1
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Le T Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Denis O Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Khan A, Hussain S, Iyer JK, Kaul A, Bonnewitz M, Kaul R. Human papillomavirus-mediated expression of complement regulatory proteins in human cervical cancer cells. Eur J Obstet Gynecol Reprod Biol 2023; 288:222-228. [PMID: 37572452 DOI: 10.1016/j.ejogrb.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
OBJECTIVES This study aimed to evaluate the expression pattern of complement regulatory proteins (CRPs) CD46, CD59, and CD55 in HPV-positive (HPV+) & negative (HPV-) cervical cancer cell lines in search of a reliable differential biomarker. STUDY DESIGN We analysed the expression of CRPs in HPV 16-positive SiHa cell line, HPV 18-positive HeLa cell line, and HPV-negative cell line C33a using RT-qPCR, Western blotting, flow cytometry, and confocal microscopy. RESULTS We observed a differential expression profile of CRPs in HPV+ and HPV- cervical cancer cell lines. The mRNA level of CD59 & CD55 showed a higher expression pattern in HPV+ cells when compared to HPV- cancer cells. However, flow cytometry-based experiments revealed that CD46 was preferentially expressed more in HPV 16-positive SiHa cells followed by HPV 18-positive HeLa cells when compared to HPV- C33a cells. Interestingly, confocal microscopy revealed a high level of CD59 expression in Hela cells and SiHa cells but low expression in HPV- C33a cells. In addition, HPV 18-positive HeLa cells expressed more CD55, which was lower in SiHa cells and very weak in C33a cells. CONCLUSION The study demonstrates the differential expression of CRPs in both HPV+ and HPV- cervical cancer cells for the first time, and their potential to serve as an early diagnostic marker for cervical carcinogenesis.
Collapse
Affiliation(s)
- Asiya Khan
- Dr. Babasaheb R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India; Amity Institute of Biotechnology, Amity University, Noida 201303, India
| | - Showket Hussain
- Division of Molecular Oncology & Molecular Diagnostics, Indian Council of Medical Research-National Institute of Cancer Prevention and Research, Noida 201301, India
| | - Janaki K Iyer
- Department of Biochemistry and Microbiology, Oklahoma State University Centre for Health Sciences, 1111 West 17(th) Street, Tulsa, OK 74107, USA; Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014, USA
| | - Anil Kaul
- Health Care Administration, Oklahoma State University Centre for Health Sciences, Tulsa, OK 74107, USA
| | - Mackenzie Bonnewitz
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014, USA
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University Centre for Health Sciences, 1111 West 17(th) Street, Tulsa, OK 74107, USA.
| |
Collapse
|
3
|
Bharti R, Dey G, Lin F, Lathia J, Reizes O. CD55 in cancer: Complementing functions in a non-canonical manner. Cancer Lett 2022; 551:215935. [PMID: 36216147 PMCID: PMC11019835 DOI: 10.1016/j.canlet.2022.215935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022]
Abstract
CD55, or decay accelerating factor, is a membrane lipid microdomain-associated, GPI-anchored protein implicated in the shielding of cells from complement-mediated attack via accelerating decay of C3 and C5. Loss of CD55 is associated with a number of pathologies due to hyperactivation of the complement system. CD55 is also implicated in cancer progression thought to be driven via its role in cell shielding mechanisms. We now appreciate that CD55 can signal intracellularly to promote malignant transformation, cancer progression, cell survival, angiogenesis, and inhibition of apoptosis. Outside-in signaling via CD55 is mediated by signaling pathways including JNK, JAK/STAT, MAPK/NF-κB, and LCK. Moreover, CD55 is enriched in the cancer stem cell (CSC) niche of multiple tumors including breast, ovarian, cervical, and can be induced by chemotherapeutics and hypoxic environments. CSCs are implicated in tumor recurrence and chemoresistance. Here, we review the unexpected roles of CD55 in cancer including the roles of canonical and noncanonical pathways that CD55 orchestrates. We will highlight opportunities for therapeutic targeting CD55 and gaps in the field that require more in-depth mechanistic insights.
Collapse
Affiliation(s)
- Rashmi Bharti
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Goutam Dey
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Feng Lin
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
4
|
Senent Y, Ajona D, González-Martín A, Pio R, Tavira B. The Complement System in Ovarian Cancer: An Underexplored Old Path. Cancers (Basel) 2021; 13:3806. [PMID: 34359708 PMCID: PMC8345190 DOI: 10.3390/cancers13153806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers. Current therapeutic strategies allow temporary control of the disease, but most patients develop resistance to treatment. Moreover, although successful in a range of solid tumors, immunotherapy has yielded only modest results in ovarian cancer. Emerging evidence underscores the relevance of the components of innate and adaptive immunity in ovarian cancer progression and response to treatment. Particularly, over the last decade, the complement system, a pillar of innate immunity, has emerged as a major regulator of the tumor microenvironment in cancer immunity. Tumor-associated complement activation may support chronic inflammation, promote an immunosuppressive microenvironment, induce angiogenesis, and activate cancer-related signaling pathways. Recent insights suggest an important role of complement effectors, such as C1q or anaphylatoxins C3a and C5a, and their receptors C3aR and C5aR1 in ovarian cancer progression. Nevertheless, the implication of these factors in different clinical contexts is still poorly understood. Detailed knowledge of the interplay between ovarian cancer cells and complement is required to develop new immunotherapy combinations and biomarkers. In this context, we discuss the possibility of targeting complement to overcome some of the hurdles encountered in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yaiza Senent
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
| | - Daniel Ajona
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Antonio González-Martín
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Oncology, Clinica Universidad de Navarra, 28027 Madrid, Spain
| | - Ruben Pio
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Beatriz Tavira
- Translational Oncology Group, Program in Solid Tumors, Cima University of Navarra, 31008 Pamplona, Spain; (Y.S.); (A.G.-M.); (R.P.); (B.T.)
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
5
|
Zhu H, Yu X, Zhang S, Shu K. Targeting the Complement Pathway in Malignant Glioma Microenvironments. Front Cell Dev Biol 2021; 9:657472. [PMID: 33869223 PMCID: PMC8047198 DOI: 10.3389/fcell.2021.657472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant glioma is a highly fatal type of brain tumor, and its reoccurrence is largely due to the ordered interactions among the components present in the complex microenvironment. Besides its role in immune surveillance and clearance under physiological conditions, the complement system is expressed in a variety of tumor types and mediates the interactions within the tumor microenvironments. Recent studies have uncovered the broad expression spectrum of complement signaling molecules in the tumor microenvironment and various tumor cells, in particular, malignant glioma cells. Involvement of the complement system in tumor growth, immunosuppression and phenotype transition have also been elucidated. In this review, we enumerate the expression and function of complement molecules in multiple tumor types reported. Moreover, we elaborate the complement pathways in glioma cells and various components of malignant glioma microenvironments. Finally, we summarize the possibility of the complement molecules as prognostic factors and therapeutic targets in the treatment of malignant glioma. Specific targeting of the complement system maybe of great significance and value in the future treatment of multi-type tumors including malignant glioma.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
O’Brien RM, Cannon A, Reynolds JV, Lysaght J, Lynam-Lennon N. Complement in Tumourigenesis and the Response to Cancer Therapy. Cancers (Basel) 2021; 13:1209. [PMID: 33802004 PMCID: PMC7998562 DOI: 10.3390/cancers13061209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, our knowledge of the complement system beyond innate immunity has progressed significantly. A modern understanding is that the complement system has a multifaceted role in malignancy, impacting carcinogenesis, the acquisition of a metastatic phenotype and response to therapies. The ability of local immune cells to produce and respond to complement components has provided valuable insights into their regulation, and the subsequent remodeling of the tumour microenvironment. These novel discoveries have advanced our understanding of the immunosuppressive mechanisms supporting tumour growth and uncovered potential therapeutic targets. This review discusses the current understanding of complement in cancer, outlining both direct and immune cell-mediated roles. The role of complement in response to therapies such as chemotherapy, radiation and immunotherapy is also presented. While complement activities are largely context and cancer type-dependent, it is evident that promising therapeutic avenues have been identified, in particular in combination therapies.
Collapse
Affiliation(s)
- Rebecca M. O’Brien
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Aoife Cannon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - John V. Reynolds
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| | - Joanne Lysaght
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
- Cancer Immunology and Immunotherapy Group, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity St. James’s Cancer Institute, Trinity Translational Medicine Institute, Trinity College Dublin and St. James’s Hospital, Dublin 8, Ireland; (R.M.O.); (A.C.); (J.V.R.); (J.L.)
| |
Collapse
|
7
|
Oncolytic virotherapy: Challenges and solutions. Curr Probl Cancer 2021; 45:100639. [DOI: 10.1016/j.currproblcancer.2020.100639] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
|
8
|
Thurman JM, Laskowski J, Nemenoff RA. Complement and Cancer-A Dysfunctional Relationship? Antibodies (Basel) 2020; 9:antib9040061. [PMID: 33167384 PMCID: PMC7709115 DOI: 10.3390/antib9040061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/08/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Although it was long believed that the complement system helps the body to identify and remove transformed cells, it is now clear that complement activation contributes to carcinogenesis and can also help tumors to escape immune-elimination. Complement is activated by several different mechanisms in various types of cancer, and complement activation fragments have multiple different downstream effects on cancer cells and throughout the tumor microenvironment. Thus, the role of complement activation in tumor biology may vary among different types of cancer and over time within a single tumor. In multiple different pre-clinical models, however, complement activation has been shown to recruit immunosuppressive myeloid cells into the tumor microenvironment. These cells, in turn, suppress anti-tumor T cell immunity, enabling the tumor to grow. Based on extensive pre-clinical work, therapeutic complement inhibitors hold great promise as a new class of immunotherapy. A greater understanding of the role of complement in tumor biology will improve our ability to identify those patients most likely to benefit from this treatment and to rationally combine complement inhibitors with other cancer therapies.
