1
|
Ding S, Wang H, Liao Y, Chen R, Hu Y, Wu H, Shen H, Tang S. HPV16 E7 protein antagonizes TNF-α-induced apoptosis of cervical cancer cells via Daxx/JNK pathway. Microb Pathog 2023; 185:106423. [PMID: 37871853 DOI: 10.1016/j.micpath.2023.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Human papillomavirus (HPV) E7 protein as an important viral factor was involved in the progression of cervical cancer by mediating the cellular signaling pathways. Daxx (Death domain-associated protein) can interact with a variety of proteins to affect the viral infection process. However, the interaction and its related function between HPV16 E7 and Daxx have not been adequately investigated. Here, it was found that HPV16 E7 can interact with Daxx in HeLa or C33A cells by co-immunoprecipitation. HPV16 E7 protein treatment can up-regulate Daxx protein expression, while the interference in Daxx expression and the agonists for JNK can both reduce the antagonistic effects of HPV16 E7 on TNF-α-induced apoptosis, suggesting that Daxx/JNK pathway may be involved in the anti-apoptotic activity of HPV16 E7.
Collapse
Affiliation(s)
- Shuang Ding
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China; Department of Clinical Laboratory, The Seventh Affiliated Hospital, University of South China / Hunan Provincial Veterans Administration Hospital, Changsha, China
| | - Hanmeng Wang
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Yaqi Liao
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Ranzhong Chen
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Yu Hu
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongrong Wu
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Haiyan Shen
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Shuangyang Tang
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
2
|
Hewavisenti RV, Arena J, Ahlenstiel CL, Sasson SC. Human papillomavirus in the setting of immunodeficiency: Pathogenesis and the emergence of next-generation therapies to reduce the high associated cancer risk. Front Immunol 2023; 14:1112513. [PMID: 36960048 PMCID: PMC10027931 DOI: 10.3389/fimmu.2023.1112513] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
Human papillomavirus (HPV), a common sexually transmitted virus infecting mucosal or cutaneous stratified epithelia, is implicated in the rising of associated cancers worldwide. While HPV infection can be cleared by an adequate immune response, immunocompromised individuals can develop persistent, treatment-refractory, and progressive disease. Primary immunodeficiencies (PIDs) associated with HPV-related disease include inborn errors of GATA, EVER1/2, and CXCR4 mutations, resulting in defective cellular function. People living with secondary immunodeficiency (e.g. solid-organ transplants recipients of immunosuppression) and acquired immunodeficiency (e.g. concurrent human immunodeficiency virus (HIV) infection) are also at significant risk of HPV-related disease. Immunocompromised people are highly susceptible to the development of cutaneous and mucosal warts, and cervical, anogenital and oropharyngeal carcinomas. The specific mechanisms underlying high-risk HPV-driven cancer development in immunocompromised hosts are not well understood. Current treatments for HPV-related cancers include surgery with adjuvant chemotherapy and/or radiotherapy, with clinical trials underway to investigate the use of anti-PD-1 therapy. In the setting of HIV co-infection, persistent high-grade anal intraepithelial neoplasia can occur despite suppressive antiretroviral therapy, resulting in an ongoing risk for transformation to overt malignancy. Although therapeutic vaccines against HPV are under development, the efficacy of these in the setting of PID, secondary- or acquired- immunodeficiencies remains unclear. RNA-based therapeutic targeting of the HPV genome or mRNA transcript has become a promising next-generation therapeutic avenue. In this review, we summarise the current understanding of HPV pathogenesis, immune evasion, and malignant transformation, with a focus on key PIDs, secondary immunodeficiencies, and HIV infection. Current management and vaccine regimes are outlined in relation to HPV-driven cancer, and specifically, the need for more effective therapeutic strategies for immunocompromised hosts. The recent advances in RNA-based gene targeting including CRISPR and short interfering RNA (siRNA), and the potential application to HPV infection are of great interest. An increased understanding of both the dysregulated immune responses in immunocompromised hosts and of viral persistence is essential for the design of next-generation therapies to eliminate HPV persistence and cancer development in the most at-risk populations.
Collapse
Affiliation(s)
- Rehana V. Hewavisenti
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Joshua Arena
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Chantelle L. Ahlenstiel
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
- UNSW RNA Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Hao X, Sun X, Zhu H, Xie L, Wang X, Jiang N, Fu P, Sang M. Hydroxypropyl-β-Cyclodextrin-Complexed Resveratrol Enhanced Antitumor Activity in a Cervical Cancer Model: In Vivo Analysis. Front Pharmacol 2021; 12:573909. [PMID: 33935691 PMCID: PMC8082405 DOI: 10.3389/fphar.2021.573909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
Trans-resveratrol (RES) exhibits a wide range of biological activities. Various methodological approaches have been established to improve the pharmacokinetic properties of RES. Moreover, additional in vivo studies are required to support clinical application. In this study, RES/HP-β-CD (RHSD) inclusion complex was prepared and characterized by FTIR, PXRD, DSC and NMR data. The effect and potential mechanism of RHSD against cervical cancer were investigated in a mouse xenograft tumor model by qPCR assay, Western blot assay, and immunohistochemical assay. Results showed that RHSD significantly decreased tumor growth compared with free RES, while the effect of preventing tumor growth was more prominent in vivo. Notably, RHSD could inhibit tumor development by suppressing the expression of HPV E6 and E7 oncogenes and upregulating P53 and Rb1 protein in cervical cancer. These findings demonstrated that RHSD was safe and potential for development of a new oral administration drug to treat cervical cancer.
