis of haemin. After 1945, research by several groups elucidated the pathway of haem biosynthesis and its negative feedback regulation by haem. By 1961, following the work of Watson, Schmid, Rimington, Goldberg, Dean, Magnus and others, aided by the availability of modern techniques of porphyrin separation, six of the porphyrias were identified and classified as erythropoietic or hepatic. The seventh, 5-aminolaevulinate dehydratase deficiency porphyria, was described by Doss in 1979. The discovery of increased hepatic 5-aminolaevulinate synthase activity in acute porphyria led to development of haematin as a treatment for acute attacks. By 2000, all the haem biosynthesis genes were cloned, sequenced and assigned to chromosomes and disease-specific mutations identified in all inherited porphyrias. These advances have allowed definitive family studies and development of new treatments.
Collapse
Affiliation(s)
| | - Karl E Anderson
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jean-Charles Deybach
- French Porphyria Reference Center (CRMR Porphyries France), University Paris, Paris, France
| | - Pauline Harper
- Department of Medical Biochemistry and Biophysics, Centre for inherited Metabolic Diseases, Porphyria Centre Sweden, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sverre Sandberg
- Department of Medical Biochemistry and Biophysics, Centre for inherited Metabolic Diseases, Porphyria Centre Sweden, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Pharmacology, Norwegian Porphyria Centre, Haukeland University Hospital, Bergen, Norway
- Norwegian Organization for Quality Improvement of Laboratory Examinations (Noklus), Haraldsplass Deaconess Hospital, Bergen, Norway
- Institute of Public Health and Primary Health Care, University of Bergen, Bergen, Norway
| | | |
Collapse
|
2
|
To-Figueras J, Erwin AL, Aguilera P, Millet O, Desnick RJ. Congenital erythropoietic porphyria. Liver Int 2024; 44:1842-1855. [PMID: 38717058 DOI: 10.1111/liv.15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 07/17/2024]
Abstract
Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disease due to the deficient, but not absent, activity of uroporphyrinogen III synthase (UROS), the fourth enzyme in the heme biosynthesis pathway. Biallelic variants in the UROS gene result in decreased UROS enzymatic activity and the accumulation of non-physiologic Type I porphyrins in cells and fluids. Overproduced uroporphyrins in haematopoietic cells are released into the circulation and distributed to tissues, inducing primarily hematologic and dermatologic symptoms. The clinical manifestations vary in severity ranging from non-immune hydrops fetalis in utero to mild dermatologic manifestations in adults. Here, the biochemical, molecular and clinical features of CEP as well as current and new treatment options, including the rescue of UROS enzyme activity by chaperones, are presented.
Collapse
Affiliation(s)
- Jordi To-Figueras
- Biochemistry and Molecular Genetics Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Angelika L Erwin
- Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paula Aguilera
- Dermatology Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Spain
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Mickevicius T, Holtmann C, Draganov J, Prues-Hoelscher J, Geerling G, Borrelli M. Lagophthalmos-induced corneal perforation in a patient with congenital erythropoietic porphyria. Orbit 2024; 43:392-398. [PMID: 36734461 DOI: 10.1080/01676830.2023.2169718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder in which the activity of uroporphyrinogen III synthase (UROS) is decreased. This results in the accumulation of photoreactive porphyrinogens, primarily in the skin and bone marrow. We describe a case of a patient with CEP who initially presented with scarring and shortening of the anterior and posterior lid lamella, which led to the development of lagophthalmos. Vascularized hyperkeratotic plaques in both corneas were also present. Despite treatment with topical ocular surface lubricants, corneal perforation with iris and uvea prolapse developed and evisceration of the right eye under local anesthesia was performed. The presented case suggests that despite topical therapy, ocular complications may exacerbate requiring surgical intervention, especially in the presence of lagophthalmos.
Collapse
Affiliation(s)
- Tomas Mickevicius
- Department of Ophthalmology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Christoph Holtmann
- Department of Ophthalmology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Jutta Draganov
- Department of Anesthesiology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | | | - Gerd Geerling
- Department of Ophthalmology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Maria Borrelli
- Department of Ophthalmology, University Hospital of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Takasaki K, Chou ST. GATA1 in Normal and Pathologic Megakaryopoiesis and Platelet Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:261-287. [PMID: 39017848 DOI: 10.1007/978-3-031-62731-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
GATA1 is a highly conserved hematopoietic transcription factor (TF), essential for normal erythropoiesis and megakaryopoiesis, that encodes a full-length, predominant isoform and an amino (N) terminus-truncated isoform GATA1s. It is consistently expressed throughout megakaryocyte development and interacts with its target genes either independently or in association with binding partners such as FOG1 (friend of GATA1). While the N-terminus and zinc finger have classically been demonstrated to be necessary for the normal regulation of platelet-specific genes, murine models, cell-line studies, and human case reports indicate that the carboxy-terminal activation domain and zinc finger also play key roles in precisely controlling megakaryocyte growth, proliferation, and maturation. Murine models have shown that disruptions to GATA1 increase the proliferation of immature megakaryocytes with abnormal architecture and impaired terminal differentiation into platelets. In humans, germline GATA1 mutations result in variable cytopenias, including macrothrombocytopenia with abnormal platelet aggregation and excessive bleeding tendencies, while acquired GATA1s mutations in individuals with trisomy 21 (T21) result in transient abnormal myelopoiesis (TAM) and myeloid leukemia of Down syndrome (ML-DS) arising from a megakaryocyte-erythroid progenitor (MEP). Taken together, GATA1 plays a key role in regulating megakaryocyte differentiation, maturation, and proliferative capacity. As sequencing and proteomic technologies expand, additional GATA1 mutations and regulatory mechanisms contributing to human diseases of megakaryocytes and platelets are likely to be revealed.
Collapse
Affiliation(s)
- Kaoru Takasaki
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Department of Pediatrics, Division of Hematology, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Division of Transfusion Medicine, University of Pennsylvania Perelman School of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
5
|
To-Figueras J. [Biosynthesis of heme and the porphyrias]. Med Clin (Barc) 2023; 159 Suppl 1:S1-S7. [PMID: 37827890 DOI: 10.1016/j.medcli.2023.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 10/14/2023]
Affiliation(s)
- Jordi To-Figueras
- Servicio de Bioquímica y Genética Molecular, Hospital Clínic, Universitat de Barcelona, Barcelona, España.