Collapse
|
9
|
Sathe G, George IA, Deb B, Jain AP, Patel K, Nayak B, Karmakar S, Seth A, Pandey A, Kumar P. Urinary glycoproteomic profiling of non-muscle invasive and muscle invasive bladder carcinoma patients reveals distinct N-glycosylation pattern of CD44, MGAM, and GINM1. Oncotarget 2020; 11:3244-3255. [PMID: 32922663 PMCID: PMC7456616 DOI: 10.18632/oncotarget.27696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Clinical management of bladder carcinomas (BC) remains a major challenge and demands comprehensive multi-omics analysis for better stratification of the disease. Identification of patients on risk requires identification of signatures predicting prognosis risk of the patients. Understanding the molecular alterations associated with the disease onset and progression could improve the routinely used diagnostic and therapy procedures. In this study, we investigated the aberrant changes in N-glycosylation pattern of proteins associated with tumorigenesis as well as disease progression in bladder cancer. We integrated and compared global N-glycoproteomic and proteomic profile of urine samples from bladder cancer patients at different clinicopathological stages (non-muscle invasive and muscle-invasive patients [n = 5 and 4 in each cohort]) with healthy subjects (n = 5) using SPEG method. We identified 635 N-glycopeptides corresponding to 381 proteins and 543 N-glycopeptides corresponding to 326 proteins in NMIBC and MIBC patients respectively. Moreover, we identified altered glycosylation in 41 NMIBC and 21 MIBC proteins without any significant change in protein abundance levels. In concordance with the previously published bladder cancer cell line N-glycoproteomic data, we also observed dysregulated glycosylation in ECM related proteins. Further, we identified distinct N-glycosylation pattern of CD44, MGAM, and GINM1 between NMIBC and MIBC patients, which may be associated with disease progression in bladder cancer. These aberrant protein glycosylation events would provide a novel approach for bladder carcinoma diagnosis and further define novel mechanisms of tumor initiation and progression.
Collapse
Affiliation(s)
- Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India.,These authors contributed equally to this work and share the first authorship
| | - Irene A George
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India.,These authors contributed equally to this work and share the first authorship
| | - Barnali Deb
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India.,These authors contributed equally to this work and share the second authorship
| | - Ankit P Jain
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,These authors contributed equally to this work and share the second authorship
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, India
| | - Brusabhanu Nayak
- Department of Urology, All India Institute of Medical Sciences, New Delhi 110070, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110070, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences, New Delhi 110070, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India.,Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| |
Collapse
|
10
|
Lan J, Gao XH, Kaul R. Estrogen receptor subtype agonist activation in human cutaneous squamous cell carcinoma cells modulates expression of CD55 and Cyclin D1. EXCLI JOURNAL 2019; 18:606-618. [PMID: 31611744 PMCID: PMC6785760 DOI: 10.17179/excli2019-1541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
Abstract
Clinical studies indicate gender bias in cutaneous squamous cell carcinoma (cSCC) incidence with worse prognosis observed in males than in females, suggesting estrogen-mediated protection. In contrast, recent clinical population studies show risk of cSCC by use of oral contraceptives, thus raising controversy. However, animal studies indicate a protective role of estrogen and estrogen receptor (ER)s in cSCC. Currently we have a poor understanding of ERs that are expressed in human cSCC cells and their possible role in malignant transformation. The focus of current study was to determine ER subtype specific expression on cSCC A431 cells and investigate if ER agonist based activation modulates tumor markers CD55 and Cyclin D1 in the cells. ERα, ERβ and G protein-coupled receptor (GPR30) subtype expression at mRNA and protein level was determined in human cSCC A431 cells by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting, respectively. The localization of ER subtypes was determined by confocal microscopy. ER subtype agonist based activation on A431 cells was performed to investigate their role in modulating mRNA and protein expression of tumor markers CD55 and Cyclin D1. A431 cells differentially expressed all three ER subtypes- ERα, ERβ and GPR30 with GPR30 expression being the highest. Confocal studies confirmed that all three ER subtypes were expressed in the cytoplasm and ERα and ERβ lacked nuclear expression. Agonist based activation of both ERα and GPR30 significantly upregulated Cyclin D1 and CD55 expression. Blocking of GPR30 led to significantly downregulation of both Cyclin D1 and CD55 expression. In contrast to ERα and GPR30, ERβ activation significantly downregulated CD55 expression. Taken together, here we demonstrate for the first time that all three ERs- ERα, ERβ and GPR30 are expressed in human A431 cSCC cells and further ER agonist based activation modulates the expression of tumor markers CD55 and Cyclin D1.
Collapse
Affiliation(s)
- Jing Lan
- Department of Dermatology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China.,Department of Biochemistry and Microbiology, Oklahoma State University, Center for Health Sciences, Tulsa, Oklahoma, 74107, United States
| | - Xing-Hua Gao
- Department of Dermatology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University, Center for Health Sciences, Tulsa, Oklahoma, 74107, United States
| |
Collapse
|
11
|
Geller A, Yan J. The Role of Membrane Bound Complement Regulatory Proteins in Tumor Development and Cancer Immunotherapy. Front Immunol 2019; 10:1074. [PMID: 31164885 PMCID: PMC6536589 DOI: 10.3389/fimmu.2019.01074] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
It has long been understood that the control and surveillance of tumors within the body involves an intricate dance between the adaptive and innate immune systems. At the center of the interplay between the adaptive and innate immune response sits the complement system—an evolutionarily ancient response that aids in the destruction of microorganisms and damaged cells, including cancer cells. Membrane-bound complement regulatory proteins (mCRPs), such as CD46, CD55, and CD59, are expressed throughout the body in order to prevent over-activation of the complement system. These mCRPs act as a double-edged sword however, as they can also over-regulate the complement system to the extent that it is no longer effective at eliminating cancerous cells. Recent studies are now indicating that mCRPs may function as a biomarker of a malignant transformation in numerous cancer types, and further, are being shown to interfere with anti-tumor treatments. This highlights the critical roles that therapeutic blockade of mCRPs can play in cancer treatment. Furthermore, with the complement system having the ability to both directly and indirectly control adaptive T-cell responses, the use of a combinatorial approach of complement-related therapy along with other T-cell activating therapies becomes a logical approach to treatment. This review will highlight the biomarker-related role that mCRP expression may have in the classification of tumor phenotype and predicted response to different anti-cancer treatments in the context of an emerging understanding that complement activation within the Tumor Microenvironment (TME) is actually harmful for tumor control. We will discuss what is known about complement activation and mCRPs relating to cancer and immunotherapy, and will examine the potential for combinatorial approaches of anti-mCRP therapy with other anti-tumor therapies, especially checkpoint inhibitors such as anti PD-1 and PD-L1 monoclonal antibodies (mAbs). Overall, mCRPs play an essential role in the immune response to tumors, and understanding their role in the immune response, particularly in modulating currently used cancer therapeutics may lead to better clinical outcomes in patients with diverse cancer types.
Collapse
Affiliation(s)
- Anne Geller
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Jun Yan
- Immuno-Oncology Program, Department of Medicine, The James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
12
|
Fishelson Z, Kirschfink M. Complement C5b-9 and Cancer: Mechanisms of Cell Damage, Cancer Counteractions, and Approaches for Intervention. Front Immunol 2019; 10:752. [PMID: 31024572 PMCID: PMC6467965 DOI: 10.3389/fimmu.2019.00752] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023] Open
Abstract
The interactions of cancer cells with components of the complement system are highly complex, leading to an outcome that is either favorable or detrimental to cancer cells. Currently, we perceive only the "tip of the iceberg" of these interactions. In this review, we focus on the complement terminal C5b-9 complex, known also as the complement membrane attack complex (MAC) and discuss the complexity of its interaction with cancer cells, starting with a discussion of its proposed mode of action in mediating cell death, and continuing with a portrayal of the strategies of evasion exhibited by cancer cells, and closing with a proposal of treatment approaches targeted at evasion strategies. Upon intense complement activation and membrane insertion of sufficient C5b-9 complexes, the afflicted cells undergo regulated necrotic cell death with characteristic damage to intracellular organelles, including mitochondria, and perforation of the plasma membrane. Several pro-lytic factors have been proposed, including elevated intracellular calcium ion concentrations and activated JNK, Bid, RIPK1, RIPK3, and MLKL; however, further research is required to fully characterize the effective cell death signals activated by the C5b-9 complexes. Cancer cells over-express a multitude of protective measures which either block complement activation, thus reducing the number of membrane-inserted C5b-9 complexes, or facilitate the elimination of C5b-9 from the cell surface. Concomitantly, cancer cells activate several protective pathways that counteract the death signals. Blockage of complement activation is mediated by the complement membrane regulatory proteins CD46, CD55, and CD59 and by soluble complement regulators, by proteases that cleave complement proteins and by protein kinases, like CK2, which phosphorylate complement proteins. C5b-9 elimination and inhibition of cell death signals are mediated by caveolin and dynamin, by Hsp70 and Hsp90, by the mitochondrial stress protein mortalin, and by the protein kinases PKC and ERK. It is conceivable that various cancers and cancers at different stages of development will utilize distinct patterns of these and other MAC resistance strategies. In order to enhance the impact of antibody-based therapy on cancer, novel precise reagents that block the most effective protective strategies will have to be designed and applied as adjuvants to the therapeutic antibodies.
Collapse
Affiliation(s)
- Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
13
|
Schorch B, Heni H, Zahaf NI, Brummer T, Mione M, Schmidt G, Papatheodorou P, Aktories K. Targeting oncogenic Ras by the Clostridium perfringens toxin TpeL. Oncotarget 2018; 9:16489-16500. [PMID: 29662661 PMCID: PMC5893256 DOI: 10.18632/oncotarget.24740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 03/02/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridium perfringens toxin TpeL belongs to the family of large clostridial glycosylating toxins. The toxin causes N-acetylglucosaminylation of Ras proteins at threonine35 thereby inactivating the small GTPases. Here, we show that all main types of oncogenic Ras proteins (H-Ras, K-Ras and N-Ras) are modified by the toxin in vitro and in vivo. Toxin-catalyzed modification of Ras was accompanied by inhibition of the MAP kinase pathway. Importantly, TpeL inhibited the paradoxical activation of the MAP kinase pathway induced by the BRAF inhibitor Vemurafenib in the human melanoma cell line SBCL2. The toxin also blocked Ras signaling in a zebrafish embryo model expressing oncogenic H-RasG12V, resulting in a reduction of melanocyte number. By using the binding and translocation component of anthrax toxin (protective antigen), the glucosyltransferase domain of TpeL was effectively introduced into target cells that were not sensitive to native TpeL toxin. To reach a higher specificity towards cancer cells, a chimeric TpeL toxin was engineered that possessed the knob region of adenovirus serotype 35 fiber, which interacts with CD46 of target cells frequently overexpressed in cancer cells. The chimeric TpeL fusion toxin efficiently inhibited Ras and MAP kinases in human pancreatic cancer Capan-2 cells, which were insensitive to the wild-type toxin. The data reveal that TpeL and TpeL-related immunotoxins provide a new toolset as Ras-inactivating agents.