Collapse
Affiliation(s)
- Xincai Hao
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xiaodong Sun
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Haizhen Zhu
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Lixia Xie
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xuanbin Wang
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Nan Jiang
- Hubei Province Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Pan Fu
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Ming Sang
- Hubei Clinical Institute of Parkinson's Disease at Xiangyang No .1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
4
|
Cervical cancer and HPV infection: ongoing therapeutic research to counteract the action of E6 and E7 oncoproteins. Drug Discov Today 2019; 24:2044-2057. [DOI: 10.1016/j.drudis.2019.07.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
|
5
|
Xiong Y, Chen L, Luo P. N-Benzylcinnamide induces apoptosis in HPV16 and HPV18 cervical cancer cells via suppression of E6 and E7 protein expression. IUBMB Life 2015; 67:374-9. [PMID: 25914202 DOI: 10.1002/iub.1380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/03/2015] [Indexed: 01/15/2023]
Abstract
Seventy percent of all cervical cancers are caused by human papillomavirus (HPV) infections. Natural products are being extensively explored for their potential ability to prevent and treat cervical cancers. N-benzylcinnamide (PT-3) is a natural product purified from Piper submultinerve. Whether or not PT-3 has an effect on cervical cancer cells is as yet unknown. Therefore, we set out to explore the mechanism of action behind PT-3 and how it affects cells that either contain or lack HPV DNA. Our results demonstrate that PT-3 slows the growth kinetics of CaSki (HPV-16 positive) and HeLa (HPV-18 positive) cells in a dose-dependent manner, but does not slows HPV-negative cells. Importantly, we also found that PT-3 induces apoptosis by suppressing expression of E6 and E7 viral oncogenes in HPV-infected cervical cancer CaSki and HeLa cells. Moreover, we found that suppression of E6 and E7 expression leads to modulations in p53 and protein retinoblastomas, which are not changed in HPV-negative cervical cancer C33A cells. These findings demonstrate that PT-3 can effectively promote apoptosis by downregulating expression of E6 and E7.
Collapse
Affiliation(s)
- Yuanhuan Xiong
- Department of Obstetrics and Gynecology, Jiangxi Provincial People's Hospital, Donghu District, Nanchang City, Jiangxi Province, China
| | - Lin Chen
- Faculty of Medical Sciences, Wuhan University School of Medicine, Wuhan, Hubei, People's Republic of China
| | - Puying Luo
- Department of Obstetrics and Gynecology, Jiangxi Provincial People's Hospital, Donghu District, Nanchang City, Jiangxi Province, China
| |
Collapse
|
6
|
Kim MS, Bak Y, Park YS, Lee DH, Kim JH, Kang JW, Song HH, Oh SR, Yoon DY. Wogonin induces apoptosis by suppressing E6 and E7 expressions and activating intrinsic signaling pathways in HPV-16 cervical cancer cells. Cell Biol Toxicol 2013; 29:259-72. [PMID: 23955116 DOI: 10.1007/s10565-013-9251-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 07/22/2013] [Indexed: 01/14/2023]
Abstract
Wogonin is a flavonoid compound extracted from Scutellaria baicalensis and is well known as a benzodiazepine receptor ligand with anxiolytic effects. Many recent studies have demonstrated that wogonin modulates angiogenesis, proliferation, invasion, and tumor progress in various cancer tissues. We further explored the mechanism of action of wogonin on cervical cancer cells that contain or lack human papillomavirus (HPV) DNA. Wogonin was cytotoxic to HPV 16 (+) cervical cancer cells, SiHa and CaSki, but not to HPV-negative cells. We demonstrated that wogonin induced apoptosis by suppressing the expressions of the E6 and E7 viral oncogenes in HPV-infected cervical cancer CaSki and SiHa cells. The modulation of p53 and protein retinoblastoma (pRb) were also triggered by the suppression of E6 and E7 expressions. However, p53 was not altered in HPV-negative cervical cancer C33A cells. Moreover, wogonin modulated the mitochondrial membrane potential and the expression of pro- and anti-apoptotic factors such as Bax and Bcl-2. Wogonin also provoked the cleavage of caspase-3, caspase-9, and poly ADP ribose polymerase. After transfection of siRNAs to target E6 and E7, additional restoration of p53 and pRb was not induced, but processing of caspases and PARP was increased compared with wogonin treatment alone. Together, our findings demonstrated that wogonin effectively promotes apoptosis by downregulating E6 and E7 expressions and promoting intrinsic apoptosis in human cervical cancer cells.