| |
Collapse
|
6
|
Erwin AL, Desnick RJ. Congenital erythropoietic porphyria: Recent advances. Mol Genet Metab 2019; 128:288-297. [PMID: 30685241 PMCID: PMC6597325 DOI: 10.1016/j.ymgme.2018.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by photosensitivity and by hematologic abnormalities in affected individuals. CEP is caused by mutations in the uroporphyrinogen synthase (UROS) gene. In three reported cases, CEP has been associated with a specific X-linked GATA1 mutation. Disease-causing mutations in either gene result in absent or markedly reduced UROS enzymatic activity. This in turn leads to the accumulation of the non-physiologic and photoreactive porphyrinogens, uroporphyrinogen I and coproporphyrinogen I, which damage erythrocytes and elicit a phototoxic reaction upon light exposure. The clinical spectrum of CEP depends on the level of residual UROS activity, which is determined by the underlying pathogenic loss-of-function UROS mutations. Disease severity ranges from non-immune hydrops fetalis in utero to late-onset disease with only mild cutaneous involvement. The clinical characteristics of CEP include exquisite photosensitivity to visible light resulting in bullous vesicular lesions which, when infected lead to progressive photomutilation of sun-exposed areas such as the face and hands. In addition, patients have erythrodontia (brownish discoloration of teeth) and can develop corneal scarring. Chronic transfusion-dependent hemolytic anemia is common and leads to bone marrow hyperplasia, which further increases porphyrin production. Management of CEP consists of strict avoidance of exposure to visible light with sun-protective clothing, sunglasses, and car and home window filters. Adequate care of ruptured vesicles and use of topical antibiotics is indicated to prevent superinfections and osteolysis. In patients with symptomatic hemolytic anemia, frequent erythrocyte cell transfusions may be necessary to suppress hematopoiesis and decrease marrow production of the phototoxic porphyrins. In severe transfection-dependent cases, bone marrow or hematopoietic stem cell transplantation has been performed, which is curative. Therapeutic approaches including gene therapy, proteasome inhibition, and pharmacologic chaperones are under investigation.
Collapse
Affiliation(s)
| | - Robert J. Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Address all Correspondence to: R. J. Desnick, PhD, MD, Dean for Genetic and Genomic Medicine Professor and Chairman Emeritus, Department of Genetic and Genomic Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029, Phone: (212) 659-6700 Fax: (212) 360-1809
| |
Collapse
|
7
|
Iron metabolism in erythroid cells and patients with congenital sideroblastic anemia. Int J Hematol 2017; 107:44-54. [PMID: 29139060 DOI: 10.1007/s12185-017-2368-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/08/2017] [Indexed: 01/31/2023]
Abstract
Sideroblastic anemias are anemic disorders characterized by the presence of ring sideroblasts in a patient's bone marrow. These disorders are typically divided into two types, congenital or acquired sideroblastic anemia. Recently, several genes were reported as responsible for congenital sideroblastic anemia; however, the relationship between the function of the gene products and ring sideroblasts is largely unclear. In this review article, we will focus on the iron metabolism in erythroid cells as well as in patients with congenital sideroblastic anemia.
Collapse
|
8
|
Aguilera P, Badenas C, Whatley SD, To-Figueras J. Late-onset cutaneous porphyria in a patient heterozygous for a uroporphyrinogen III synthase gene mutation. Br J Dermatol 2016; 175:1346-1350. [PMID: 27086902 DOI: 10.1111/bjd.14675] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2016] [Indexed: 11/28/2022]
Abstract
Deficiency of uroporphyrinogen III synthase (UROS) causes congenital erythropoietic porphyria (CEP). The disease, originating from the inheritance of mutations within the UROS gene, presents a recessive form of transmission. In a few patients, a late-onset CEP-like phenotype without UROS mutations appears to be associated with a myelodysplastic syndrome. We report a 60-year-old man with late-onset signs of cutaneous porphyria and accumulation in urine, plasma and faeces of type I porphyrin isomers characteristic of CEP. Analysis of DNA from peripheral leucocytes, skin and bone marrow aspirate showed that he was a heterozygous carrier of a Cys73Arg (c.217 T>C) mutation within UROS. Sequencing of cDNA from peripheral blood confirmed heterozygosity and expression of the normal allele. Measurement of UROS enzymatic activity in erythrocytes showed values ~70% of normal, indirectly indicating expression of the normal allele. Differently from other cases of late-onset uroporphyria, the patient did not present thrombocytopenia or any evidence of a myelodysplastic syndrome. Five years of clinical follow-up showed persistence of skin signs and increased excretion of porphyrins, independently of lifestyle factors or changes in medication regimes. We hypothesize acquired mosaicism (in the bone marrow) affecting the UROS gene. Thus, unstable cellular clones initiated overproduction of isomer I porphyrins leading to a CEP phenotype. This could be explained either by a clonal expansion of the porphyric (Cys73Arg) allele or by loss of function of the normal allele. Cellular turnover would facilitate release of uroporphyrins into circulation and subsequent skin lesions. This is the first case of a CEP heterozygous carrier presenting clinical manifestations.
Collapse
Affiliation(s)
- P Aguilera
- Departments of Dermatology, Biochemistry and Molecular Genetics, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - C Badenas
- Departments of Dermatology, Biochemistry and Molecular Genetics, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - S D Whatley
- Department of Medical Biochemistry and Immunology, University Hospital of Wales, Cardiff, U.K
| | - J To-Figueras
- Departments of Dermatology, Biochemistry and Molecular Genetics, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss. Sci Rep 2016; 6:29475. [PMID: 27378017 PMCID: PMC4932518 DOI: 10.1038/srep29475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss.
Collapse
|
10
|
Di Pierro E, Brancaleoni V, Granata F. Advances in understanding the pathogenesis of congenital erythropoietic porphyria. Br J Haematol 2016; 173:365-79. [PMID: 26969896 DOI: 10.1111/bjh.13978] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Congenital erythropoietic porphyria (CEP) is a rare genetic disease resulting from the remarkable deficient activity of uroporphyrinogen III synthase, the fourth enzyme of the haem biosynthetic pathway. This enzyme defect results in overproduction of the non-physiological and pathogenic porphyrin isomers, uroporphyrin I and coproporphyrin I. The predominant clinical characteristics of CEP include bullous cutaneous photosensitivity to visible light from early infancy, progressive photomutilation and chronic haemolytic anaemia. The severity of clinical manifestations is markedly heterogeneous among patients; and interdependence between disease severity and porphyrin amount in the tissues has been pointed out. A more pronounced endogenous production of porphyrins concomitant to activation of ALAS2, the first and rate-limiting of the haem synthesis enzymes in erythroid cells, has also been reported. CEP is inherited as autosomal recessive or X-linked trait due to mutations in UROS or GATA1 genes; however an involvement of other causative or modifier genes cannot be ruled out.
Collapse
Affiliation(s)
- Elena Di Pierro
- U.O. di Medicina Interna, Fondazione IRCCS Cà Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Valentina Brancaleoni
- U.O. di Medicina Interna, Fondazione IRCCS Cà Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Granata
- U.O. di Medicina Interna, Fondazione IRCCS Cà Granda - Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
11
|
Schulenburg-Brand D, Katugampola R, Anstey AV, Badminton MN. The Cutaneous Porphyrias. Dermatol Clin 2014; 32:369-84, ix. [DOI: 10.1016/j.det.2014.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Tzou WS, Chu Y, Lin TY, Hu CH, Pai TW, Liu HF, Lin HJ, Cases I, Rojas A, Sanchez M, You ZY, Hsu MW. Molecular evolution of multiple-level control of heme biosynthesis pathway in animal kingdom. PLoS One 2014; 9:e86718. [PMID: 24489775 PMCID: PMC3904948 DOI: 10.1371/journal.pone.0086718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/12/2013] [Indexed: 01/23/2023] Open
Abstract
Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5′ untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway.