Collapse
Affiliation(s)
- Björn Schorch
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Hannah Heni
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Nour-Imene Zahaf
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Tilman Brummer
- Institut für Molekulare Medizin und Zellforschung, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Marina Mione
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggestein-Leopoldshafen, Germany.,Present Address: Center for Integrative Biology, University of Trento, Trento, Italy
| | - Gudula Schmidt
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Present Address: Institute of Pharmaceutical Biotechnology, University of Ulm, Ulm, Germany.,Present Address: Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Palomino WA, Tayade C, Argandoña F, Devoto L, Young SL, Lessey BA. The endometria of women with endometriosis exhibit dysfunctional expression of complement regulatory proteins during the mid secretory phase. J Reprod Immunol 2018; 125:1-7. [DOI: 10.1016/j.jri.2017.10.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 08/21/2017] [Accepted: 10/23/2017] [Indexed: 01/19/2023]
|
15
|
Saygin C, Wiechert A, Rao VS, Alluri R, Connor E, Thiagarajan PS, Hale JS, Li Y, Chumakova A, Jarrar A, Parker Y, Lindner DJ, Nagaraj AB, Kim JJ, DiFeo A, Abdul-Karim FW, Michener C, Rose PG, DeBernardo R, Mahdi H, McCrae KR, Lin F, Lathia JD, Reizes O. CD55 regulates self-renewal and cisplatin resistance in endometrioid tumors. J Exp Med 2017; 214:2715-2732. [PMID: 28838952 PMCID: PMC5584126 DOI: 10.1084/jem.20170438] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/22/2017] [Accepted: 06/27/2017] [Indexed: 12/26/2022] Open
Abstract
CD55 is a membrane complement regulatory protein that attenuates complement-mediated cytotoxicity. Saygin et al. elucidate a new role for CD55 as a signaling hub for cancer stem cell self-renewal and cisplatin resistance pathways in endometrioid tumors and open a new line of research into chemotherapeutic-refractory cancers. Effective targeting of cancer stem cells (CSCs) requires neutralization of self-renewal and chemoresistance, but these phenotypes are often regulated by distinct molecular mechanisms. Here we report the ability to target both of these phenotypes via CD55, an intrinsic cell surface complement inhibitor, which was identified in a comparative analysis between CSCs and non-CSCs in endometrioid cancer models. In this context, CD55 functions in a complement-independent manner and required lipid raft localization for CSC maintenance and cisplatin resistance. CD55 regulated self-renewal and core pluripotency genes via ROR2/JNK signaling and in parallel cisplatin resistance via lymphocyte-specific protein tyrosine kinase (LCK) signaling, which induced DNA repair genes. Targeting LCK signaling via saracatinib, an inhibitor currently undergoing clinical evaluation, sensitized chemoresistant cells to cisplatin. Collectively, our findings identify CD55 as a unique signaling node that drives self-renewal and therapeutic resistance through a bifurcating signaling axis and provides an opportunity to target both signaling pathways in endometrioid tumors.
Collapse
Affiliation(s)
- Caner Saygin
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Andrew Wiechert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.,Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Vinay S Rao
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Ravi Alluri
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Elizabeth Connor
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.,Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Praveena S Thiagarajan
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - James S Hale
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yan Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Anastasia Chumakova
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Awad Jarrar
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Yvonne Parker
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel J Lindner
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Anil Belur Nagaraj
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - J Julie Kim
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL
| | - Analisa DiFeo
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Fadi W Abdul-Karim
- Pathology and Laboratory Medicine Institute, Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH
| | - Chad Michener
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Peter G Rose
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Robert DeBernardo
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Haider Mahdi
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Cleveland, OH
| | - Keith R McCrae
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Feng Lin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
16
|
Liao JH, Li CC, Wu SH, Fan JW, Gu HT, Wang ZW. Gene Variations of Sixth Complement Component Affecting Tacrolimus Metabolism in Patients with Liver Transplantation for Hepatocellular Carcinoma. Chin Med J (Engl) 2017; 130:1670-1676. [PMID: 28685716 PMCID: PMC5520553 DOI: 10.4103/0366-6999.209886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) improves the prognosis of patients with hepatocellular carcinoma (HCC). Moreover, the complement system is a powerful immune effector that can affect liver function and process of liver cirrhosis. However, studies correlating the complement system with tacrolimus metabolism after OLT are scarce. In this study, the role of single nucleotide polymorphisms (SNPs) associated with the sixth complement component (C6) in tacrolimus metabolism was investigated during the early stages of liver transplantation. METHODS The study enrolled 135 adult patients treated with OLT for HCC between August 2011 and October 2013. Ten SNPs in C6 gene and rs776746 in cytochrome P450 3A5 (CYP3A5) gene were investigated. The tacrolimus levels were monitored daily during 4 weeks after transplantation. RESULTS Both donor and recipient CYP3A5 rs776746 allele A were correlated with decreased concentration/dose (C/D) ratios. Recipient C6 rs9200 allele G and donor C6 rs10052999 homozygotes were correlated with lower C/D ratios. Recipient CYP3A5 rs776746 allele A (yielded median tacrolimus C/D ratios of 225.90 at week 1 and 123.61 at week 2), C6 rs9200 allele G (exhibited median tacrolimus C/D ratios of 211.31 at week 1, 110.23 at week 2, and 99.88 at week 3), and donor CYP3A5 rs776746 allele A (exhibited median C/D ratios of 210.82 at week 1, 111.06 at week 2, 77.49 at week 3, and 85.60 at week 4) and C6 rs10052999 homozygote (exhibited median C/D ratios of 167.59 at week 2, 157.99 at week 3, and 155.36 at week 4) were associated with rapid tacrolimus metabolism. With increasing number of these alleles, patients were found to have lower tacrolimus C/D ratios at various time points during the 4 weeks after transplantation. In multiple linear regression analysis, recipient C6 rs9200 group (AA vs. GG/GA) was found to be related to tacrolimus metabolism at weeks 1, 2, and 3 (P = 0.005, P = 0.045, and P = 0.033, respectively), whereas donor C6 rs10052999 group (CC/TT vs. TC) was demonstrated to be correlated with tacrolimus metabolism only at week 4 (P = 0.001). CONCLUSIONS Recipient C6 gene rs9200 polymorphism and donor C6 gene rs10052999 polymorphism are new genetic loci that affect tacrolimus metabolism in patients with HCC after OLT.
Collapse
Affiliation(s)
- Jian-Hua Liao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chang-Can Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shao-Han Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun-Wei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hai-Tao Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhao-Wen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
17
|
Chia SL, Lei J, Ferguson DJP, Dyer A, Fisher KD, Seymour LW. Group B adenovirus enadenotucirev infects polarised colorectal cancer cells efficiently from the basolateral surface expected to be encountered during intravenous delivery to treat disseminated cancer. Virology 2017; 505:162-171. [PMID: 28260622 DOI: 10.1016/j.virol.2017.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/03/2017] [Accepted: 02/14/2017] [Indexed: 12/28/2022]
Abstract
Enadenotucirev (EnAd) is a group B oncolytic adenovirus developed for systemic delivery and currently undergoing clinical evaluation for advanced cancer therapy. For differentiated carcinomas, systemic delivery would likely expose virus particles to the basolateral surface of cancer cells rather than the apical surface encountered during natural infection. Here, we compare the ability of EnAd and adenovirus type-5 (Ad5) to infect polarised colorectal carcinoma cells from the apical or basolateral surfaces. Whereas Ad5 infection was more efficient via the apical than basolateral surface, EnAd readily infected cells from either surface. Progeny particles from EnAd were released preferentially via the apical surface for all cell lines and routes of infection. These data further support the utility of group B adenoviruses for systemic delivery and suggest that progeny virus are more likely to be released into the tumour rather than back through the basolateral surface into the blood stream.
Collapse
Affiliation(s)
- Suet-Lin Chia
- Department of Oncology, University of Oxford, Oxford, United Kingdom; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Janet Lei
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Arthur Dyer
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Kerry D Fisher
- Department of Oncology, University of Oxford, Oxford, United Kingdom; PsiOxus Therapeutics, Abingdon, United Kingdom
| | - Leonard W Seymour
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
Rangaswamy US, Cotter CR, Cheng X, Jin H, Chen Z. CD55 is a key complement regulatory protein that counteracts complement-mediated inactivation of Newcastle Disease Virus. J Gen Virol 2016; 97:1765-1770. [PMID: 27153814 DOI: 10.1099/jgv.0.000498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Newcastle disease virus (NDV) is being developed as an oncolytic virus for virotherapy. In this study we analysed the regulation of complement-mediated inactivation of a recombinant NDV in different host cells. NDV grown in human cells was less sensitive to complement-mediated virus inactivation than NDV grown in embryonated chicken eggs. Additionally, NDV produced from HeLa-S3 cells is more resistant to complement than NDV from 293F cells, which correlated with higher expression and incorporation of complement regulatory proteins (CD46, CD55 and CD59) into virions from HeLa-S3 cells. Further analysis of the recombinant NDVs individually expressing the three CD molecules showed that CD55 is the most potent in counteracting complement-mediated virus inactivation. The results provide important information on selecting NDV manufacture substrate to mitigate complement-mediated virus inactivation.
Collapse
Affiliation(s)
| | | | - Xing Cheng
- MedImmune LLC, Mountain View, California, USA
| | - Hong Jin
- MedImmune LLC, Mountain View, California, USA
| | | |
Collapse
|
19
|
Complement factor H polymorphism rs1061170 and the effect of cigarette smoking on the risk of lung cancer. Contemp Oncol (Pozn) 2015; 19:441-5. [PMID: 26843839 PMCID: PMC4731447 DOI: 10.5114/wo.2015.56202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023] Open
Abstract
Aim of the study Complement factor H (CFH) has been known to inhibit the complement pathway and to contribute to tumour growth by suppressing the anti-tumour cell mediated response in cell lines from several malignancies. We examined the association of Try402His single nucleotide polymorphism in CFH gene with lung cancer and the interaction with cigarette smoking. Material and methods This case-control study included 80 primary lung cancer patients and 106 control subjects who were genotyped for Try402His (rs1061170) by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Results Variant genotypes (Tyr/His and His/His) were overpresented among patients compared to controls (p = 0.03, OR = 2.510, 95% CI: 1.068–5.899), and the frequency of variant H allele was significantly overexpressed in cases compared to controls (p = 0.021). Tyr/His genotype was identified in 100% of small cell lung cancer (SCLC) patients vs. 34.5% of non-SCLC (NSCLC), while 20.7% of NSCLC patients were homozygous for the variant allele (His/His) (p = 0.001). Binary logistic regression analysis revealed a 2.5 times greater estimated risk for NSCLC than for SCLC among variant allele carriers, and a 7.3-fold increased risk of lung cancer among variant allele smoking carriers vs. 1.3-fold increased risk among wild allele smoking carriers. Moreover, the stage of cancer positively correlated with smoking and pack-years in allele H carriers, and the correlation was stronger among those who were homozygous for it (His/His) than those who were heterozygous (Tyr/His). Conclusions CFH 402H variant is a smoking-related risk factor for lung cancer, particularly the NSCLC.