Collapse
Affiliation(s)
- Man Sub Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cytolytic activity of the human papillomavirus type 16 E711-20 epitope-specific cytotoxic T lymphocyte is enhanced by heat shock protein 110 in HLA-A*0201 transgenic mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1027-33. [PMID: 23658393 DOI: 10.1128/cvi.00721-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heat shock proteins (HSPs) have been successfully applied to a broad range of vaccines as biological adjuvants to enhance the immune response. The recently defined HSP110, in particular, exhibits strong protein binding affinity and is capable of enhancing the immunogenicity of protein antigens remarkably more than other HSP family members. In our previous study, we verified that murine HSP110 (mHSP110) significantly enhanced the immune response of a C57BL/6 mouse model to the H-2(d)-restricted human papillomavirus (HPV) E749-57 epitope (short peptide spanning the 49th to 57th amino acid residues in the E7 protein). To determine whether HSP110 similarly enhances the immunogenicity of human epitope peptides, we used the HLA-A2 transgenic mouse model to investigate the efficacy of the mHSP110 chaperone molecule as an immunoadjuvant of the human HLA-A2-restricted HPV16 E711-20 epitope vaccine. Results showed that mHSP110 efficiently formed a noncovalently bound complex with the E711-20 epitope. The mHSP110-E711-20 complex induced epitope-specific splenocyte proliferation and E711-20-specific gamma interferon (IFN-γ) secretion. Importantly, cytotoxic T lymphocytes primed by the mHSP110-E711-20 complex exerted strong cytolytic effects on target T2 cells pulsed with the E711-20 peptide or TC-1 cells transfected with the HLA-A2 gene. In addition, the mHSP110-E711-20 complex elicited stronger ex vivo and in vivo antitumor responses than either emulsified complete Freund's adjuvant or HSP70-chaperoned E711-20 peptide. These collective data suggest that HSP110 is a promising immunomodulator candidate for peptide-based human cancer vaccines, such as for the HLA-A2-restricted E711-20 epitope.
Collapse
|
8
|
Ward MC, van der Watt PJ, Tzoneva G, Leaner VD. Deregulated LAP2α expression in cervical cancer associates with aberrant E2F and p53 activities. IUBMB Life 2011; 63:1018-26. [PMID: 21990273 DOI: 10.1002/iub.528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 06/06/2011] [Indexed: 01/11/2023]
Abstract
Lamina-associated polypeptide 2 alpha (LAP2α) plays a role in maintaining nuclear structure, in nuclear assembly/disassembly, and in transcriptional regulation. Elevated LAP2α mRNA expression has been previously reported to associate with certain cancer types. The aim of this study was to investigate LAP2α expression in cervical cancer and transformed cells and to identify factors that associate with its differential expression. LAP2α expression was found to be elevated in cervical cancer tissue by microarray, qRT-PCR, and immunofluorescence analyses. LAP2α also showed elevated expression in cervical cancer cell lines and in transformed fibroblasts compared with normal cells. To determine factors associated with elevated LAP2α in cervical cancer, the effect of inhibiting HPV E7 and E6 oncoproteins was investigated. E7 inhibition resulted in a decrease in phosphorylated Rb and an associated decrease in LAP2α, suggesting a role for E2F in regulating LAP2α expression. This finding was confirmed by inhibiting DP1, a co-activator of E2F, which resulted in decreased LAP2α levels. Inhibition of E6 resulted in elevated p53 and an associated decrease in LAP2α, suggesting that p53 associates with the negative regulation of LAP2α expression. This hypothesis was tested by inhibiting p53 in normal cells, and a resultant increase in LAP2α expression was observed. In conclusion, this study provides evidence for elevated LAP2α expression in cervical cancer and suggests that E2F and p53 activities associate with the positive and negative regulation of LAP2α expression, respectively.
Collapse
Affiliation(s)
- Michelle C Ward
- Faculty of Health Sciences, Division of Medical Biochemistry, University of Cape Town, Institute of Infectious Disease and Molecular Medicine, South Africa
| | | | | | | |
Collapse
|
9
|
Karadaglić D, Wood AD, McRobbie M, Stojanović R, Herrington CS. Fluorescence spectroscopy of an in vitro model of human cervical neoplasia identifies graded spectral shape changes with neoplastic phenotype and a differential effect of acetic acid. Cancer Epidemiol 2009; 33:463-8. [PMID: 19926356 DOI: 10.1016/j.canep.2009.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 10/17/2009] [Accepted: 10/19/2009] [Indexed: 11/27/2022]
Abstract
BACKGROUND The clinical utility of spectroscopic methods for the diagnosis of cervical cancer is limited by significant inter-patient variation in the spectroscopic properties of the cervix. Improved understanding of the contributions of the components of cervical tissue to the observed spectra would therefore be helpful in the development of spectroscopic approaches to the study of cervical disease in vivo. METHODS In this study, we used organotypic epithelial raft culture as an in vitro model system to analyse the fluorescence properties of the surface squamous epithelium specifically. The spectrum of cervical dysplasia was modelled by producing rafts lined by primary human keratinocytes (PHKs) and the HaCaT, SiHa and CaSki human keratinocyte cell lines and fluorescence emission spectra were recorded at a wide range of excitation wavelengths. RESULTS Statistically significant differences in spectral shape were identified between the different rafts at excitation wavelengths between 250nm and 310nm. A graded, differential effect of acetic acid on fluorescence intensity was also observed, consistent with the visible effects of acetic acid on clinical examination at colposcopy. CONCLUSION These data suggest that the development of neoplastic changes in the squamous epithelium of the cervix are associated with alterations in its fluorescence properties and that the application of acetic acid has a demonstrable effect on these properties. Identification of these alterations may aid the discrimination of cervical lesions in vivo.