Collapse
Affiliation(s)
- Wen-Shyong Tzou
- Department of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| | - Ying Chu
- Department of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Tzung-Yi Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chin-Hwa Hu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Tun-Wen Pai
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsin-Fu Liu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Han-Jia Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ildeofonso Cases
- Computational Cell Biology Group, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona, Spain
| | - Ana Rojas
- Computational Cell Biology Group, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona, Spain
| | - Mayka Sanchez
- Cancer and Iron Group, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Barcelona, Spain
| | - Zong-Ye You
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ming-Wei Hsu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
13
|
Whatley SD, Badminton MN. Role of genetic testing in the management of patients with inherited porphyria and their families. Ann Clin Biochem 2013; 50:204-16. [PMID: 23605133 DOI: 10.1177/0004563212473278] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The porphyrias are a group of mainly inherited metabolic conditions that result from partial deficiency of individual enzymes in the haem biosynthesis pathway. Clinical presentation is either with acute neurovisceral attacks, skin photosensitivity or both, and is due to overproduction of pathway intermediates. The primary diagnosis in the proband is based on biochemical testing of appropriate samples, preferably during or soon after onset of symptoms. The role of genetic testing in the autosomal dominant acute porphyrias (acute intermittent porphyria, hereditary coproporphyria and variegate porphyria) is to identify presymptomatic carriers of the family specific pathogenic mutation so that they can be counselled on how to minimize their risk of suffering an acute attack. At present the additional genetic factors that influence penetrance are not known, and all patients are treated as equally at risk. Genetic testing in the erythropoietic porphyrias (erythropoietic protoporphyria, congenital erythropoietic porphyria and X-linked dominant protoporphyria) is focused on predictive and preconceptual counselling, prenatal testing and genotype-phenotype correlation. Recent advances in analytical technology have resulted in increased sensitivity of mutation detection with success rates of greater than 90% for most of the genes. The ethical and consent issues are discussed. Current research into genetic factors that affect penetrance is likely to lead to a more refined approach to counselling for presymptomatic gene carriers.
Collapse
Affiliation(s)
- S D Whatley
- Department of Medical Biochemistry and Immunology, University Hospital of Wales and Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | | |
Collapse
|
14
|
Abstract
Heme, which is composed of iron and the small organic molecule protoporphyrin, is an essential component of hemoglobin as well as a variety of physiologically important hemoproteins. During erythropoiesis, heme synthesis is induced before, and is essential for, globin synthesis. Although all cells possess the ability to synthesize heme, there are distinct differences between regulation of the pathway in developing erythroid cells and all other types of cells. Disorders that compromise the ability of the developing red cell to synthesize heme can have profound medical implications. The biosynthetic pathway for heme and key regulatory features are reviewed herein, along with specific human genetic disorders that arise from defective heme synthesis such as X-linked sideroblastic anemia and erythropoietic protoporphyria.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
15
|
Regulation of delta-aminolevulinic acid dehydratase by krüppel-like factor 1. PLoS One 2012; 7:e46482. [PMID: 23056320 PMCID: PMC3463598 DOI: 10.1371/journal.pone.0046482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/31/2012] [Indexed: 12/18/2022] Open
Abstract
Krüppel-like factor 1(KLF1) is a hematopoietic-specific zinc finger transcription factor essential for erythroid gene expression. In concert with the transacting factor GATA1, KLF1 modulates the coordinate expression of the genes encoding the multi-enzyme heme biosynthetic pathway during erythroid differentiation. To explore the mechanisms underpinning KLF1 action at the gene loci regulating the first 3 steps in this process, we have exploited the K1-ERp erythroid cell line, in which KLF1 translocates rapidly to the nucleus in response to treatment with 4-OH-Tamoxifen (4-OHT). KLF1 acts as a differentiation-independent transcriptional co-regulator of delta-aminolevulinic acid dehydratase (Alad), but not 5-aminolevulinate synthase gene (Alas2) or porphobilinogen deaminase (Pbgd). Similar to its role at the β-globin promoter, KLF1 induces factor recruitment and chromatin changes at the Alad1b promoter in a temporally-specific manner. In contrast to these changes, we observed a distinct mechanism of histone eviction at the Alad1b promoter. Furthermore, KLF1-dependent events were not modulated by GATA1 factor promoter co-occupancy alone. These results not only enhance our understanding of erythroid-specific modulation of heme biosynthetic regulation by KLF1, but provide a model that will facilitate the elucidation of novel KLF1-dependent events at erythroid gene loci that are independent of GATA1 activity.
Collapse
|
16
|
Katugampola R, Badminton M, Finlay A, Whatley S, Woolf J, Mason N, Deybach J, Puy H, Ged C, de Verneuil H, Hanneken S, Minder E, Schneider-Yin X, Anstey A. Congenital erythropoietic porphyria: a single-observer clinical study of 29 cases. Br J Dermatol 2012; 167:901-13. [DOI: 10.1111/j.1365-2133.2012.11160.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Yang H, Zhou B, Prinz M, Siegel D. Proteomic analysis of menstrual blood. Mol Cell Proteomics 2012; 11:1024-35. [PMID: 22822186 DOI: 10.1074/mcp.m112.018390] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Menstruation is the expulsion of the endometrial lining of the uterus following a nearly month long preparation for embryo implantation and pregnancy. Increasingly, the health of the endometrium is being recognized as a critical factor in female fertility, and proteomes and transcriptomes from endometrial biopsies at different stages of the menstrual cycle have been studied for both diagnostic and therapeutic purposes (1 Kao, L. C., et al. 2003 Endocrinology 144, 2870-2881; Strowitzki, Tet al. 2006 Hum. Reprod. Update 12, 617-630; DeSouza, L., et al. 2005 Proteomics 5, 270-281). Disorders of the uterus ranging from benign to malignant tumors, as well as endometriosis, can cause abnormal menstrual bleeding and are frequently diagnosed through endometrial biopsy (Strowitzki, Tet al. 2006 Hum. Reprod. Update 12, 617-630; Ferenczy, A. 2003 Maturitas 45, 1-14). Yet the proteome of menstrual blood, an easily available noninvasive source of endometrial tissue, has yet to be examined for possible causes or diagnoses of infertility or endometrial pathology. This study employed five different methods to define the menstrual blood proteome. A total of 1061 proteins were identified, 361 were found by at least two methods and 678 were identified by at least two peptides. When the menstrual blood proteome was compared with those of circulating blood (1774 proteins) and vaginal fluid (823 proteins), 385 proteins were found unique to menstrual blood. Gene ontology analysis and evaluation of these specific menstrual blood proteins identified pathways consistent with the processes of the normal endometrial cycle. Several of the proteins unique to menstrual blood suggest that extramedullary uterine hematopoiesis or parenchymal hemoglobin synthesis may be occurring in late endometrial tissue. The establishment of a normal menstrual blood proteome is necessary for the evaluation of its usefulness as a diagnostic tool for infertility and uterine pathologies. Identification of unique menstrual blood proteins should aid the forensic community in distinguishing menstrual blood from circulating blood.