Collapse
|
20
|
The immunohistochemical analysis of membrane-bound CD55, CD59 and fluid-phase FH and FH-like complement inhibitors in cancers of ovary and corpus uteri origin. Cent Eur J Immunol 2015; 40:349-53. [PMID: 26648780 PMCID: PMC4655386 DOI: 10.5114/ceji.2015.54598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/15/2015] [Indexed: 12/19/2022] Open
Abstract
One of the potential therapeutic methods of cancer treatment is the immunotherapy with monoclonal antibodies. This kind of therapy, although devoid of serious side effects, has often insufficient efficacy. The presence of complement inhibitors on the cancer cells, which are able to inactivate complement-mediated immune response represents one of the main reasons for the inefficiency of such therapy. In our studies we investigated the expression of main membrane–bound and fluid-phase complement regulators: CD55, CD59 and factor H/factor H-like in tumour samples of ovarian and corpus uteri cancer. Tissue samples were collected from 50 patients and stained immunohistochemically, with the use of peroxidase-based immunodetection system. Immunohistochemical analysis revealed that complement inhibitors are present in examined tumors although their presence is heterogenous. The most prevalent is the presence of factor H/H-like, localized mostly in tumor stroma and within vascular structures. Membrane bound complement inhibitors are less prominently expressed by cancer cells. CD55 was detected in low percentage of cells, predominantly within cancer tubules. CD59 immunoreactivity was more prevalent in cancer cells, and was localized particularly at the margin of cancer cell tubules. Our results demonstrate that the most prominent complement inhibitor in cancer of ovary and corpus uteri origin is factor H/factor H-like. Blocking or downregulation of this inhibitor should be taken into consideration with regards to improving the efficiency of immunotherapy with monoclonal antibodies.
Collapse
|
21
|
Hutzen B, Raffel C, Studebaker AW. Advances in the design and development of oncolytic measles viruses. Oncolytic Virother 2015; 4:109-18. [PMID: 27512675 PMCID: PMC4918395 DOI: 10.2147/ov.s66078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A successful oncolytic virus is one that selectively propagates and destroys cancerous tissue without causing excessive damage to the normal surrounding tissue. Oncolytic measles virus (MV) is one such virus that exhibits this characteristic and thus has rapidly emerged as a potentially useful anticancer modality. Derivatives of the Edmonston MV vaccine strain possess a remarkable safety record in humans. Promising results in preclinical animal models and evidence of biological activity in early phase trials contribute to the enthusiasm. Genetic modifications have enabled MV to evolve from a vaccine agent to a potential anticancer therapy. Specifically, alterations of the MV genome have led to improved tumor selectivity and delivery, therapeutic potency, and immune system modulation. In this article, we will review the advancements that have been made in the design and development of MV that have led to its use as a cancer therapy. In addition, we will discuss the evidence supporting its use, as well as the challenges associated with MV as a potential cancer therapeutic.
Collapse
Affiliation(s)
- Brian Hutzen
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Corey Raffel
- Department of Neurological Surgery and Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Adam W Studebaker
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
22
|
Song Q, Zhang Z, Liu Y, Han S, Zhang X. The tag SNP rs10746463 in decay-accelerating factor is associated with the susceptibility to gastric cancer. Mol Immunol 2015; 63:473-8. [PMID: 25457880 DOI: 10.1016/j.molimm.2014.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND Complement activation involved in the innate immunity and adaptive immunity and further contributed to the development of tumor growth. This study aimed to investigate the association of genetic variants in complement 3 (C3) and decay-accelerating factor (DAF) genes with the risk of gastric cancer. METHODS This case-control study included 500 gastric cancer patients and 500 cancer-free controls. Based on the Chinese population data from HapMap database, we used Haploview 4.2 program to select candidate tag SNPs. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression to evaluate the association of each genetic variant with the risk of gastric cancer. RESULTS Among 12 tag SNPs of C3, no correlation was observed between C3 genetic variants and risk of gastric cancer. For tag SNPS of DAF, logistic regression analysis revealed that the carriers with DAF rs10746463 AA genotype had a significantly increased risk for developing gastric cancer (OR = 1.46, 95% CI = 1.01–2.10) when compared with GG genotype, but those carrying with rs10746463 AG genotype didn't (OR = 1.31, 95% CI = 0.98-1.75). When stratified by smoking status, we found that the risk of gastric cancer was associated with rs10746463 GA or AA genotype carriers among smoker with OR (95% CI) of 1.64 (1.06-2.54), but not among non-smoker (OR = 1.37, 95% CI = 0.97-1.94). CONCLUSION DAF rs10746463 polymorphism effects on the risk of developing gastric cancer in Chinese population.
Collapse
Affiliation(s)
- Qinqin Song
- Institute of Molecular Genetics, College of Life Science, Hebei United University, Tangshan, China
| | | | | | | | | |
Collapse
|
23
|
Meyer S, Leusen JHW, Boross P. Regulation of complement and modulation of its activity in monoclonal antibody therapy of cancer. MAbs 2014; 6:1133-44. [PMID: 25517299 PMCID: PMC4622586 DOI: 10.4161/mabs.29670] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The complement system is a powerful tool of the innate immune system to eradicate pathogens. Both in vitro and in vivo evidence indicates that therapeutic anti-tumor monoclonal antibodies (mAbs) can activate the complement system by the classical pathway. However, the contribution of complement to the efficacy of mAbs is still debated, mainly due to the lack of convincing data in patients. A beneficial role for complement during mAb therapy is supported by the fact that cancer cells often upregulate complement-regulatory proteins (CRPs). Polymorphisms in various CRPs were previously associated with complement-mediated disorders. In this review the role of complement in anti-tumor mAb therapy will be discussed with special emphasis on strategies aiming at modifying complement activity. In the future, clinical efficacy of mAbs with enhanced effector functions together with comprehensive analysis of polymorphisms in CRPs in mAb-treated patients will further clarify the role of complement in mAb therapy.
Collapse
Affiliation(s)
- Saskia Meyer
- a Laboratory for Immunotherapy; Laboratory for Translational Immunology (LTI) ; University Medical Center Utrecht ; Utrecht , The Netherlands
| | | | | |
Collapse
|
24
|
Shang Y, Chai N, Gu Y, Ding L, Yang Y, Zhou J, Ren G, Hao X, Fan D, Wu K, Nie Y. Systematic immunohistochemical analysis of the expression of CD46, CD55, and CD59 in colon cancer. Arch Pathol Lab Med 2014; 138:910-9. [PMID: 24978917 DOI: 10.5858/arpa.2013-0064-oa] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT The expression of membrane-bound complement regulatory proteins (mCRPs) that inhibit the complement system in normal tissues is essential for self-protection against an autologous immune reaction. However, the expression patterns of mCRPs, including CD46, CD55, and CD59, are inconsistent in different types of cancer cells. OBJECTIVES To determine whether CD46, CD55, and CD59 are differentially expressed in neoplastic and adjacent normal colon tissues and to assess their clinical significance. DESIGN Immunohistochemistry was performed on tissue microarrays of cancerous and adjacent normal colon tissues. RESULTS The expression levels of CD46, CD55, and CD59 were significantly higher in colon cancer tissues compared with the normal adjacent colon tissues. We found that the expression levels of CD55 and CD59 correlated with the grade of differentiation in colon cancers. In addition, the expression of CD55 and CD59 was greater in stage III and stage IV colon cancers than in stage I and stage II cancers according to staging by the TNM classification. CONCLUSIONS CD46, CD55, and CD59 are up-regulated in colon cancer. Specifically, CD55 and CD59 are of clinical relevance to differentiation and TNM staging of colon cancer. These data suggest that CD46, CD55, and CD59 have the potential to be used for molecular staging diagnoses and for colon cancer therapies.
Collapse
Affiliation(s)
- Yulong Shang
- From the State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases (Drs Shang, Chai, Zhou, Ren, Fan, Wu, and Nie and Mr Gu, Mss Ding and Yang), and the Department of Medical Laboratory, Xijing Hospital (Dr Hao and Ms Ding), Fourth Military Medical University, and the Department of Digestive Diseases, Shaanxi Provincial Corps Hospital of Chinese People's Armed Police Force (Mr Gu), Xi'an, China. Drs Shang, Chai, and Mr Gu contributed equally to this article
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bradley S, Jakes AD, Harrington K, Pandha H, Melcher A, Errington-Mais F. Applications of coxsackievirus A21 in oncology. Oncolytic Virother 2014; 3:47-55. [PMID: 27512662 PMCID: PMC4918364 DOI: 10.2147/ov.s56322] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The clinical management of cancer continues to be dominated by macroscopic surgical resection, radiotherapy, and cytotoxic drugs. The major challenge facing oncology is to achieve more selective, less toxic and effective methods of targeting disseminated tumors, a challenge oncolytic virotherapy may be well-placed to meet. Characterization of coxsackievirus A21 (CVA21) receptor-based mechanism of virus internalization and lysis in the last decade has suggested promise for CVA21 as a virotherapy against malignancies which overexpress those receptors. Preclinical studies have demonstrated proof of principle, and with the results of early clinical trials awaited, CVA21 may be one of the few viruses to demonstrate benefit for patients. This review outlines the potential of CVA21 as an oncolytic agent, describing the therapeutic development of CVA21 in preclinical studies and early stage clinical trials. Preclinical evidence supports the potential use of CVA21 across a range of malignancies. Malignant melanoma is the most intensively studied cancer, and may represent a “test case” for future development of the virus. Although there are theoretical barriers to the clinical utility of oncolytic viruses like CVA21, whether these will block the efficacy of the virus in clinical practice remains to be established, and is a question which can only be answered by appropriate trials. As these data become available, the rapid journey of CVA21 from animal studies to clinical trials may offer a model for the translation of other oncolytic virotherapies from laboratory to clinic.