Collapse
|
10
|
Mirecka EA, Hey T, Fiedler U, Rudolph R, Hatzfeld M. Affilin Molecules Selected against the Human Papillomavirus E7 Protein Inhibit the Proliferation of Target Cells. J Mol Biol 2009; 390:710-21. [DOI: 10.1016/j.jmb.2009.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/10/2009] [Accepted: 05/15/2009] [Indexed: 01/18/2023]
|
11
|
Chen J, Irving A, McMillan N, Gu W. Future of RNAi-based therapies for human papillomavirus-associated cervical cancer. Future Virol 2007. [DOI: 10.2217/17460794.2.6.587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over 99% of cervical cancers are associated with infection of high-risk type human papillomaviruses (HPV). These viruses infect epithelial cells lining the cervix and express the early viral genes E6 and E7, which are oncogenes and are primarily responsible for the transformation of the epithelial cells. The continuous expression of those genes is essential for maintenance of the cancer cell phenotype and viability. These viral genes can be silenced using oligonucleotide-based techniques, for example RNAi, antisense RNA and ribozymes. In spite of promising results in vitro and in vivo, in mice, these methods have thus far proved unsuccessful in humans, owing to the lack of an effective delivery system amongst other limitations. In this review we will discuss potential gene-silencing strategies in cervical cancer that would target both viral genes such as E6 and E7, and cellular genes that become deregulated such as E2F, p53, Akt, mTor, NF-κB or Bcl-2. By investigating these approaches we may generate an effective treatment for HPV-induced cervical cancer using gene silencing.
Collapse
Affiliation(s)
- Jiezhong Chen
- University of Queensland, UQ Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Brisbane, QLD 4102, Australia
| | - Aaron Irving
- University of Queensland, UQ Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Brisbane, QLD 4102, Australia
| | - Nigel McMillan
- University of Queensland, UQ Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Brisbane, QLD 4102, Australia
| | - Wenyi Gu
- University of Queensland, UQ Diamantina Institute, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Brisbane, QLD 4102, Australia
| |
Collapse
|
12
|
Lea JS, Sunaga N, Sato M, Kalahasti G, Miller DS, Minna JD, Muller CY. Silencing of HPV 18 oncoproteins With RNA interference causes growth inhibition of cervical cancer cells. Reprod Sci 2007; 14:20-8. [PMID: 17636212 DOI: 10.1177/1933719106298189] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Silencing the expression of human papillomavirus (HPV) oncoproteins should have therapeutic benefits for cervical cancer. The authors' objective was to study RNA interference of the HPV 18 E6/E7 bicistronic mRNA with E6 small interfering RNA (siRNA) and E7 siRNA and determine the effect of each siRNA on oncoprotein expression, resultant cell growth, and downstream molecular effects. RNA interference was used to knockdown HPV 18 E6 and E7 oncoproteins on the HPV 18 positive cervical cancer cell lines HeLa and C4I. Western blotting was used to assay for each oncoprotein expression and select downstream molecular targets. Cell cycle analyses, cell viability assays, and colony formation assays were performed to determine the effect of treatment by both HPV 18 E6 siRNA and E7 siRNA. The transfection reagent oligofectamine and Tax siRNA were used as negative controls. Transfection with E6 siRNA caused complete loss of E6 but not E7 oncoprotein. However, E7 siRNA induced complete loss of both E6 and E7 oncoproteins. E6 siRNA mediated the reexpression of p53 protein and a moderate decrease in phosphorylated retinoblastoma protein expression (pRb), resulting in decreased colony formation. Transfection with E7 siRNA mediated a robust increase in p53 expression and complete loss of pRb, resulting in a marked decrease in colony formation compared to the E6 siRNA (P =.001). Flow cytometry revealed significantly increased apoptotic cells with E7 siRNA compared to E6 siRNA and control. RNA interference targeting the E7 portion of the bicistronic HPV 18 mRNA can silence both E6 and E7 oncoproteins and is most effective in cervical cancer growth inhibition.
Collapse
Affiliation(s)
- Jayanthi S Lea
- Division ofGynecologic Oncology, Hamon Center of Therapeutic Oncology Research, University ofTexas Southwestern Medical Center, Dallas, TX75390-9032, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kari I, Syrjänen S, Johansson B, Peri P, He B, Roizman B, Hukkanen V. Antisense RNA directed to the human papillomavirus type 16 E7 mRNA from herpes simplex virus type 1 derived vectors is expressed in CaSki cells and downregulates E7 mRNA. Virol J 2007; 4:47. [PMID: 17547759 PMCID: PMC1892547 DOI: 10.1186/1743-422x-4-47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 06/04/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human papillomavirus (HPV) infection is known to be the most important etiologic factor of cervical cancer. There is no HPV specific therapy available for treatment of invasive squamous cell carcinoma of the cervix and its precursor lesions. The present study elucidates the potential to use herpes simplex virus (HSV) derived vectors for expression of antisense RNA to HPV -16 E7 oncogene. RESULTS We have constructed replication competent, nonneuroinvasive HSV-1 vectors, deleted of the gamma134.5 gene. The vectors express RNA antisense to the first 100 nucleotides of the HPV-16 E7 gene. We assayed the ability of the antisense E7 vectors R5225 (tk-) and R5226 (tk+), to produce antisense RNA, as well as the consequent effects on E7 mRNA and protein levels in HPV-16 positive CaSki cells. Anti-E7 RNA was expressed by both constructs in a dose-dependent manner. Expression of HPV-16 E7 mRNA was downregulated effectively in CaSki cells infected with the tk- recombinant R5225 or with R5226. The tk+ recombinant R5226 was effective in downregulating E7 protein expression. CONCLUSION We have shown that anti-E7 RNA expressed from an HSV vector could efficiently downregulate HPV-16 E7 mRNA and E7 protein expression in CaSki cells. We conclude that HSV vectors may become a useful tool for gene therapy of HPV infections.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Cell Line, Tumor