Collapse
Affiliation(s)
- Heyi Yang
- New York City Office of Chief Medical Examiner, New York, New York 10016, USA
| | | | | | | |
Collapse
|
18
|
Bedel A, Taillepierre M, Guyonnet-Duperat V, Lippert E, Dubus P, Dabernat S, Mautuit T, Cardinaud B, Pain C, Rousseau B, Lalanne M, Ged C, Duchartre Y, Richard E, de Verneuil H, Moreau-Gaudry F. Metabolic correction of congenital erythropoietic porphyria with iPSCs free of reprogramming factors. Am J Hum Genet 2012; 91:109-21. [PMID: 22795135 DOI: 10.1016/j.ajhg.2012.05.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/18/2012] [Accepted: 05/31/2012] [Indexed: 11/24/2022] Open
Abstract
Congenital erythropoietic porphyria (CEP) is due to a deficiency in the enzymatic activity of uroporphyrinogen III synthase (UROS); such a deficiency leads to porphyrin accumulation and results in skin lesions and hemolytic anemia. CEP is a candidate for retrolentivirus-mediated gene therapy, but recent reports of insertional leukemogenesis underscore the need for safer methods. The discovery of induced pluripotent stem cells (iPSCs) has opened up new horizons in gene therapy because it might overcome the difficulty of obtaining sufficient amounts of autologous hematopoietic stem cells for transplantation and the risk of genotoxicity. In this study, we isolated keratinocytes from a CEP-affected individual and generated iPSCs with two excisable lentiviral vectors. Gene correction of CEP-derived iPSCs was obtained by lentiviral transduction of a therapeutic vector containing UROS cDNA under the control of an erythroid-specific promoter shielded by insulators. One iPSC clone, free of reprogramming genes, was obtained with a single proviral integration of the therapeutic vector in a genomic safe region. Metabolic correction of erythroblasts derived from iPSC clones was demonstrated by the disappearance of fluorocytes. This study reports the feasibility of porphyria gene therapy with the use of iPSCs.
Collapse
|
19
|
Hamza I, Dailey HA. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1617-32. [PMID: 22575458 DOI: 10.1016/j.bbamcr.2012.04.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/15/2012] [Accepted: 04/19/2012] [Indexed: 12/17/2022]
Abstract
The appearance of heme, an organic ring surrounding an iron atom, in evolution forever changed the efficiency with which organisms were able to generate energy, utilize gasses and catalyze numerous reactions. Because of this, heme has become a near ubiquitous compound among living organisms. In this review we have attempted to assess the current state of heme synthesis and trafficking with a goal of identifying crucial missing information, and propose hypotheses related to trafficking that may generate discussion and research. The possibilities of spatially organized supramolecular enzyme complexes and organelle structures that facilitate efficient heme synthesis and subsequent trafficking are discussed and evaluated. Recently identified players in heme transport and trafficking are reviewed and placed in an organismal context. Additionally, older, well established data are reexamined in light of more recent studies on cellular organization and data available from newer model organisms. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
20
|
Kaneko H, Kobayashi E, Yamamoto M, Shimizu R. N- and C-terminal transactivation domains of GATA1 protein coordinate hematopoietic program. J Biol Chem 2012; 287:21439-49. [PMID: 22556427 DOI: 10.1074/jbc.m112.370437] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transcription factor GATA1 regulates the expression of a cluster of genes important for hematopoietic cell differentiation toward erythroid and megakaryocytic lineages. Three functional domains have been identified in GATA1, a transactivation domain located in the N terminus (N-TAD) and two zinc finger domains located in the middle of the molecule. Although N-TAD is known as a solitary transactivation domain for GATA1, clinical observations in Down syndrome leukemia suggest that there may be additional transactivation domains. In this study, we found in reporter co-transfection assays that transactivation activity of GATA1 was markedly reduced by deletion of the C-terminal 95 amino acids without significant attenuation of the DNA binding activity or self-association potential. We therefore generated transgenic mouse lines that expressed GATA1 lacking the C-terminal region (GATA1-ΔCT). When we crossed these transgenic mouse lines to the Gata1-deficient mouse, we found that the GATA1-ΔCT transgene rescued Gata1-deficient mice from embryonic lethality. The embryos rescued with an almost similar level of GATA1-ΔCT to endogenous GATA1 developed beyond embryonic 13.5 days, showing severe anemia with accumulation of immature erythroid cells, as was the case for the embryos rescued by endogenous levels of GATA1 lacking N-TAD (GATA1-ΔNT). Distinct sets of target genes were affected in the embryos rescued by GATA1-ΔCT and GATA1-ΔNT. We also found attenuated GATA1 function in cell cycle control of immature megakaryocytes in both lines of rescued embryos. These results thus demonstrate that GATA1 has two independent transactivation domains, N-TAD and C-TAD. Both N-TAD and C-TAD retain redundant as well as specific activities for proper hematopoiesis in vivo.
Collapse
Affiliation(s)
- Hiroshi Kaneko
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | |
Collapse
|
21
|
Clavero S, Bishop DF, Giger U, Haskins ME, Desnick RJ. Feline congenital erythropoietic porphyria: two homozygous UROS missense mutations cause the enzyme deficiency and porphyrin accumulation. Mol Med 2010; 16:381-8. [PMID: 20485863 DOI: 10.2119/molmed.2010.00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/11/2010] [Indexed: 02/02/2023] Open
Abstract
The first feline model of human congenital erythropoietic porphyria (CEP) due to deficient uroporphyrinogen III synthase (URO-synthase) activity was identified by its characteristic clinical phenotype, and confirmed by biochemical and molecular genetic studies. The proband, an adult domestic shorthair cat, had dark-red urine and brownish discolored teeth with red fluorescence under ultraviolet light. Biochemical studies demonstrated markedly increased uroporphyrinogen I in urine and plasma (2,650- and 10,700-fold greater than wild type, respectively), whereas urinary 5-aminolevulinic acid and porphobilinogen were lower than normal. Erythrocytic URO-synthase activity was <1% of mean wild-type activity, confirming the diagnosis and distinguishing it from feline phenocopies having acute intermittent porphyria. Sequencing of the affected cat's UROS gene revealed two missense mutations, c.140C>T (p.S47F) in exon 3 and c.331G>A (p.G111S) in exon 6, both of which were homozygous, presumably owing to parental consanguinity. Neither was present in 100 normal cat alleles. Prokaryotic expression and thermostability studies of the purified monomeric wild-type, p.S47F, p.G111S, and p.S47F/G111S enzymes showed that the p.S47F enzyme had 100% of wild-type specific activity but ~50% decreased thermostability, whereas the p.G111S and p.S47F/G111S enzymes had about 60% and 20% of wild-type specific activity, respectively, and both were markedly thermolabile. Molecular modeling results indicated that the less active/less stable p.G111S enzyme was further functionally impaired by a structural interaction induced by the presence of the S47F substitution. Thus, the synergistic interaction of two rare amino acid substitutions in the URO-synthase polypeptide caused the feline model of human CEP.