Collapse
Affiliation(s)
- Stephen Bradley
- Leeds Institute of Cancer and Pathology, Cancer Research UK and Experimental Cancer Medicine Centre, St James' University Hospital, Leeds, UK
| | - Adam D Jakes
- Leeds Institute of Cancer and Pathology, Cancer Research UK and Experimental Cancer Medicine Centre, St James' University Hospital, Leeds, UK
| | - Kevin Harrington
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Hardev Pandha
- Oncology Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Alan Melcher
- Leeds Institute of Cancer and Pathology, Cancer Research UK and Experimental Cancer Medicine Centre, St James' University Hospital, Leeds, UK
| | - Fiona Errington-Mais
- Leeds Institute of Cancer and Pathology, Cancer Research UK and Experimental Cancer Medicine Centre, St James' University Hospital, Leeds, UK
| |
Collapse
|
26
|
Hutzen B, Bid HK, Houghton PJ, Pierson CR, Powell K, Bratasz A, Raffel C, Studebaker AW. Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin. BMC Cancer 2014; 14:206. [PMID: 24646176 PMCID: PMC3995427 DOI: 10.1186/1471-2407-14-206] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/12/2014] [Indexed: 01/23/2023] Open
Abstract
Background Medulloblastoma is the most common type of pediatric brain tumor. Although numerous factors influence patient survival rates, more than 30% of all cases will ultimately be refractory to conventional therapies. Current standards of care are also associated with significant morbidities, giving impetus for the development of new treatments. We have previously shown that oncolytic measles virotherapy is effective against medulloblastoma, leading to significant prolongation of survival and even cures in mouse xenograft models of localized and metastatic disease. Because medulloblastomas are known to be highly vascularized tumors, we reasoned that the addition of angiogenesis inhibitors could further enhance the efficacy of oncolytic measles virotherapy. Toward this end, we have engineered an oncolytic measles virus that express a fusion protein of endostatin and angiostatin, two endogenous and potent inhibitors of angiogenesis. Methods Oncolytic measles viruses encoding human and mouse variants of a secretable endostatin/angiostatin fusion protein were designed and rescued according to established protocols. These viruses, known as MV-hE:A and MV-mE:A respectively, were then evaluated for their anti-angiogenic potential and efficacy against medulloblastoma cell lines and orthotopic mouse models of localized disease. Results Medulloblastoma cells infected by MV-E:A readily secrete endostatin and angiostatin prior to lysis. The inclusion of the endostatin/angiostatin gene did not negatively impact the measles virus’ cytotoxicity against medulloblastoma cells or alter its growth kinetics. Conditioned media obtained from these infected cells was capable of inhibiting multiple angiogenic factors in vitro, significantly reducing endothelial cell tube formation, viability and migration compared to conditioned media derived from cells infected by a control measles virus. Mice that were given a single intratumoral injection of MV-E:A likewise showed reduced numbers of tumor-associated blood vessels and a trend for increased survival compared to mice treated with the control virus. Conclusions These data suggest that oncolytic measles viruses encoding anti-angiogenic proteins may have therapeutic benefit against medulloblastoma and support ongoing efforts to target angiogenesis in medulloblastoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Adam W Studebaker
- The Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA.
| |
Collapse
|
27
|
Banadakoppa M, Goluszko P, Liebenthal D, Nowicki BJ, Nowicki S, Yallampalli C. PI3K/Akt pathway restricts epithelial adhesion of Dr + Escherichia coli by down-regulating the expression of decay accelerating factor. Exp Biol Med (Maywood) 2014; 239:581-94. [PMID: 24599886 DOI: 10.1177/1535370214522183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The urogenital microbial infection in pregnancy is an important cause of maternal and neonatal morbidity and mortality. Uropathogenic Escherichia coli strains which express Dr fimbriae (Dr+) are associated with unique gestational virulence and they utilize cell surface decay accelerating factor (DAF or CD55) as one of the cellular receptor before invading the epithelial cells. Previous studies in our laboratory established that nitric oxide reduces the rate of E. coli invasion by delocalizing the DAF protein from cell surface lipid rafts and down-regulating its expression. The phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) cell signal pathway plays an important role in host-microbe interaction because many bacteria including E. coli activate this pathway in order to establish infection. In the present study, we showed that the PI3K/Akt pathway negatively regulated the expression of DAF on the epithelial cell surface and thus inhibited the adhesion of Dr(+) E. coli to epithelial cells. Initially, using two human cell lines Ishikawa and HeLa which differ in constitutive activity of PI3K/Akt, we showed that DAF levels were associated with the PI3K/Akt pathway. We then showed that the DAF gene expression was up-regulated and the Dr(+) E. coli adhesion increased after the suppression of PI3K/Akt pathway in Ishikawa cells using inhibitor LY294002, and a plasmid which allowed the expression of PI3K/Akt regulatory protein PTEN. The down-regulation of PTEN protein using PTEN-specific siRNA activated the PI3K/Akt pathway, down-regulated the DAF, and decreased the adhesion of Dr(+) E. coli. We conclude that the PI3K/Akt pathway regulated the DAF expression in a nitric oxide independent manner.
Collapse
Affiliation(s)
- Manu Banadakoppa
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
28
|
Carter D, Lieber A. Protein engineering to target complement evasion in cancer. FEBS Lett 2013; 588:334-40. [PMID: 24239543 DOI: 10.1016/j.febslet.2013.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 01/31/2023]
Abstract
The complement system is composed of soluble factors in plasma that enhance or "complement" immune-mediated killing through innate and adaptive mechanisms. Activation of complement causes recruitment of immune cells; opsonization of coated cells; and direct killing of affected cells through a membrane attack complex (MAC). Tumor cells up-regulate complement inhibitory factors - one of several strategies to evade the immune system. In many cases as the tumor progresses, dramatic increases in complement inhibitory factors are found on these cells. This review focuses on the classic complement pathway and the role of major complement inhibitory factors in cancer immune evasion as well as on how current protein engineering efforts are being employed to increase complement fixing or to reverse complement resistance leading to better therapeutic outcomes in oncology. Strategies discussed include engineering of antibodies to enhance complement fixation, antibodies that neutralize complement inhibitory proteins as well as engineered constructs that specifically target inhibition of the complement system.
Collapse
Affiliation(s)
- Darrick Carter
- PAI Life Sciences Inc., Seattle, WA, United States; Compliment Corp., Seattle, WA, United States.
| | - André Lieber
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
29
|
Wan SM, Lv F, Guan T. Identification of genes and microRNAs involved in ovarian carcinogenesis. Asian Pac J Cancer Prev 2013; 13:3997-4000. [PMID: 23098506 DOI: 10.7314/apjcp.2012.13.8.3997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs (miRNAs) play roles in the clinic, both as diagnostic and therapeutic tools. The identification of relevant microRNAs is critically required for ovarian cancer because of the prevalence of late diagnosis and poor treatment options currently. To identify miRNAs involved in the development or progression of ovarian cancer, we analyzed gene expression profiles downloaded from Gene Expression Omnibus. Comparison of expression patterns between carcinomas and the corresponding normal ovarian tissues enabled us to identify 508 genes that were commonly up-regulated and 1331 genes that were down-regulated in the cancer specimens. Function annotation of these genes showed that most of the up-regulated genes were related to cell cycling, and most of the down-regulated genes were associated with the immune response. When these differentially expressed genes were mapped to MiRTarBase, we obtained a total of 18 key miRNAs which may play important regulatory roles in ovarian cancer. Investigation of these genes and microRNAs should help to disclose the molecular mechanisms of ovarian carcinogenesis and facilitate development of new approaches to therapeutic intervention.
Collapse
Affiliation(s)
- Shu-Mei Wan
- Department of Gynecology, General Hospital of Guangzhou Military Command of PLA, China
| | | | | |
Collapse
|
30
|
Palomino WA, Argandoña F, Azúa R, Kohen P, Devoto L. Complement C3 and decay-accelerating factor expression levels are modulated by human chorionic gonadotropin in endometrial compartments during the implantation window. Reprod Sci 2013; 20:1103-10. [PMID: 23427180 DOI: 10.1177/1933719113477486] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The control of complement activation in the embryo-maternal environment has been demonstrated to be critical for embryo survival. Complement proteins are expressed in the human endometrium; however, the modulation of this expression by embryo signals has not been explored. To assess the expression of complement proteins in response to human chorionic gonadotropin (hCG), we designed an experimental study using in vivo and in vitro models. Twelve fertile women were treated with hCG or left untreated during the mid-luteal phase, and an endometrial biopsy was performed 24 hours later. The localizations of C3, membrane cofactor protein (MCP; CD46), decay-accelerating factor (DAF; CD55), and protectin (CD59) were assessed by immunohistochemistry, and the messenger RNA (mRNA) levels of these proteins were quantified by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in cells harvested from endometrial compartments using laser capture microdissection. Endometrial explants were cultured with or without hCG for 24 hours, and the C3 and DAF protein levels were measured by Western blotting. Elevated C3 mRNA levels in stromal cells and elevated DAF levels in epithelial luminal cells were detected after hCG treatment. In the endometrial explant model, the progesterone receptor antagonist RU486 inhibited the increases in the levels of C3 and DAF in response to hCG. The findings of this study indicate that hCG plays a role in embryo-endometrium communication and affects the expression of complement proteins in endometrial compartments during the implantation window.
Collapse
Affiliation(s)
- Wilder Alberto Palomino
- Departamento de Obstetricia y Ginecología Campus Centro, Instituto de Investigaciones Materno Infantil, Facultad de Medicina, Universidad de Chile, Hospital San Borja Arriarán, Santiago, Chile.
| | | | | | | | | |
Collapse
|
31
|
Nitric oxide induces segregation of decay accelerating factor (DAF or CD55) from the membrane lipid-rafts and its internalization in human endometrial cells. Cell Biol Int 2013; 36:901-7. [PMID: 22574734 DOI: 10.1042/cbi20110586] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies suggest that DAF (decay accelerating factor), a complement regulatory protein, present in lipid rafts, is utilized by Dr fimbriated Escherichia coli for their binding and internalization. Previous studies in our laboratory have shown that NO (nitric oxide) can reduce the invasion of Dr(+) E. coli and the severity of uterine infection in pregnant rats. Also, the expression level of DAF both at the mRNA and protein levels has been shown to be reduced by NO. Therefore NO mediated down-regulation of DAF appears to be an important factor in reducing the susceptibility to E. coli infection. However, it is unclear if NO can actually modulate the membrane association of DAF and therefore initial bacterial binding to cells. We found that NO induces the delocalization of DAF from the G(M1)-rich lipid rafts. Using biochemical and cell biological approaches in a uterine epithelial cell model (Ishikawa cells), DAF accumulates in caveolae upon exposure to NO. Interaction of DAF with the caveolar protein, caveolin1, leads to their internalization by endosomes. NO-induced delocalization of DAF from the lipid raft and its accumulation in caveolae are mediated through a cGMP (cyclic guanosine monophosphate) pathway. The acute localized synthesis of NO and its influence on DAF localization may represent an important unrecognized phenomenon of host defence against Dr(+) E. coli bacteria, as well as many disease conditions that involve complement system.