- Down-Regulation
- Gene Expression/drug effects
- Gene Expression Regulation, Viral
- Genetic Vectors/genetics
- Herpesvirus 1, Human/genetics
- Human papillomavirus 16/genetics
- Humans
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Papillomavirus E7 Proteins
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- RNA, Antisense/pharmacology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/biosynthesis
Collapse
Affiliation(s)
- Ilkka Kari
- Department of Virology, Institute of Dentistry, University of Turku, Turku, Finland
- MediCity Research Laboratory, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Oral Pathology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Stina Syrjänen
- MediCity Research Laboratory, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Oral Pathology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Bo Johansson
- MediCity Research Laboratory, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Oral Pathology, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Clinical Virology, Karolinska University Hospital, Stockholm, Sweden
| | - Piritta Peri
- Department of Virology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Bin He
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL, USA
| | - Bernard Roizman
- The Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, IL, USA
| | - Veijo Hukkanen
- Department of Virology, Institute of Dentistry, University of Turku, Turku, Finland
- MediCity Research Laboratory, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Microbiology, University of Oulu, Oulu, Finland
| |
Collapse
|
14
|
Niu XY, Peng ZL, Duan WQ, Wang H, Wang P. Inhibition of HPV 16 E6 oncogene expression by RNA interference in vitro and in vivo. Int J Gynecol Cancer 2006; 16:743-51. [PMID: 16681755 DOI: 10.1111/j.1525-1438.2006.00384.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Substantial studies have demonstrated that the initiation and progression of cervical cancer were closely associated with human papillomavirus (HPV) E6 and E7 oncogenes. The therapeutic strategy with ribozyme or antisense oligonucleotides to inhibit the expression of HPV E6 or E7 oncogenes showed effect to some degree, but problems such as low efficiency, short-period maintenance, and high cost still remain. The aim of this study was to investigate in vitro and in vivo the effect of HPV 16 E6 small interfering RNA (HPV 16 E6 siRNA) on cervical cancer cell line CaSki cells. The specific siRNA of HPV 16 E6 was synthesized and transfected into CaSki cells by liposome. The number of apoptotic cells, HPV 16 E6 messenger RNA (mRNA) level, and E6 protein expression were measured before and after the transfection by flow cytometry, reverse transcriptase-polymerase chain reaction, and Western blot, respectively. Cervical cancer in nude mice was established, and siRNA was injected directly into the nude mice peritoneal cavity or subcutaneous tumor. The efficiency of siRNA was evaluated by tumor volume change, HPV 16 E6 protein expression, and apoptosis of tumor cells. Apoptosis rate of CaSki cells at days 1, 2, 5, and 9 after siRNA transfection were 7.7%, 11.8%, 37.4%, and 12.6%, respectively. The mRNA level of HPV 16 E6 at the same time points were reduced by 77%, 83%, 59%, and 41%, respectively. But the mRNA level of beta-actin, as an internal control, showed no significant change. The inhibition rates of E6 protein synthesis at days 1, 2, 5, and 9 after the transfection were 79.7%, 80.4%, 71.3%, and 57.4%, respectively, whereas the protein levels of Lamin A/C, as internal control, had no change. In vivo, E6 siRNA administration groups showed a dramatic effect in inhibiting tumor growth, suppressing expression of E6 protein, and inducing tumor necrosis and apoptosis as compared with the control group. Direct injection of siRNA into subcutaneous tumor resulted in tumor suppression effect similar to that via the peritoneal cavity, and with additional injection better results could be achieved in cervical cancer CaSki cells. RNA interference exists, and the interference to HPV 16 E6 is specific and highly efficient both in vitro and in vivo.
Collapse
Affiliation(s)
- X-Y Niu
- Department of Obstetrics and Gynecology, Sichuan University Huaxi the Second Hospital, Chengdu, Sichuan Province, China
| | | | | | | | | |
Collapse
|
15
|
Bai L, Wei L, Wang J, Li X, He P. Extended effects of human papillomavirus 16 E6-specific short hairpin RNA on cervical carcinoma cells. Int J Gynecol Cancer 2006; 16:718-29. [PMID: 16681752 DOI: 10.1111/j.1525-1438.2006.00380.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Most cervical carcinomas express high-risk human papillomavirus (HPV) E6 and E7 oncogenes. Small interfering RNA can mediate sequence-specific inhibition of gene expression in mammalian cells. To find a most effective short hairpin RNA (shRNA) for HPV16 E6 messenger RNA (mRNA) and investigate the extended effects of the HPV16 E6 shRNA on cervical carcinoma cells, we stably transfected SiHa cells with four shRNA expression vectors (E6A-D). HPV16 E6A shRNA was found to be the most efficient in our study, which caused the reduction of HPV16 E6 mRNA to 10% in SiHa cells but did not reduce HPV18 E6 mRNA expression in HeLa cells. We subsequently demonstrated that E6A could stably express shRNA and effectively reduce HPV16 E6 and E7 viral genes expression in SiHa cells for more than 4 months. After E6 and E7 repression, there was a dramatic accumulation of p53, p21, and hypophosphorylated pRb proteins in cells. Furthermore, cell proliferation, colony formation ability, tumorigenicity, and in vitro cell invasive capability were suppressed substantially in E6A-transfected cells. These results suggest that the use of shRNA expression vector may be a potential approach for the treatment of persistent HPV infection and HPV-positive cervical carcinoma.