Collapse
Affiliation(s)
- Sonia Clavero
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
22
|
Congenital erythropoietic porphyria: a novel uroporphyrinogen III synthase branchpoint mutation reveals underlying wild-type alternatively spliced transcripts. Blood 2009; 115:1062-9. [PMID: 19965637 DOI: 10.1182/blood-2009-04-218016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Splicing mutations account for approximately 10% of lesions causing genetic diseases, but few branchpoint sequence (BPS) lesions have been reported. In 3 families with autosomal recessive congenital erythropoietic porphyria (CEP) resulting from uroporphyrinogen III synthase (URO-synthase) deficiency, sequencing the promoter, all 10 exons and the intron/exon boundaries did not detect a mutation. Northern analyses of lymphoblast mRNAs from 2 patients and reverse-transcribed polymerase chain reaction (RT-PCR) of lymphoblast mRNAs from all 3 patients revealed multiple longer transcripts involving intron 9 and low levels of wild-type message. Sequencing intron 9 RT-PCR products and genomic DNA in each case revealed homozygosity for a novel BPS mutation (c.661-31T-->G) and alternatively spliced transcripts containing 81, 246, 358, and 523 nucleotides from intron 9. RT-PCR revealed aberrant transcripts in both wild-type and CEP lymphoblasts, whereas BPS mutation reduced the wild-type transcript and enzyme activity in CEP lymphoblasts to approximately 10% and 15% of normal, respectively. Although the +81-nucleotide alternative transcript was in-frame, it only contributed approximately 0.2% of the lymphoblast URO-synthase activity. Thus, the BPS mutation markedly reduced the wild-type transcript and enzyme activity, thereby causing the disease. This is the first BPS mutation in the last intron, presumably accounting for the observed 100% intron retention without exon skipping.
Collapse
|
23
|
Iolascon A, De Falco L, Beaumont C. Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis. Haematologica 2009; 94:395-408. [PMID: 19181781 DOI: 10.3324/haematol.13619] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microcytic anemia is the most commonly encountered anemia in general medical practice. Nutritional iron deficiency and beta thalassemia trait are the primary causes in pediatrics, whereas bleeding disorders and anemia of chronic disease are common in adulthood. Microcytic hypochromic anemia can result from a defect in globin genes, in heme synthesis, in iron availability or in iron acquisition by the erythroid precursors. These microcytic anemia can be sideroblastic or not, a trait which reflects the implications of different gene abnormalities. Iron is a trace element that may act as a redox component and therefore is integral to vital biological processes that require the transfer of electrons as in oxygen transport, oxidative phosphorylation, DNA biosynthesis and xenobiotic metabolism. However, it can also be pro-oxidant and to avoid its toxicity, iron metabolism is strictly controlled and failure of these control systems could induce iron overload or iron deficient anemia. During the past few years, several new discoveries mostly arising from human patients or mouse models have highlighted the implication of iron metabolism components in hereditary microcytic anemia, from intestinal absorption to its final inclusion into heme. In this paper we will review the new information available on the iron acquisition pathway by developing erythrocytes and its regulation, and we will consider only inherited microcytosis due to heme synthesis or to iron metabolism defects. This information could be useful in the diagnosis and classification of these microcytic anemias.
Collapse
Affiliation(s)
- Achille Iolascon
- Department of Biochemistry and Medical Biotechnologies, University Federico II, Naples, Italy.
| | | | | |
Collapse
|
24
|
Vargas PD, Furuyama K, Sassa S, Shibahara S. Hypoxia decreases the expression of the two enzymes responsible for producing linear and cyclic tetrapyrroles in the heme biosynthetic pathway. FEBS J 2009; 275:5947-59. [PMID: 19021769 DOI: 10.1111/j.1742-4658.2008.06723.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heme is synthesized in all cell types in aerobic organisms. Hydroxymethylbilane synthase (HMBS) and uroporphyrinogen III synthase (UROS) catalyze two consecutive reactions in the heme biosynthetic pathway, generating the first linear and the first cyclic tetrapyrroles, respectively. Each of the HMBS and UROS genes contains the two separate promoters that generate ubiquitous and erythroid-specific mRNAs. Despite the functional significance of HMBS and UROS, regulation of their gene expression remains to be investigated. Here, we showed that hypoxia (1% O(2)) decreased the expression of ubiquitous mRNAs for HMBS and UROS by three- and twofold, respectively, in human hepatic cells (HepG2 and Hep3B), whereas the expression of ubiquitous and erythroid HMBS and UROS mRNAs remained unchanged in erythroid cells (YN-1 and K562). Unexpectedly, hypoxia did not decrease the half-life of HMBS mRNA (8.4 h under normoxia versus 9.1 h under hypoxia) or UROS mRNA (9.0 versus 10.4 h) in hepatic cells. It is therefore unlikely that a change in mRNA stability is responsible for the hypoxia-mediated decrease in the expression levels of these mRNAs. Furthermore, expression levels of HMBS and UROS mRNAs were decreased under normoxia by treatment with deferoxamine or cobalt chloride in hepatic cells, while hypoxia-inducible factor 1alpha was accumulated. Thus, the decrease in the expression of ubiquitous HMBS and UROS mRNAs is associated with accumulation of hypoxia-inducible factor 1alpha protein. In conclusion, the expression of HMBS and UROS mRNAs may be coordinately regulated, which represents a newly identified mechanism that is important for heme homeostasis.
Collapse
Affiliation(s)
- Patrick D Vargas
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Miyagi, Japan
| | | | | | | |
Collapse
|
25
|
GATA-1 binding sites in exon 1 direct erythroid-specific transcription of PPOX. Gene 2007; 409:83-91. [PMID: 18191920 DOI: 10.1016/j.gene.2007.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 10/05/2007] [Accepted: 11/24/2007] [Indexed: 11/22/2022]
Abstract
We investigated erythroid-specific expression of the human PPOX gene. This gene encodes protoporphyrinogen oxidase, which is involved in synthesizing heme for red blood cells and heme as a cofactor for the respiratory cytochromes. In vitro luciferase transfection assays in human uninduced and hemin induced erythroleukemic K562 cells showed that the presence of exon 1 increased promoter activity fourfold as compared to reporter constructs lacking this exon. This transcriptional regulation was mediated by two GATA-1 sites in exon 1. Electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that both GATA sites were able to bind GATA-1 in vitro and in vivo. Exon 1 did not affect promoter activity in human hepatoma HepG2 cells and U937 monocytic cells but its presence decreased promoter activity in HeLa human cervical carcinoma cells. We conclude that the GATA-1 binding sites in exon 1 constitute key regulatory elements in differential expression of PPOX in erythroid and non-erythroid cells.
Collapse
|
26
|
Cunha L, Kuti M, Bishop DF, Mezei M, Zeng L, Zhou MM, Desnick RJ. Human uroporphyrinogen III synthase: NMR-based mapping of the active site. Proteins 2007; 71:855-73. [DOI: 10.1002/prot.21755] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Hanaoka R, Dawid IB, Kawahara A. Cloning and expression of zebrafish genes encoding the heme synthesis enzymes uroporphyrinogen III synthase (UROS) and protoporphyrinogen oxidase (PPO). ACTA ACUST UNITED AC 2007; 18:54-60. [PMID: 17364814 DOI: 10.1080/10425170601060848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Heme is synthesized from glycine and succinyl CoA by eight heme synthesis enzymes. Although genetic defects in any of these enzymes are known to cause severe human blood diseases, their developmental expression in mammals is unknown. In this paper, we report two zebrafish heme synthesis enzymes, uroporphyrinogen III synthase (UROS) and protoporphyrinogen oxidase (PPO) that are well conserved in comparison to their human counterparts. Both UROS and PPO formed pairs of bilateral stripes in the lateral plate mesoderm at the 15-somite stage. At 24 h post-fertilization (hpf), UROS and PPO were predominantly expressed in the intermediate cell mass (ICM) that is the major site of primitive hematopoiesis. The expression of UROS and PPO was drastically suppressed in the bloodless mutants cloche and vlad tepes/gata 1 from 15-somite to 24hpf stages, indicating that both cloche and vlad tepes/gata 1 are required for the induction and maintenance of UROS and PPO expression in the ICM.