Collapse
|
32
|
Banadakoppa M, Liebenthal D, Nowak DE, Urvil P, Yallampalli U, Wilson GM, Kishor A, Yallampalli C. Role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of Dr+ Escherichia coli receptor protein decay accelerating factor (DAF or CD55) by nitric oxide. FEBS J 2013; 280:840-54. [PMID: 23176121 DOI: 10.1111/febs.12073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/13/2012] [Accepted: 11/21/2012] [Indexed: 12/12/2022]
Abstract
We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr(+) ). The epithelial invasion of Dr(+) E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by downregulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5'-untranslated region and mapped the NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5'-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3'-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to the AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF.
Collapse
Affiliation(s)
- Manu Banadakoppa
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Li J, Liu H, Li L, Wu H, Wang C, Yan Z, Wang Y, Su C, Jin H, Zhou F, Wu M, Qian Q. The combination of an oxygen-dependent degradation domain-regulated adenovirus expressing the chemokine RANTES/CCL5 and NK-92 cells exerts enhanced antitumor activity in hepatocellular carcinoma. Oncol Rep 2012; 29:895-902. [PMID: 23292657 PMCID: PMC3597539 DOI: 10.3892/or.2012.2217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/30/2012] [Indexed: 12/12/2022] Open
Abstract
Oncolytic adenoviruses are modified based on adenovirus serotype 5 (Ad5), which belongs to subgroup C and depends on Coxsackie-adenovirus receptor (CAR) to recognize target cells. However, expression of CAR is generally low or lost in certain tumors including hepatocellular carcinoma (HCC). By contrast, CD46 is highly expressed in various types of malignant tumor cells. Therefore, we constructed an adenovirus vector expressing the human RANTES/CCL5 gene regulated by oxygen-dependent degradation domain (ODD) and analyzed its antitumor effects in vitro and in vivo. The human RANTES/CCL5 gene was fused with ODD by PCR and the recombinant oncolytic adenovirus containing RANTES-ODD, SG511-CCL5-ODD, was constructed by the Gateway system, which infected cells by binding CD46. Viral replication experiments were performed to evaluate the selective replication ability of SG511-CCL5-ODD. RANTES expression was determined by ELISA. The chemotactic test was used to analyze the ability of the expressed RANTES to recruit NK92 cells. The antitumor effects of SG511-CCL5-ODD were examined in HCC xenografts in nude mice. A chimeric oncolytic adenovirus, SG511-CCL5-ODD, was constructed successfully. Cells infected with the recombinant virus were able to express RANTES selectively in different environments controlled by ODD and the expressed RANTES was able to recruit NK92 cells by its chemotactic effect in vitro and improve the anticancer immune response in HCC xenografts in nude mice. The chimeric adenovirus SG511-CCL5-ODD highly expressed the RANTES-ODD fusion gene in the hypoxia of HCC under the control of the ODD and effectively attracted NK92 cells and a high number of immunocytes. These factors had complementary advantages and, in combination, exerted enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Jiang Li
- Laboratory of Viral and Gene Therapy, Eastern Hepatobiliary Surgical Hospital and Institute, The Second Military Medical University, Shanghai 200438, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mäkelä K, Helén P, Haapasalo H, Paavonen T. Complement activation in astrocytomas: deposition of C4d and patient outcome. BMC Cancer 2012; 12:565. [PMID: 23199209 PMCID: PMC3517746 DOI: 10.1186/1471-2407-12-565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 11/28/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND C4d is a cleavage product of complement component C4 and is considered to serve as a marker for the site of complement activation. In this study C4d staining of grade I-IV astrocytic tumors was studied to explore if there is an association between complement activation and the grade of tumor, or patient survival. METHODS Tissue micro-array samples of 102 astrocytomas were stained immunohistochemically. The material consisted of 9 pilocytic astrocytomas and 93 grade II-IV astrocytomas, of which 67 were primary resections and 26 recurrent tumors. The intensity of C4d staining as well as extent of C4d and CD34 staining were evaluated. The intensity of C4d staining was scored semiquantitatively. The extent of the staining was counted morphometrically with a point counting grid yielding a percent of C4d and CD34 positive area of the sample. RESULTS The intensity and extent of C4d staining increased in grade II-IV diffusely infiltrating astrocytoma tumors in line with the malignancy grade (p = 0.034 and p = 0.016, respectively, Kruskal-Wallis test). However, C4d positive tumor area percentages were higher in grade I pilocytic astrocytomas than in grade II-IV diffusely infiltrating astrocytomas (p = 0.041, Mann-Whitney test). There was a significant correlation between CD34 positive and C4d positive endothelial area fraction in diffusely infiltrating astrocytomas (p < 0.001, Pearson correlation). In these tumors, the increasing intensity of C4d staining was also associated with worsened patient outcome (p = 0.014, log-rank test). CONCLUSION The worsening of patient outcome and malignant progression of tumor cells seem to be connected to microenvironmental changes evoked by chronically activated complement.
Collapse
Affiliation(s)
- Katri Mäkelä
- Department of Pathology, University of Tampere Medical School, Tampere, Finland
- University of Tampere, School of Medicine, Biokatu 6, Tampere 33520, Finland
| | - Pauli Helén
- Unit of Neurosurgery, Tampere University Hospital, Tampere, Finland
| | - Hannu Haapasalo
- Department of Pathology, University of Tampere Medical School, Tampere, Finland
- Department of Pathology, Fimlab laboratories, Tampere University Hospital, Tampere, Finland
| | - Timo Paavonen
- Department of Pathology, University of Tampere Medical School, Tampere, Finland
- Department of Pathology, Fimlab laboratories, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
35
|
Detection of differential levels of proteins in the urine of patients with endometrial cancer: analysis using two-dimensional gel electrophoresis and o-glycan binding lectin. Int J Mol Sci 2012; 13:9489-9501. [PMID: 22949810 PMCID: PMC3431808 DOI: 10.3390/ijms13089489] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 02/08/2023] Open
Abstract
Cancers can cause some proteins to be aberrantly excreted or released in the urine, which can be used as biomarkers. To screen for potential biomarkers for endometrial cancer (ECa), the urinary proteins from patients who were newly diagnosed with early stage ECa and untreated controls were separated using two-dimensional gel electrophoresis (2-DE) and followed by image analysis. The altered levels of zinc alpha-2 glycoprotein, alpha 1-acid glycoprotein, and CD59 were detected in the patients compared to the controls. In addition, the urine of the ECa patients was also found to contain relatively lower levels of a fragment of nebulin when the 2-DE separated urinary proteins were probed using champedak galactose binding (CGB) lectin. The different levels of the nebulin fragment were further validated by subjecting the urinary protein samples to CGB lectin affinity chromatography and analysis of the bound fractions by LC-MS/MS. Our data is suggestive of the potential use of the differentially expressed urinary proteins as biomarkers for ECa although this requires further extensive validation on clinically representative populations.
Collapse
|
36
|
Modification of the early gene enhancer-promoter improves the oncolytic potency of adenovirus 11. Mol Ther 2011; 20:306-16. [PMID: 22086234 DOI: 10.1038/mt.2011.242] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Oncolytic adenoviruses based on serotype 5 (Ad5) have several shortcomings, including the downregulation of its receptor in cancer cells, high prevalence of neutralizing antibodies and hepatotoxicity. Another adenoviral serotype, Ad11, could overcome these obstacles. Here, we show that human cancer cell lines express higher levels of the Ad11 receptor CD46, resulting in much better infectivity than Ad5. Surprisingly, only 36% (9/25) of the cell lines were more sensitive to Ad11- than to Ad5-mediated cytotoxicity. Investigations revealed that it was the transcription of Ad11 E1A, not CD46 expression or virus infectivity, which determined the cell's sensitivity to Ad11 killing. Ad11 E1A mRNA levels have an effect on viral DNA replication, structural protein synthesis and infectious particle production. To test the hypothesis that increased E1A transcription would lead to improved Ad11 replication in Ad5-sensitive (but Ad11-less sensitive) cells, two Ad11 mutants (Ad11-Ad5-P and Ad11-Ad5-EP) were constructed where either the E1A promoter or enhancer-promoter, respectively, was replaced by that of Ad5. Ad11-Ad5-EP demonstrated increased E1A mRNA levels and replication, together with enhanced oncolytic potency in vitro and in vivo. This effect was found in both the Ad5-sensitive and Ad11-sensitive cancer cells, broadening the range of tumors that could be effectively killed by Ad11-Ad5-EP.
Collapse
|
37
|
Oncolytic viruses: the power of directed evolution. Adv Virol 2011; 2012:586389. [PMID: 22312363 PMCID: PMC3265225 DOI: 10.1155/2012/586389] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/26/2011] [Indexed: 12/17/2022] Open
Abstract
Attempts at developing oncolytic viruses have been primarily based on rational design. However, this approach has been met with limited success. An alternative approach employs directed evolution as a means of producing highly selective and potent anticancer viruses. In this method, diverse viruses are grown under conditions that maximize diversity and then passaged under conditions meant to mimic those encountered in the human cancer microenvironment. Viruses which evolve to thrive under this selective pressure are isolated and tested to identify those with increased potency (i.e., ability to replicate and spread) and/or an increased therapeutic window (i.e., differentiated replication and spread on tumor versus normal cells), both of which have potential value but the latter of which defines an oncolytic virus. Using ColoAd1, an oncolytic virus derived by this approach as a prototype, we highlight the benefits of directed evolution, discuss methods to “arm” these novel viruses, and introduce techniques for their genetic modulation and control.