Collapse
Affiliation(s)
- L Bai
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | | | | | | | | |
Collapse
|
16
|
Zhang H, Jin Y, Chen X, Jin C, Law S, Tsao SW, Kwong YL. Papillomavirus type 16 E6/E7 and human telomerase reverse transcriptase in esophageal cell immortalization and early transformation. Cancer Lett 2006; 245:184-94. [PMID: 16488074 DOI: 10.1016/j.canlet.2006.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Revised: 01/09/2006] [Accepted: 01/09/2006] [Indexed: 12/20/2022]
Abstract
Infection with high-risk human papillomavirus (HPV) has been implicated in the pathogenesis of esophageal squamous cell carcinoma, and up-regulation of telomerase in esophageal adenocarcinoma. We immortalized normal esophageal epithelial cells by over-expression of the HPV16 E6/E7 and human telomerase reverse transcriptase (hTERT) genes. HPV16 E6/E7-induced immortalization was accompanied by reduced RB and p53, but increased p16 and p21, protein expression. hTERT-immortalized cells had unaffected RB and p53, but significantly decreased p16 and p21, protein expression. Aurora-A protein was also up-regulated in E6E7 immortalized cells, and to a less extent in hTERT immortalized cells. Fluorescence in situ hybridization showed that the Aurora-A gene locus was amplified in E6E7 immortalized cells, which might account in part for the Aurora-A over-expression. These molecular changes led to an abrogation of the G2 checkpoint. E6E7 and hTERT immortalized esophageal cells recapitulated many of the molecular changes observed in esophageal carcinomas, where RB and p53 are frequently down-regulated. However, down-regulation of p16 and p21 occurred frequently in esophageal cancer, owing to aberrant gene promoter methylation. We showed in the immortalized cells that aberrant methylation had not yet set in, suggesting that promoter methylation might not be necessary for cellular immortalization. In addition to supporting the role of HPV and telomerase in esophageal carcinogenesis, our cell lines may also be useful in vitro models for further studies of esophageal carcinogenesis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Medicine, University of Hong Kong, Professorial Block, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The human papillomaviruses (HPVs) are a diverse group of infectious agents, some of which are a causative agent of human cancers. Cervical cancer and oral cancer are closely associated with specific types of HPV, and the tumors grow only if there is continual expression of the viral E6 and E7 genes. Evidence from in vitro studies shows that when expression of these genes is inhibited by gene therapy approaches such as antisense RNA, ribozymes, or siRNA, the transformed phenotype of the cells is lost. Although it seems possible that clinical applications of this approach could help in the management of cervical and oral cancers there have been no clinical trials of gene therapy for HPV-associated cancers. Since the basic information is now available, a shift to translational research would be greatly welcomed.
Collapse
Affiliation(s)
- E J Shillitoe
- Department of Microbiology & Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210, USA.
| |
Collapse
|
18
|
Mackay IM, Arden KE, Nitsche A. Real-time Fluorescent PCR Techniques to Study Microbial-Host Interactions. METHODS IN MICROBIOLOGY 2004; 34:255-330. [PMID: 38620210 PMCID: PMC7148886 DOI: 10.1016/s0580-9517(04)34010-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This chapter describes how real-time polymerase chain reaction (PCR) performs and how it may be used to detect microbial pathogens and the relationship they form with their host. Research and diagnostic microbiology laboratories contain a mix of traditional and leading-edge, in-house and commercial assays for the detection of microbes and the effects they impart upon target tissues, organs, and systems. The PCR has undergone significant change over the last decade, to the extent that only a small proportion of scientists have been able or willing to keep abreast of the latest offerings. The chapter reviews these changes. It discusses the second-generation of PCR technology-kinetic or real-time PCR, a tool gaining widespread acceptance in many scientific disciplines but especially in the microbiology laboratory.
Collapse
Affiliation(s)
- Ian M Mackay
- Clinical Virology Research Unit, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Qld, Australia
- Clinical Medical Virology Centre, University of Queensland, Brisbane, Qld, Australia
| | - Katherine E Arden
- Clinical Virology Research Unit, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Qld, Australia
| | | |
Collapse
|
19
|
Pan WH, Xin P, Morrey JD, Clawson GA. A self-processing ribozyme cassette: utility against human papillomavirus 11 E6/E7 mRNA and hepatitis B virus. Mol Ther 2004; 9:596-606. [PMID: 15093190 DOI: 10.1016/j.ymthe.2003.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 12/26/2003] [Indexed: 12/29/2022] Open
Abstract
We have been developing a self-processing triple-ribozyme cassette, which consists of two cis-acting hammerhead ribozymes flanking an internal, trans-acting hammerhead ribozyme (ITRz). Here, the single ITRz was replaced by two contiguous ITRz (dITRz), and a short poly(A) tail was designed onto the 3' end of the liberated dITRz, to produce the "SNIP(AA)" cassette. Self-processing of the cassette appeared to proceed efficiently in cells: The only region of the cassette identified in cells was the liberated dITRz, with approximately 10-20% of the dITRz found within the nucleus. We tested this reagent against two therapeutically important targets, human papillomavirus 11 E6/E7 mRNA and hepatitis B virus (HBV). Library selection protocols were utilized to define accessible target sites, and ribozymes targeted to these sites were very active in vitro. Pairs of the selected ribozymes were then inserted into the SNIP(AA) cassette. SNIP(AA) constructs targeted to the E6/E7 mRNA were tested in cell culture using a cotransfection approach. Significant reductions were produced in E6/E7 target, with 80-90% reductions observed at 5 days following cotransfection. SNIP(AA) constructs targeted to HBV RNA were tested in vivo in a transgenic mouse model. SNIP(AA) constructs were packaged in liposomes, which were targeted to hepatocytes using asialofetuin, and administered ip. After 2 weeks, a >80% reduction in viral liver DNA was observed. Immunohistochemical staining for core antigen showed a similar decrease in the number of hepatocytes staining positively, compounded by a concomitant loss of residual staining intensity. These results demonstrate the in vivo utility of the self-processing SNIP(AA) cassette against HBV.