Collapse
Affiliation(s)
- Ryuki Hanaoka
- Laboratory of Developmental Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-Ku, Kyoto, Japan
| | | | | |
Collapse
|
28
|
Phillips JD, Steensma DP, Pulsipher MA, Spangrude GJ, Kushner JP. Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood 2007; 109:2618-21. [PMID: 17148589 PMCID: PMC1852202 DOI: 10.1182/blood-2006-06-022848] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 10/31/2006] [Indexed: 11/20/2022] Open
Abstract
Congenital erythropoietic porphyria (CEP), an autosomal recessive disorder, is due to mutations of uroporphyrinogen III synthase (UROS). Deficiency of UROS results in excess uroporphyrin I, which causes photosensitization. We evaluated a 3-year-old boy with CEP. A hypochromic, microcytic anemia was present from birth, and platelet counts averaged 70 x 10(9)/L (70,000/microL). Erythrocyte UROS activity was 21% of controls. Red cell morphology and globin chain labeling studies were compatible with beta-thalassemia. Hb electrophoresis revealed 36.3% A, 2.4% A(2), 59.5% F, and 1.8% of an unidentified peak. No UROS or alpha- and beta-globin mutations were found in the child or the parents. The molecular basis of the phenotype proved to be a mutation of GATA1, an X-linked transcription factor common to globin genes and heme biosynthetic enzymes in erythrocytes. A mutation at codon 216 in the child and on one allele of his mother changed arginine to tryptophan (R216W). This is the first report of a human porphyria due to a mutation in a trans-acting factor and the first association of CEP with thalassemia and thrombocytopenia. The Hb F level of 59.5% suggests a role for GATA-1 in globin switching. A bone marrow allograft corrected both the porphyria and the thalassemia.
Collapse
Affiliation(s)
- John D Phillips
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | | | | | | | |
Collapse
|
29
|
Funnell APW, Maloney CA, Thompson LJ, Keys J, Tallack M, Perkins AC, Crossley M. Erythroid Krüppel-like factor directly activates the basic Krüppel-like factor gene in erythroid cells. Mol Cell Biol 2007; 27:2777-90. [PMID: 17283065 PMCID: PMC1899893 DOI: 10.1128/mcb.01658-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Sp/Krüppel-like factor (Sp/Klf) family is comprised of around 25 zinc finger transcription factors that recognize CACCC boxes and GC-rich elements. We have investigated basic Krüppel-like factor (Bklf/Klf3) and show that in erythroid tissues its expression is highly dependent on another family member, erythroid Krüppel-like factor (Eklf/Klf1). We observe that Bklf mRNA is significantly reduced in erythroid tissues from Eklf-null murine embryos. We find that Bklf is driven primarily by two promoters, a ubiquitously active GC-rich upstream promoter, 1a, and an erythroid downstream promoter, 1b. Transcripts from the two promoters encode identical proteins. Interestingly, both the ubiquitous and the erythroid promoter are dependent on Eklf in erythroid cells. Eklf also activates both promoters in transient assays. Experiments utilizing an inducible form of Eklf demonstrate activation of the endogenous Bklf gene in the presence of an inhibitor of protein synthesis. The kinetics of activation are also consistent with Bklf being a direct Eklf target. Chromatin immunoprecipitation assays confirm that Eklf associates with both Bklf promoters. Eklf is typically an activator of transcription, whereas Bklf is noted as a repressor. Our results support the hypothesis that feedback cross-regulation occurs within the Sp/Klf family in vivo.
Collapse
Affiliation(s)
- Alister P W Funnell
- School of Molecular and Microbial Biosciences, G08, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Ajioka RS, Phillips JD, Kushner JP. Biosynthesis of heme in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:723-36. [PMID: 16839620 DOI: 10.1016/j.bbamcr.2006.05.005] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 11/30/2022]
Abstract
Most iron in mammalian systems is routed to mitochondria to serve as a substrate for ferrochelatase. Ferrochelatase inserts iron into protoporphyrin IX to form heme which is incorporated into hemoglobin and cytochromes, the dominant hemoproteins in mammals. Tissue-specific regulatory features characterize the heme biosynthetic pathway. In erythroid cells, regulation is mediated by erythroid-specific transcription factors and the availability of iron as Fe/S clusters. In non-erythroid cells the pathway is regulated by heme-mediated feedback inhibition. All of the enzymes in the heme biosynthetic pathway have been crystallized and the crystal structures have permitted detailed analyses of enzyme mechanisms. All of the genes encoding the heme biosynthetic enzymes have been cloned and mutations of these genes are responsible for a group of human disorders designated the porphyrias and for X-linked sideroblastic anemia. The biochemistry, structural biology and the mechanisms of tissue-specific regulation are presented in this review along with the key features of the porphyric disorders.
Collapse
Affiliation(s)
- Richard S Ajioka
- Department of Internal Medicine, Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
31
|
Bishop DF, Johansson A, Phelps R, Shady AA, Ramirez MCM, Yasuda M, Caro A, Desnick RJ. Uroporphyrinogen III synthase knock-in mice have the human congenital erythropoietic porphyria phenotype, including the characteristic light-induced cutaneous lesions. Am J Hum Genet 2006; 78:645-58. [PMID: 16532394 PMCID: PMC1424695 DOI: 10.1086/502667] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 01/25/2006] [Indexed: 11/03/2022] Open
Abstract
Congenital erythropoietic porphyria (CEP), an autosomal recessive inborn error, results from the deficient but not absent activity of uroporphyrinogen III synthase (URO-synthase), the fourth enzyme in the heme biosynthetic pathway. The major clinical manifestations include severe anemia, erythrodontia, and disfiguring cutaneous involvement due to the accumulation of phototoxic porphyrin I isomers. Murine models of CEP could facilitate studies of disease pathogenesis and the evaluation of therapeutic endeavors. However, URO-synthase null mice were early embryonic lethals. Therefore, knock-in mice were generated with three missense mutations, C73R, V99A, and V99L, which had in vitro-expressed activities of 0.24%, 5.9%, and 14.8% of expressed wild-type activity, respectively. Homozygous mice for all three mutations were fetal lethals, except for mice homozygous for a spontaneous recombinant allele, V99A(T)/V99A(T), a head-to-tail concatemer of three V99A targeting constructs. Although V99A(T)/V99A(T) and C73R/V99A(T) mice had approximately 2% hepatic URO-synthase activity and normal hepatic microsomal heme and hemoprotein levels, they had 20% and 13% of wild-type activity in erythrocytes, respectively, which indicates that sufficient erythroid URO-synthase was present for fetal development and survival. Both murine genotypes showed marked porphyrin I isomer accumulation in erythrocytes, bone, tissues, and excreta and had fluorescent erythrodontia, hemolytic anemia with reticulocytosis and extramedullary erythropoiesis, and, notably, the characteristic light-induced cutaneous involvement. These mice provide insight into why CEP is an erythroid porphyria, and they should facilitate studies of the disease pathogenesis and therapeutic endeavors for CEP.