Collapse
|
38
|
Shan C, Zhang S, Cui W, You X, Kong G, Du Y, Qiu L, Ye L, Zhang X. Hepatitis B virus X protein activates CD59 involving DNA binding and let-7i in protection of hepatoma and hepatic cells from complement attack. Carcinogenesis 2011; 32:1190-7. [PMID: 21665888 DOI: 10.1093/carcin/bgr106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Emerging evidence has shown that hepatitis B virus (HBV) X protein (HBx) plays a crucial role in the development of hepatocellular carcinoma. Complement regulatory proteins including CD46, CD55 and CD59 contribute to escape of tumor cells from complement-dependent cytotoxicity (CDC). However, little is known about the potential role of HBx in anti-CDC activity during hepatocarcinogenesis. In the present study, we for the first time report that HBx decreases the sensitivity of hepatoma and hepatic cells to CDC. Coincidentally, we demonstrated that HBx increased the promoter activity of CD59, as well as their messenger RNA and protein levels. Moreover, flow cytometry showed the increased expression level of CD59 protein on the surface of HBx-positive cells. Of interest, we found that HBx up-regulated CD59 by binding with cAMP response element-binding to the promoter region of the CD59 gene using chromatin immunoprecipitation assay. In addition, we showed that HBx up-regulated CD59 by let-7i at post-transcriptional regulation level. Our data showed that the deposition of C5b-9 were decreased on the cell surface in HepG2-X cells relative to HepG2 cells, suggesting that increased CD59 mediated by HBx prevents the formation of functional membrane attack complex. Furthermore, we demonstrated that down-regulation of CD59 was sufficient to abolish the resistance capability of CDC in HBx-positive cells by RNA interference (siRNA) in vitro and in vivo. Thus, we conclude that HBx contributes to cells resistance to CDC through CD59. Therapeutically, CD59 may serve as a target in HBV-associated hepatoma patients.
Collapse
Affiliation(s)
- Changliang Shan
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lepiller Q, Aziz Khan K, Di Martino V, Herbein G. Cytomegalovirus and tumors: two players for one goal-immune escape. Open Virol J 2011; 5:60-9. [PMID: 21760870 PMCID: PMC3134960 DOI: 10.2174/1874357901105010060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/10/2011] [Accepted: 04/12/2011] [Indexed: 12/22/2022] Open
Abstract
Cytomegalovirus (CMV) and the human tumor cell share the same objectives: escape the recognition and destruction by the immune system and establish a state of immune tolerance conducive for their development. For early tumor development, the escape of the first lines of defense of the immune surveillance is a critical step which determines survival or destruction. The presence of CMV on the tumor site and its involvement in carcinogenesis as initiator or promoter is increasingly documented. In this article, we highlight the similarity between mechanisms used by tumors and CMV to circumvent the immune defenses and evade from immune surveillance. We suggest that CMV and tumors help one another for their common objective. CMV gets shelter in immunologically poor environment of the tumor cells. In return CMV, by acting directly on the cancer cell and/or on the tumor microenvironment, provides the tumor cell the ways to promote its immune escape and development of immune tolerance.
Collapse
Affiliation(s)
- Quentin Lepiller
- Department of Virology, University of Franche-Comte, UPRES EA 4266, IFR 133, CHU Besancon, F-25030 Besanon, France
| | | | | | | |
Collapse
|
40
|
Chen W, Wu Y, Liu W, Wang G, Wang X, Yang Y, Chen W, Tai Y, Lu M, Qian Q, Zhang Q, Chen G. Enhanced antitumor efficacy of a novel fiber chimeric oncolytic adenovirus expressing p53 on hepatocellular carcinoma. Cancer Lett 2011; 307:93-103. [PMID: 21504839 DOI: 10.1016/j.canlet.2011.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/15/2011] [Accepted: 03/24/2011] [Indexed: 12/18/2022]
Abstract
Oncolytic adenoviruses may offer a new treatment option and improve the prognosis for patients with hepatocellular carcinoma (HCC). However, the antitumor efficacy of oncolytic adenoviruses on HCC cells is compromised due to low expression of the adenovirus serotype 5 (Ad5) receptor on the target cells. In this study we showed that all HCC cell lines and clinical samples expressed high level of CD46, the receptor for Adenovirus 35 (Ad35) and constructed new fiber chimeric oncolytic adenoviruses with or without a p53 gene expression cassette, SG635-p53 and SG635, respectively. These variants were derived from the previously described Ad5 vectors SG600-p53 and SG600 by replacing the Ad5 fiber with a chimeric Ad5/35 fiber. It was found that the 5/35 fiber chimeric adenovirus vector (Ad5/35-EGFP) demonstrated significantly improved transduction in all tested HCC cell lines compared with the Ad5 vector (Ad5-EGFP). The new fiber chimeric oncolytic adenoviruses produced more progeny viruses in HCC cells than did the Ad5-based viruses but replicated weakly in normal fibroblast BJ cells. In addition, SG635-p53 mediated a higher level of transgenic expression than SG600-p53 in Hep3B and Huh7 cells and showed a markedly enhanced antitumor effect on HCC cells in vitro compared with SG635 or SG600-p53 without causing significant cytotoxicity to normal cells. Antitumor activity of SG635-p53 was shown in Hep3B subcutaneous xenograft tumor models following intratumoral injection, resulting in significant inhibition of tumor growth and prolonged survival of animals. Our data suggest that SG635-p53, as a fiber chimeric oncolytic adenovirus in combination with p53 expression, may serve as a novel, promising and safe anticancer agent for the treatment of HCC.
Collapse
Affiliation(s)
- Wei Chen
- Liver Transplantation Center, 3rd Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Yuqiang Wu
- Liver Transplantation Center, 3rd Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Guoying Wang
- Liver Transplantation Center, 3rd Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyun Wang
- Liver Transplantation Center, 3rd Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yang Yang
- Liver Transplantation Center, 3rd Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Yan Tai
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Minqiang Lu
- Liver Transplantation Center, 3rd Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qijun Qian
- Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Center, 3rd Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Guihua Chen
- Liver Transplantation Center, 3rd Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.
| |
Collapse
|
41
|
Lech PJ, Russell SJ. Use of attenuated paramyxoviruses for cancer therapy. Expert Rev Vaccines 2011; 9:1275-302. [PMID: 21087107 DOI: 10.1586/erv.10.124] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Paramyxoviruses, measles virus (MV), mumps virus (MuV) and Newcastle disease virus (NDV), are well known for causing measles and mumps in humans and Newcastle disease in birds. These viruses have been tamed (attenuated) and successfully used as vaccines to immunize their hosts. Remarkably, pathogenic MuV and vaccine strains of MuV, MV and NDV efficiently infect and kill cancer cells and are consequently being investigated as novel cancer therapies (oncolytic virotherapy). Phase I/II clinical trials have shown promise but treatment efficacy needs to be enhanced. Technologies being developed to increase treatment efficacy include: virotherapy in combination with immunosuppressive drugs (cyclophosphamide); retargeting of viruses to specific tumor types or tumor vasculature; using infected cell carriers to protect and deliver the virus to tumors; and genetic manipulation of the virus to increase viral spread and/or express transgenes during viral replication. Transgenes have enabled noninvasive imaging or tracking of viral gene expression and enhancement of tumor destruction.
Collapse
Affiliation(s)
- Patrycja J Lech
- Mayo Clinic, Department of Molecular Medicine, 200 1st Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
42
|
Pesonen S, Kangasniemi L, Hemminki A. Oncolytic Adenoviruses for the Treatment of Human Cancer: Focus on Translational and Clinical Data. Mol Pharm 2010; 8:12-28. [PMID: 21126047 DOI: 10.1021/mp100219n] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sari Pesonen
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| | - Lotta Kangasniemi
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
43
|
Murakami M, Ugai H, Wang M, Belousova N, Dent P, Fisher PB, Glasgow JN, Everts M, Curiel DT. An adenoviral vector expressing human adenovirus 5 and 3 fiber proteins for targeting heterogeneous cell populations. Virology 2010; 407:196-205. [PMID: 20828776 DOI: 10.1016/j.virol.2010.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 06/09/2010] [Accepted: 08/12/2010] [Indexed: 11/16/2022]
Abstract
Human adenovirus serotype 5 (HAdV-5) attaches to its primary receptor, the coxsackie and adenovirus receptor (CAR) as the first step of infection. However, CAR expression decreases as tumors progress, thereby diminishing the utility of HAdV-5-based vectors for cancer therapy. In contrast, many aggressive tumor cells highly express CD46, a cellular receptor for HAdV-3. We hypothesized that a mosaic HAdV vector, containing two kinds of fiber proteins, would provide extensive transduction in a heterogeneous population of tumor cells with varying expression levels of HAdV receptors. We therefore generated a fiber-mosaic HAdV vector displaying both a chimeric HAdV-3 fiber and the HAdV-5 fiber protein. We verified the structural integrity of purified viral particles and confirmed that the fiber-mosaic HAdV vector has expanded tropism. We conclude that the use of fiber-mosaic HAdV vectors is a promising approach for transducing a heterogeneous cell population with different expression levels of adenovirus receptors.
Collapse
Affiliation(s)
- Miho Murakami
- Division of Human Gene Therapy, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Murakami M, Ugai H, Belousova N, Pereboev A, Dent P, Fisher PB, Everts M, Curiel DT. Chimeric adenoviral vectors incorporating a fiber of human adenovirus 3 efficiently mediate gene transfer into prostate cancer cells. Prostate 2010; 70:362-76. [PMID: 19902467 PMCID: PMC2862273 DOI: 10.1002/pros.21070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND We have developed a range of adenoviral (Ad) vectors based on human adenovirus serotype 5 (HAdV-5) displaying the fiber shaft and knob domains of species B viruses (HAdV-3, -11, or -35). These species B Ads utilize different cellular receptors than HAdV-5 for infection. We evaluated whether Ad vectors displaying species B fiber shaft and knob domains (Ad5F3Luc1, Ad5F11Luc1, and Ad5F35Luc1) would efficiently infect cancer cells of distinct origins, including prostate cancer. METHODS The fiber chimeric Ad vectors were genetically generated and compared with the original Ad vector (Ad5Luc1) for transductional efficiency in a variety of cancer cell lines, including prostate cancer cells and primary prostate epithelial cells (PrEC), using luciferase as a reporter gene. RESULTS Prostate cancer cell lines infected with Ad5F3Luc1 expressed higher levels of luciferase than Ad5Luc1, as well as the other chimeric Ad vectors. We also analyzed the transductional efficiency via monitoring of luciferase activity in prostate cancer cells when expressed as a fraction of the gene transfer in PrEC cells. In the PC-3 and DU145 cell lines, the gene transfer ratio of cancer cells versus PrEC was once again highest for Ad5F3Luc1. CONCLUSION Of the investigated chimeric HAdV-5/species B vectors, Ad5F3Luc1 was judged to be the most suitable for targeting prostate cancer cells as it showed the highest transductional efficiency in these cells. It is foreseeable that an Ad vector incorporating the HAdV-3 fiber could potentially be used for prostate cancer gene therapy.