Collapse
Affiliation(s)
- Wei-Hua Pan
- Department of Pathology, The Gittlen Cancer Research Institute, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
20
|
Clawson GA, Miranda GQ, Sivarajah A, Xin P, Pan W, Thiboutot D, Christensen ND. Inhibition of papilloma progression by antisense oligonucleotides targeted to HPV11 E6/E7 RNA. Gene Ther 2004; 11:1331-41. [PMID: 15229628 DOI: 10.1038/sj.gt.3302303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human papillomaviruses (HPVs) are recognized as important human pathogens, causing a spectrum of hyperproliferative lesions from benign warts to cervical dysplasias/carcinomas. HPV-associated lesions require continued production of the oncogenic E6/E7 proteins, which are encoded by either bicistronic or overlapping mRNAs. Here we targeted the E6/E7 mRNA of HPV11, a type implicated in causation of genital warts, using molecular reagents. Accessible sites in the HPV11(E6/E7) RNA were identified using library selection protocols, and nucleic acids (DNAzymes, antisense oligonucleotides) targeted to these sites were constructed, and tested in cell culture and on human foreskin grafts. While DNAzymes were at least equally effective in cell culture, antisense oligonucleotides targeted to the region surrounding one of the library-selected sites (ASO(407)) proved most effective in blocking progression of HPV11-induced papillomas in human foreskin grafts on immunodeficient mice. In total, 11 papillomas were treated with ASO(407). Of these, four of seven small papillomas treated with ASO(407) showed loss of detectable virus by in situ hybridization (ISH), and in all four of these, papillomas were no longer evident grossly or histologically after treatment. When larger papillomas were treated, one of four showed loss of virus by ISH, associated with a minor decrease in papilloma size. Considering all 11 papillomas treated with ASO(407), loss of viral staining by ISH was significantly different from that observed in controls (P<0.016), as was true for the seven small treated papillomas (P<0.012). DNAzymes targeted to the same site (or other library selected sites) did not produce statistically significant differences in ISH staining (P<0.15). Our results with ASO(407) appear to represent the first specific molecular therapy against a bona fide HPV infection, and provide a rational proof-of-principle strategy for development of molecular therapeutics targeting other HPV-associated lesions.
Collapse
Affiliation(s)
- G A Clawson
- Gittlen Cancer Research Institute, Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Braun K, Ehemann V, Waldeck W, Pipkorn R, Corban-Wilhelm H, Jenne J, Gissmann L, Debus J. HPV18 E6 and E7 genes affect cell cycle, pRB and p53 of cervical tumor cells and represent prominent candidates for intervention by use peptide nucleic acids (PNAs). Cancer Lett 2004; 209:37-49. [PMID: 15145519 DOI: 10.1016/j.canlet.2004.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 02/02/2004] [Accepted: 02/03/2004] [Indexed: 10/26/2022]
Abstract
Approximately 100% of cervical carcinomas are causally linked to infections with high-risk human papillomaviruses (HPVs), whose oncogenicity has been assigned to the continued expression of two early viral genes, E6 and E7. Reversal of the transformed phenotype by inhibiting E6/E7 gene expression therefore provides a suitable goal for tumor therapy. We established an application controlling the E6/E7 expression of the HPV type 18, by using viral gene directed peptide nucleic acids (PNAs). One consequence was the complete change in growth to a stagnated behavior of the HPV 18 positive HeLa-S cells. With flow cytometry, we investigated changes in the cell cycle and expression of the pRB (retinoblastoma) and p53 genes acting as antagonists to E6 and E7. We realized that application of PNAs via intracellular cleavable conjugated peptide carriers mediates specific inhibitory effects and we showed that the combined E6/E7-directed PNA-application mediated a clear morphological change from suspension to adherend state and the cells stopped growth. These data could demonstrate a promising approach for development of new 'anti-gene therapeutics' against papillomavirus-induced human cancers.
Collapse
Affiliation(s)
- Klaus Braun
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Use of PCR in the field of molecular diagnostics has increased to the point where it is now accepted as the standard method for detecting nucleic acids from a number of sample and microbial types. However, conventional PCR was already an essential tool in the research laboratory. Real-time PCR has catalysed wider acceptance of PCR because it is more rapid, sensitive and reproducible, while the risk of carryover contamination is minimised. There is an increasing number of chemistries which are used to detect PCR products as they accumulate within a closed reaction vessel during real-time PCR. These include the non-specific DNA-binding fluorophores and the specific, fluorophore-labelled oligonucleotide probes, some of which will be discussed in detail. It is not only the technology that has changed with the introduction of real-time PCR. Accompanying changes have occurred in the traditional terminology of PCR, and these changes will be highlighted as they occur. Factors that have restricted the development of multiplex real-time PCR, as well as the role of real-time PCR in the quantitation and genotyping of the microbial causes of infectious disease, will also be discussed. Because the amplification hardware and the fluorogenic detection chemistries have evolved rapidly, this review aims to update the scientist on the current state of the art. Additionally, the advantages, limitations and general background of real-time PCR technology will be reviewed in the context of the microbiology laboratory.