Collapse
Affiliation(s)
- David F Bishop
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ged C, Mendez M, Robert E, Lalanne M, Lamrissi-Garcia I, Costet P, Daniel JY, Dubus P, Mazurier F, Moreau-Gaudry F, de Verneuil H. A knock-in mouse model of congenital erythropoietic porphyria. Genomics 2005; 87:84-92. [PMID: 16314073 DOI: 10.1016/j.ygeno.2005.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 08/09/2005] [Accepted: 08/27/2005] [Indexed: 11/19/2022]
Abstract
Congenital erythropoietic porphyria (CEP) is a recessive autosomal disorder characterized by a deficiency in uroporphyrinogen III synthase (UROS), the fourth enzyme of the heme biosynthetic pathway. The severity of the disease, the lack of specific treatment except for allogeneic bone marrow transplantation, and the knowledge of the molecular lesions are strong arguments for gene therapy. An animal model of CEP has been designed to evaluate the feasibility of retroviral gene transfer in hematopoietic stem cells. We have previously demonstrated that the knockout of the Uros gene is lethal in mice (Uros(del) model). This work describes the achievement of a knock-in model, which reproduces a mutation of the UROS gene responsible for a severe UROS deficiency in humans (P248Q missense mutant). Homozygous mice display erythrodontia, moderate photosensitivity, hepatosplenomegaly, and hemolytic anemia. Uroporphyrin (99% type I isomer) accumulates in urine. Total porphyrins are increased in erythrocytes and feces, while Uros enzymatic activity is below 1% of the normal level in the different tissues analyzed. These pathological findings closely mimic the CEP disease in humans and demonstrate that the Uros(mut248) mouse represents a suitable model of the human disease for pathophysiological, pharmaceutical, and therapeutic purposes.
Collapse
Affiliation(s)
- C Ged
- INSERM E217, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tan JS, Mohandas N, Conboy JG. High frequency of alternative first exons in erythroid genes suggests a critical role in regulating gene function. Blood 2005; 107:2557-61. [PMID: 16293607 PMCID: PMC1895744 DOI: 10.1182/blood-2005-07-2957] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human genome uses alternative pre-mRNA splicing as an important mechanism to encode a complex proteome from a relatively small number of genes. An unknown number of these genes also possess multiple transcriptional promoters and alternative first exons that contribute another layer of complexity to gene expression mechanisms. Using a collection of more than 100 erythroid-expressed genes as a test group, we used genome browser tools and genetic databases to assess the frequency of alternative first exons in the genome. Remarkably, 35% of these erythroid genes show evidence of alternative first exons. The majority of the candidate first exons are situated upstream of the coding exons, whereas a few are located internally within the gene. Computational analyses predict transcriptional promoters closely associated with many of the candidate first exons, supporting their authenticity. Importantly, the frequent presence of consensus translation initiation sites among the alternative first exons suggests that many proteins have alternative N-terminal structures whose expression can be coupled to promoter choice. These findings indicate that alternative promoters and first exons are more widespread in the human genome than previously appreciated and that they may play a major role in regulating expression of selected protein isoforms in a tissue-specific manner.
Collapse
Affiliation(s)
- Jeff S Tan
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | |
Collapse
|
34
|
Nezamzadeh R, Seubert A, Pohlenz J, Brenig B. Identification of a mutation in the ovine uroporphyrinogen decarboxylase (UROD) gene associated with a type of porphyria. Anim Genet 2005; 36:297-302. [PMID: 16026339 DOI: 10.1111/j.1365-2052.2005.01301.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porphyria is a group of at least eight diseases caused by abnormalities in the chemical steps that lead to haeme production. The different types of porphyria show different signs and symptoms and can be strongly influenced by environmental factors. Mutations of the uroporphyrinogen decarboxylase (UROD) gene have been shown to be causative for porphyria cutanea tarda (PCT) in humans. Porphyria is a rare disorder in livestock. Although disorders of haeme biosynthesis have been described in cattle, pigs, sheep and cats, PCT has only been reported in pigs. We observed typical signs of porphyria (photosensitivity and porphyrinuria) in a flock of German Blackface sheep and postulated that the porphyria could be caused by a mutation in the UROD gene. To investigate this, we cloned and sequenced the ovine UROD gene. We identified a single point mutation (C --> T) in UROD which leads to an amino acid substitution at Leu 131 Pro, which is located within the active cleft site of the UROD protein.
Collapse
Affiliation(s)
- R Nezamzadeh
- Institute of Veterinary Medicine, University of Göttingen,Göttingen, Germany
| | | | | | | |
Collapse
|
35
|
Landry JR, Mager DL, Wilhelm BT. Complex controls: the role of alternative promoters in mammalian genomes. Trends Genet 2003; 19:640-8. [PMID: 14585616 DOI: 10.1016/j.tig.2003.09.014] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Josette-Renée Landry
- Terry Fox Laboratory, British Columbia Cancer Agency and Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z IL3, Canada
| | | | | |
Collapse
|
36
|
Géronimi F, Richard E, Lamrissi-Garcia I, Lalanne M, Ged C, Redonnet-Vernhet I, Moreau-Gaudry F, de Verneuil H. Lentivirus-mediated gene transfer of uroporphyrinogen III synthase fully corrects the porphyric phenotype in human cells. J Mol Med (Berl) 2003; 81:310-20. [PMID: 12721665 DOI: 10.1007/s00109-003-0438-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 03/14/2003] [Indexed: 11/25/2022]
Abstract
Congenital erythropoietic porphyria (CEP) is an inherited disease due to a deficiency in the uroporphyrinogen III synthase, the fourth enzyme of the heme biosynthesis pathway. It is characterized by accumulation of uroporphyrin I in the bone marrow, peripheral blood and other organs. The prognosis of CEP is poor, with death often occurring early in adult life. For severe transfusion-dependent cases, when allogeneic cell transplantation cannot be performed, the autografting of genetically modified primitive/stem cells may be the only alternative. In vitro gene transfer experiments have documented the feasibility of gene therapy via hematopoietic cells to treat this disease. In the present study lentiviral transduction of porphyric cell lines and primary CD34(+) cells with the therapeutic human uroporphyrinogen III synthase (UROS) cDNA resulted in both enzymatic and metabolic correction, as demonstrated by the increase in UROS activity and the suppression of porphyrin accumulation in transduced cells. Very high gene transfer efficiency (up to 90%) was achieved in both cell lines and CD34(+) cells without any selection. Expression of the transgene remained stable over long-term liquid culture. Furthermore, gene expression was maintained during in vitro erythroid differentiation of CD34(+) cells. Therefore the use of lentiviral vectors is promising for the future treatment of CEP patients by gene therapy.