Collapse
Affiliation(s)
- Miho Murakami
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hideyo Ugai
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Natalya Belousova
- Department of Experimental Diagnostic Imaging, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - Alexander Pereboev
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, University of Alabama at Birmingham, Birmingham, Alabama
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul Dent
- Department of Biochemistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B. Fisher
- Department of Human & Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Maaike Everts
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David T. Curiel
- Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, University of Alabama at Birmingham, Birmingham, Alabama
- Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama
- Correspondence to: David T. Curiel, MD. Ph.D., Division of Human Gene Therapy, Departments of Medicine, Obstetrics and Gynecology, Pathology, Surgery, and the Gene Therapy Center, University of Alabama at Birmingham, 901 19th Street South, BMR2-502, Birmingham, Alabama 35294 USA. Phone: (205) 934-8627. Fax: (205) 975-7476.
| |
Collapse
|
45
|
Abstract
Targeted therapy of cancer using oncolytic viruses has generated much interest over the past few years in the light of the limited efficacy and side effects of standard cancer therapeutics for advanced disease. In 2006, the world witnessed the first government-approved oncolytic virus for the treatment of head and neck cancer. It has been known for many years that viruses have the ability to replicate in and lyse cancer cells. Although encouraging results have been demonstrated in vitro and in animal models, most oncolytic viruses have failed to impress in the clinical setting. The explanation is multifactorial, determined by the complex interactions between the tumor and its microenvironment, the virus, and the host immune response. This review focuses on discussion of the obstacles that oncolytic virotherapy faces and recent advances made to overcome them, with particular reference to adenoviruses.
Collapse
Affiliation(s)
- Han Hsi Wong
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; E-Mails: (H.H.W.); (N.R.L.)
| | - Nicholas R. Lemoine
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; E-Mails: (H.H.W.); (N.R.L.)
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
| | - Yaohe Wang
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; E-Mails: (H.H.W.); (N.R.L.)
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-2078823596, Fax: +44-2078823884
| |
Collapse
|
46
|
A recombinant adenovirus type 35 fiber knob protein sensitizes lymphoma cells to rituximab therapy. Blood 2009; 115:592-600. [PMID: 19965652 DOI: 10.1182/blood-2009-05-222463] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many tumors, including lymphomas, up-regulate expression of CD46 to escape destruction by complement. Tumor cells are therefore relatively resistant to therapy by monoclonal antibodies, which act through complement-dependent cytotoxicity (CDC). From an Escherichia coli expression library of adenovirus type 35 fiber knob mutants, we selected a variant (Ad35K(++)) that had a higher affinity to CD46 than did the natural Ad35 fiber knob. We demonstrated that incubation of lymphoma cells with recombinant Ad35K(++) protein resulted in transient removal of CD46 from the cell surface. Preincubation of lymphoma cells with Ad35K(++) sensitized cells to CDC, triggered by the CD20-specific monoclonal antibody rituximab. In xenograft models with human lymphoma cells, preinjection of Ad35K(++) dramatically increased the therapeutic effect of rituximab. Blood cell counts and organ histology were normal after intravenous injection of Ad35K(++) into mice that express human CD46. The presence of polyclonal anti-Ad35K(++) antibodies did not affect the ability of Ad35K(++) to enhance rituximab-mediated CDC in in vitro assays. The Ad35K(++)-based approach has potential implications in monoclonal antibody therapy of malignancies beyond the combination with rituximab.
Collapse
|
47
|
Greig JA, Buckley SM, Waddington SN, Parker AL, Bhella D, Pink R, Rahim AA, Morita T, Nicklin SA, McVey JH, Baker AH. Influence of coagulation factor x on in vitro and in vivo gene delivery by adenovirus (Ad) 5, Ad35, and chimeric Ad5/Ad35 vectors. Mol Ther 2009; 17:1683-91. [PMID: 19603000 DOI: 10.1038/mt.2009.152] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The binding of coagulation factor X (FX) to the hexon of adenovirus (Ad) 5 is pivotal for hepatocyte transduction. However, vectors based on Ad35, a subspecies B Ad, are in development for cancer gene therapy, as Ad35 utilizes CD46 (which is upregulated in many cancers) for transduction. We investigated whether interaction of Ad35 with FX influenced vector tropism using Ad5, Ad35, and Ad5/Ad35 chimeras: Ad5/fiber(f)35, Ad5/penton(p)35/f35, and Ad35/f5. Surface plasmon resonance (SPR) revealed that Ad35 and Ad35/f5 bound FX with approximately tenfold lower affinities than Ad5 hexon-containing viruses, and electron cryomicroscopy (cryo-EM) demonstrated a direct Ad35 hexon:FX interaction. The presence of physiological levels of FX significantly inhibited transduction of vectors containing Ad35 fibers (Ad5/f35, Ad5/p35/f35, and Ad35) in CD46-positive cells. Vectors were intravenously administered to CD46 transgenic mice in the presence and absence of FX-binding protein (X-bp), resulting in reduced liver accumulation for all vectors. Moreover, Ad5/f35 and Ad5/p35/f35 efficiently accumulated in the lung, whereas Ad5 demonstrated poor lung targeting. Additionally, X-bp significantly reduced lung genome accumulation for Ad5/f35 and Ad5/p35/f35, whereas Ad35 was significantly enhanced. In summary, vectors based on the full Ad35 serotype will be useful vectors for selective gene transfer via CD46 due to a weaker FX interaction compared to Ad5.
Collapse
Affiliation(s)
- Jenny A Greig
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Markiewski MM, Lambris JD. Is complement good or bad for cancer patients? A new perspective on an old dilemma. Trends Immunol 2009; 30:286-92. [PMID: 19428302 DOI: 10.1016/j.it.2009.04.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022]
Abstract
Several studies of human cancers have established that chronic and insidious inflammation promotes the process of carcinogenesis and exacerbates the growth of existing tumors. Conversely, acute inflammation seems to have the opposite effect. Recent discoveries indicate that this dualism in the role of inflammation in cancer is mirrored by the effects of the complement system on this disease process. Previous studies have suggested that complement proteins can contribute to the immune surveillance of malignant tumors. However, a very recent study has indicated that complement proteins can also promote tumor growth. Here, we describe our current understanding of the role of complement in tumor development and progression.
Collapse
Affiliation(s)
- Maciej M Markiewski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | |
Collapse
|
49
|
Abstract
Measles virus offers an ideal platform from which to build a new generation of safe, effective oncolytic viruses. Occasional so-called spontaneous tumor regressions have occurred during natural measles infections, but common tumors do not express SLAM, the wild-type MV receptor, and are therefore not susceptible to the virus. Serendipitously, attenuated vaccine strains of measles virus have adapted to use CD46, a regulator of complement activation that is expressed in higher abundance on human tumor cells than on their nontransformed counterparts. For this reason, attenuated measles viruses are potent and selective oncolytic agents showing impressive antitumor activity in mouse xenograft models. The viruses can be engineered to enhance their tumor specificity, increase their antitumor potency, and facilitate noninvasive in vivo monitoring of their spread. A major impediment to the successful deployment of oncolytic measles viruses as anticancer agents is the high prevalence of preexisting anti-measles immunity, which impedes bloodstream delivery and curtails intratumoral virus spread. It is hoped that these problems can be addressed by delivering the virus inside measles-infected cell carriers and/or by concomitant administration of immunosuppressive drugs. From a safety perspective, population immunity provides an excellent defense against measles spread from patient to carers and, in 50 years of human experience, reversion of attenuated measles to a wild-type pathogenic phenotype has not been observed. Clinical trials testing oncolytic measles viruses as an experimental cancer therapy are currently underway.
Collapse
Affiliation(s)
- Stephen J. Russell
- Mayo Clinic Department of Molecular Medicine, 200 1 Street SW, Rochester, MN 55905, Phone: 507-824-8384, Fax: 507-284-8388,
| | - Kah Whye Peng
- Mayo Clinic Department of Molecular Medicine, 200 1Street SW, Rochester, MN 55905, Phone: 507-824-8357, Fax: 507-284-8388,
| |
Collapse
|
50
|
Varela JC, Atkinson C, Woolson R, Keane TE, Tomlinson S. Upregulated expression of complement inhibitory proteins on bladder cancer cells and anti-MUC1 antibody immune selection. Int J Cancer 2008; 123:1357-63. [PMID: 18561323 DOI: 10.1002/ijc.23676] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Membrane complement inhibitors (CD46, CD55 and CD59) are upregulated in some human cancers indicating that they play a role in immune evasion. We investigated complement inhibitor expression in bladder cancer and examined the hypothesis that selective pressure of an antibody response (anti-MUC1) results in the upregulated expression of complement inhibitors on tumor cells. Paired samples of tumor and normal tissue from 22 bladder cancer patients were analyzed for expression of MUC1, CD46, CD55 and CD59, and matched serum samples analyzed for anti-MUC1 IgM and IgG levels. Relationships between anti-MUC1 antibody levels and complement inhibitor expression were investigated. MUC1 mRNA was upregulated in 86% of tumor samples. CD46 was upregulated in 77%, CD55 in 55% and CD59 in 59% of tumors. Low titer anti-MUC1 IgM was detected in normal human sera, but was elevated in 41% of the bladder cancer patients. Anti-MUC1 IgG was virtually absent from normal sera, but present in 32% of the cancer patients. There was a direct relationship between anti-MUC1 antibody titer and expression level of complement inhibitors. Analysis of the correlation of each antibody with the expression of each complement inhibitor by Spearman's rank test revealed a strong correlation between both anti-MUC1 IgM and IgG levels and increased expression of CD46 and CD55, and combined anti-MUC1 IgM/IgG levels correlated with increased expression of all 3 complement inhibitors. In conclusion, the data demonstrate upregulated complement inhibitor expression and the presence of an anti-MUC1 antibody response in bladder cancer patients and support the hypothesis of antibody-mediated immune selection.
Collapse
Affiliation(s)
- Juan Carlos Varela
- Department of Microbiology and Immunology, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|