Collapse
Affiliation(s)
- I M Mackay
- Clinical Virology Research Unit, Sir Albert Sakzewski Virus Research Centre and Department of Paediatrics, Royal Children's Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
23
|
Alvarez-Salas LM, Benítez-Hess ML, DiPaolo JA. Advances in the Development of Ribozymes and Antisense Oligodeoxynucleotides as Antiviral Agents for Human Papillomaviruses. Antivir Ther 2003. [DOI: 10.1177/135965350300800402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Urogenital human papillomavirus (HPV) infections are the most common viral sexually transmitted disease in women. On a worldwide basis cervical cancer is the second most prevalent cancer of women. Although HPV infection is not sufficient to induce cancer, the causal relation between high-risk HPV infection and cervical cancer is well established. Over 99% of cervical cancers are positive for high-risk HPV. Therefore, there is a need for newer approaches to treat HPV infection. Two novel approaches for inactivating gene expression involve ribozymes and oligonucleotides. Methods for identification of target genes involved in neoplastic transformation and tumour growth have been established, and these will lead to therapeutic approaches without any damage to normal cellular RNA molecules, which is often associated with conventional therapeutics. Ribozymes and oligonucleotides represent rational antiviral approaches for inhibiting the growth of cervical lesions and carcinomas by interfering with E6/E7 RNA production. The E6 and E7 genes of high-risk HPVs cooperate to immortalize primary epithelial cells and because they are found in cervical cancer are considered the hallmark of cervical cancer. The use and modification of ribozymes and antisense oligodeoxynucleotides can inhibit the growth of HPV-16 and HPV-18 immortalized cells, and tumour cells by eliminating E6/E7 transcript. Hammerhead and hairpin ribozymes have been widely studied because of their potential use for gene therapy and their place as therapeutic tools for cervical cancer is being evaluated. Although antiviral ribozymes and anti-sense molecules have been effective as in vitro or in vivo inhibitors of high-risk HPV-positive cells, none is currently in clinical trial. There are, however, a number of other antisense therapies in Phase I–III clinical trial for several oncogenes.
Collapse
Affiliation(s)
| | | | - Joseph A DiPaolo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md., USA
| |
Collapse
|
24
|
Cox JT. Management of precursor lesions of cervical carcinoma: history, host defense, and a survey of modalities. Obstet Gynecol Clin North Am 2002; 29:751-85. [PMID: 12509095 DOI: 10.1016/s0889-8545(02)00048-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Before the initiation of screening and treatment for cervical cancer precursors, approximately 3% to 4% of women were destined to eventually develop cervical cancer. During the last 50 years the rate of cervical cancer incidence and mortality has decreased by more than 75% primarily because of the widespread availability of cervical cytologic screening and of treatment for documented cervical precancer. Successful screening of the entire population and appropriate treatment of lesions could theoretically reduce this risk to one tenth of the risk of an unscreened population [7,28]. The relatively recent understanding of the etiology of cervical cancer precursor lesions and of the immune response to them has given new direction to management options that incorporate healthy habits and dietary measures as part of traditional ablative or excisional treatment options. As we look to the future we can expect that new markers that more specifically identify individuals at-risk for cervical precancer and cancer will be developed and take precedence in cervical screening. At the same time, treating the cause of these lesions, rather than the result, should provide less traumatic and more successful therapies. To this end, harnessing the immune system through immune response modifiers and HPV vaccines seems to be on the horizon, as do new chemopreventative approaches. Of all human cancers, only cervical cancer, once the second most common cancer among women, stands on the threshold of being virtually eliminated.
Collapse
Affiliation(s)
- J Thomas Cox
- Gynecology Clinic, Health Services. University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
25
|
Arany I, Grattendick KG, Tyring SK. Interleukin-10 induces transcription of the early promoter of human papillomavirus type 16 (HPV16) through the 5'-segment of the upstream regulatory region (URR). Antiviral Res 2002; 55:331-9. [PMID: 12103433 DOI: 10.1016/s0166-3542(02)00070-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effects of various proinflammatory cytokines on the transcription of human papillomaviruses (HPVs) have been demonstrated. On the other hand, the role of anti-inflammatory cytokines has not been elaborated, despite the fact that levels of interleukin-10 (IL-10) have been found significantly elevated in cervical dysplasias or carcinomas as well as in the cervix of HIV-positive individuals. These conditions are also associated with elevated viral transcription. Thus, the impact of IL-10 on HPV transcription might be important in pathogenesis of cervical lesions in both immunocompetent or immunosuppressed individuals. In this paper we describe the effects of IL-10 on the transcription of HPV type 16. We found that treatment of HPV 16-positive cervical carcinoma cells with IL-10 increased mRNA levels of the E7 early gene at the level of transcription. Similarly, IL-10 significantly and dose-dependently induced the transcription from the HPV early promoter in a reporter system. Employing deletion mutants we determined that this induction is mapped to the 5' segment of the URR. Transient transfection of an antisense-STAT3-expression vector abolished IL-10-induced reporter activity as well as HPV 16 E7 expression. This suggests that STAT3 either directly binds to the URR and stimulates transcription or affects expression and/or binding of transcription factors that bind to the 5'-region. Our findings suggest a mechanism by which--in addition to its immunosuppressive effects--IL-10 might enhance persistence and progression of HPV-related lesions under conditions (e.g. dysplastic progression, HIV infection) when the cytokine expression in the cervical microenvironment changes.
Collapse
Affiliation(s)
- Istvan Arany
- Department of Microbiology/Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| | | | | |
Collapse
|
26
|
Abstract
The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.
Collapse
Affiliation(s)
- Ian M Mackay
- Clinical Virology Research Unit, Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Australia.
| | | | | |
Collapse
|