Collapse
Affiliation(s)
- F Géronimi
- INSERM E 0217, Université Victor Segalen, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Narayanan K, Warburton PE. DNA modification and functional delivery into human cells using Escherichia coli DH10B. Nucleic Acids Res 2003; 31:e51. [PMID: 12711696 PMCID: PMC154239 DOI: 10.1093/nar/gng051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The availability of almost the complete human genome as cloned BAC libraries represents a valuable resource for functional genomic analysis, which, however, has been somewhat limited by the ability to modify and transfer this DNA into mammalian cells intact. Here we report a novel comprehensive Escherichia coli-based vector system for the modification, propagation and delivery of large human genomic BAC clones into mammalian cells. The GET recombination inducible homologous recombination system was used in the BAC host strain E.coli DH10B to precisely insert an EGFPneo cassette into the vector portion of a approximately 200 kb human BAC clone, providing a relatively simple method to directly convert available BAC clones into suitable vectors for mammalian cells. GET recombination was also used for the targeted deletion of the asd gene from the E.coli chromosome, resulting in defective cell wall synthesis and diaminopimelic acid auxotrophy. Transfer of the Yersinia pseudotuberculosis invasin gene into E.coli DH10B asd(-) rendered it competent to invade HeLa cells and deliver DNA, as judged by transient expression of green fluorescent protein and stable neomycin-resistant colonies. The efficiency of DNA transfer and survival of HeLa cells has been optimized for incubation time and multiplicity of infection of invasive E.coli with HeLa cells. This combination of E.coli-based homologous recombination and invasion technologies using BAC host strain E.coli DH10B will greatly improve the utility of the available BAC libraries from the human and other genomes for gene expression and functional genomic studies.
Collapse
Affiliation(s)
- Kumaran Narayanan
- Department of Human Genetics, Box 1498, Mount Sinai School of Medicine, 1425 Madison Avenue, East Building 14-52A, New York, NY 10029, USA
| | | |
Collapse
|
38
|
Abstract
Human BCCIPalpha (Tok-1alpha) is a BRCA2 and CDKN1A (Cip1, p21) interacting protein. Our previous studies have showed that overexpression of BCCIPalpha inhibits the growth of certain tumor cells [Oncogene 20 (2001) 336]. In this study, we report the genomic structure of the human BCCIP gene, which contains nine exons. Alternative splicing of the 3'-terminal exons produces two isoforms of BCCIP transcripts, BCCIPalpha and BCCIPbeta. The BCCIP gene is flanked by two genes that are transcribed in the opposite orientation of the BCCIP gene. It lies head-to-head and shares a bi-directional promoter with the uroporphyrinogen III synthase (UROS) gene. The last three exons of BCCIP gene overlap the 3'-terminal seven exons of a DEAD/H helicase-like gene (DDX32). Using a matched normal/tumor cDNA array, we identified a reduced expression of BCCIP in kidney tumor, suggesting a role of BCCIP in cancer etiology.
Collapse
Affiliation(s)
- Xiangbing Meng
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
39
|
Shady AA, Colby BR, Cunha LF, Astrin KH, Bishop DF, Desnick RJ. Congenital erythropoietic porphyria: identification and expression of eight novel mutations in the uroporphyrinogen III synthase gene. Br J Haematol 2002; 117:980-7. [PMID: 12060141 DOI: 10.1046/j.1365-2141.2002.03558.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the uroporphyrinogen III synthase (URO-synthase) gene cause congenital erythropoietic porphyria (CEP), an autosomal recessive inborn error of haem biosynthesis. Molecular analysis of the URO-synthase gene in seven unrelated CEP patients revealed eight novel mutations. These included four missense mutations (A69T, E81D, G188W and I219S), a deletion (21delG), two insertions (398insG and 672ins28) and one complex mutation (627del6ins39), as well as three previously reported mutations, C73R, T228M, and -86C-->A. When the four novel missense mutations were expressed in Escherichia coli, only E81D expressed significant enzymatic activity (30% of expressed wild-type activity), which was thermolabile. In addition, reverse transcription polymerase chain reaction studies demonstrated that E81D, which altered the penultimate nucleotide in exon 4, impaired splicing and caused about 85% exon 4 skipping. The identification and expression of these mutations provided genotype-phenotype correlations and further evidence of the molecular heterogeneity underlying this erythropoietic porphyria.
Collapse
Affiliation(s)
- Amr A Shady
- Department of Human Genetics, Mount Sinai School of Medicine, New York University, Fifth Avenue at 100th Street, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Robert J Desnick
- Department of Human Genetics, Mount Sinai School of Medicine, Box 1498, New York University, Fifth Avenue and 100th Street, New York, NY 10029, USA.
| | | |
Collapse
|
41
|
Li D, Bachinski LL, Roberts R. Genomic organization and isoform-specific tissue expression of human NAPOR (CUGBP2) as a candidate gene for familial arrhythmogenic right ventricular dysplasia. Genomics 2001; 74:396-401. [PMID: 11414768 DOI: 10.1006/geno.2001.6558] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuroblastoma apoptosis-related RNA-binding protein (NAPOR; HGMW-approved symbol CUGBP2) is a newly discovered gene prominently induced during apoptosis, suggesting that it plays a role during apoptosis. We have found that it is encoded by a gene located on chromosome 10p13-p14 between Généthon markers D10S547 and D10S223, a region to which we have recently localized a gene responsible for arrhythmogenic right ventricular dysplasia (ARVD). To examine its possible role in the pathogenesis of ARVD, we determined the genomic organization of the human NAPOR gene including its exon-intron boundaries and the putative promoter sequence, which provide a plausible mechanism for its alternative mRNA splicing. We also demonstrated that three isoforms of the NAPOR transcript were differently expressed, with NAPOR-3 being nearly neuron specific while the other two forms were ubiquitously expressed. The expression of NAPOR is differentially regulated during development. Finally, we screened the members of the ARVD family for mutations and identified two DNA sequence variants in the protein-coding exons of NAPOR, neither of which was responsible for ARVD. While the function of NAPOR remains to be elucidated, our current characterization of the NAPOR gene will be valuable for further clinical and functional study.
Collapse
Affiliation(s)
- D Li
- Department of Medicine/Cardiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
42
|
Solis C, Aizencang GI, Astrin KH, Bishop DF, Desnick RJ. Uroporphyrinogen III synthase erythroid promoter mutations in adjacent GATA1 and CP2 elements cause congenital erythropoietic porphyria. J Clin Invest 2001; 107:753-62. [PMID: 11254675 PMCID: PMC208941 DOI: 10.1172/jci10642] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Congenital erythropoietic porphyria, an autosomal recessive inborn error of heme biosynthesis, results from the markedly deficient activity of uroporphyrinogen III synthase. Extensive mutation analyses of 40 unrelated patients only identified approximately 90% of mutant alleles. Sequencing the recently discovered erythroid-specific promoter in six patients with a single undefined allele identified four novel mutations clustered in a 20-bp region: (a) a -70T to C transition in a putative GATA-1 consensus binding element, (b) a -76G to A transition, (c) a -86C to A transversion in three unrelated patients, and (d) a -90C to A transversion in a putative CP2 binding motif. Also, a -224T to C polymorphism was present in approximately 4% of 200 unrelated Caucasian alleles. We inserted these mutant sequences into luciferase reporter constructs. When transfected into K562 erythroid cells, these constructs yielded 3 +/- 1, 54 +/- 3, 43 +/- 6, and 8 +/- 1%, respectively, of the reporter activity conferred by the wild-type promoter. Electrophoretic mobility shift assays indicated that the -70C mutation altered GATA1 binding, whereas the adjacent -76A mutation did not. Similarly, the -90C mutation altered CP2 binding, whereas the -86A mutation did not. Thus, these four pathogenic erythroid promoter mutations impaired erythroid-specific transcription, caused CEP, and identified functionally important GATA1 and CP2 transcriptional binding elements for erythroid-specific heme biosynthesis.
Collapse
Affiliation(s)
- C Solis
- Department of Human Genetics, Mount Sinai School of Medicine, Fifth Avenue at 100th Street, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|