1
|
Stewart C, Marshall CJ. Seasonality of prolactin in birds and mammals. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:919-938. [PMID: 35686456 PMCID: PMC9796654 DOI: 10.1002/jez.2634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023]
Abstract
In most animals, annual rhythms in environmental cues and internal programs regulate seasonal physiology and behavior. Prolactin, an evolutionarily ancient hormone, serves as a molecular correlate of seasonal timing in most species. Prolactin is highly pleiotropic with a wide variety of well-documented physiological effects; in a seasonal context prolactin is known to regulate annual changes in pelage and molt. While short-term homeostatic variation of prolactin secretion is under the control of the hypothalamus, long-term seasonal rhythms of prolactin are programmed by endogenous timers that reside in the pituitary gland. The molecular basis of these rhythms is generally understood to be melatonin dependent in mammals. Prolactin rhythmicity persists for several years in many species, in the absence of hypothalamic signaling. Such evidence in mammals has supported the hypothesis that seasonal rhythms in prolactin derive from an endogenous timer within the pituitary gland that is entrained by external photoperiod. In this review, we describe the conserved nature of prolactin signaling in birds and mammals and highlight its role in regulating multiple diverse physiological systems. The review will cover the current understanding of the molecular control of prolactin seasonality and propose a mechanism by which long-term rhythms may be generated in amniotes.
Collapse
Affiliation(s)
- Calum Stewart
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Christopher J. Marshall
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
2
|
Lopez-Vicchi F, De Winne C, Brie B, Sorianello E, Ladyman SR, Becu-Villalobos D. Metabolic functions of prolactin: Physiological and pathological aspects. J Neuroendocrinol 2020; 32:e12888. [PMID: 33463813 DOI: 10.1111/jne.12888] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Prolactin is named after its vital role of promoting milk production during lactation, although it has been implicated in multiple functions within the body, including metabolism and energy homeostasis. Prolactin has been hypothesised to play a key role in driving many of the adaptations of the maternal body to allow the mother to meet the physiological demands of both pregnancy and lactation, including the high energetic demands of the growing foetus followed by milk production to support the offspring after birth. Prolactin receptors are found in many tissues involved in metabolism and food intake, such as the pancreas, liver, hypothalamus, small intestine and adipose tissue. We review the literature examining the effects of prolactin in these various tissues and how they relate to changes in function in physiological states of high prolactin, such as pregnancy and lactation, and in pathological states of hyperprolactinaemia in the adult. In many cases, whether prolactin promotes healthy metabolism or leads to dysregulation of metabolic functions is highly dependent on the situation. Overall, although prolactin may not play a major role in regulating metabolism and body weight outside of pregnancy and lactation, it definitely has the ability to contribute to metabolic function.
Collapse
Affiliation(s)
- Felicitas Lopez-Vicchi
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Catalina De Winne
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Belen Brie
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Eleonora Sorianello
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre, Auckland, New Zealand
| | - Damasia Becu-Villalobos
- Instituto de Biologia y Medicina Experimental, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina
| |
Collapse
|
3
|
Macotela Y, Triebel J, Clapp C. Time for a New Perspective on Prolactin in Metabolism. Trends Endocrinol Metab 2020; 31:276-286. [PMID: 32044206 DOI: 10.1016/j.tem.2020.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
The pituitary hormone prolactin (PRL) regulates a variety of functions beyond reproduction. The association between physiological (pregnancy) and pathological (prolactinoma) hyperprolactinemia and metabolic alterations led to the concept of this hormone being diabetogenic. However, large cohort clinical studies have recently shown that low circulating PRL levels are associated with metabolic disease and represent a risk factor for type 2 diabetes (T2D), whereas high PRL levels are beneficial. Moreover, PRL acts on the pancreas, liver, adipose tissue, and hypothalamus to maintain and promote metabolic homeostasis. By integrating basic and clinical evidence, we hypothesize that upregulation of PRL levels is a mechanism to maintain metabolic homeostasis and, thus, propose that the range of PRL levels considered physiological should be expanded to higher values.
Collapse
Affiliation(s)
- Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, México.
| | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine, and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, México
| |
Collapse
|
4
|
Abstract
The second-generation antipsychotic drug olanzapine has become a widely prescribed drug in the treatment of schizophrenia and bipolar disorder. Unfortunately, its therapeutic benefits are partly outweighed by significant weight gain and other metabolic side effects, which increase the risk for diabetes and cardiovascular disease. Because olanzapine remains superior to other antipsychotic drugs that show less weight gain liability, insight into the mechanisms responsible for olanzapine-induced weight gain is crucial if it is to be effectively addressed. Over the past few decades, several groups have investigated the effects of olanzapine on energy balance using rat models. Unfortunately, results from different studies have not always been consistent and it remains to be determined which paradigms should be used in order to model olanzapine-induced weight gain most accurately. This review summarizes the effects of olanzapine on energy balance observed in different rat models and discusses some of the factors that appear to contribute to the inconsistencies in observed effects. In addition it compares the effects reported in rats with clinical findings to determine the predictive validity of different paradigms.
Collapse
|
5
|
Shobo M, Yamada H, Koakutsu A, Hamada N, Fujii M, Harada K, Ni K, Matsuoka N. Chronic treatment with olanzapine via a novel infusion pump induces adiposity in male rats. Life Sci 2011; 88:761-5. [DOI: 10.1016/j.lfs.2011.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 01/16/2011] [Accepted: 02/11/2011] [Indexed: 11/25/2022]
|
6
|
Lipogenesis impaired in periparturient rats exposed to altered gravity is independent of prolactin and glucocorticoid secretion. Eur J Appl Physiol 2008; 104:847-58. [DOI: 10.1007/s00421-008-0840-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|
7
|
Rehm S, Stanislaus DJ, Wier PJ. Identification of drug-induced hyper- or hypoprolactinemia in the female rat based on general and reproductive toxicity study parameters. ACTA ACUST UNITED AC 2007; 80:253-7. [PMID: 17570137 DOI: 10.1002/bdrb.20126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Observations associated with drug-induced hyper- or hypoprolactinemia in rat toxicology studies may be similar and include increased ovarian weight due to increased presence of corpora lutea. Hyperprolactinemia may be distinguished if mammary gland hyperplasia with secretion and/or vaginal mucification is observed. Reproductive toxicity study endpoints can differentiate hyper- from hypoprolactinemia based on their differential effects on estrous cycles, mating, and fertility. Although the manifestations of hyper- and hypoprolactinemia in rats generally differ from that in humans, mechanisms of drug-related changes in prolactin synthesis/release can be conserved across species and pathologically increased or decreased prolactin levels may compromise some aspect of reproductive function in all species.
Collapse
Affiliation(s)
- Sabine Rehm
- GlaxoSmithKline, King of Prussia, Pennsylvania 19406-0939, USA.
| | | | | |
Collapse
|
8
|
Albaugh VL, Henry CR, Bello NT, Hajnal A, Lynch SL, Halle B, Lynch CJ. Hormonal and metabolic effects of olanzapine and clozapine related to body weight in rodents. Obesity (Silver Spring) 2006; 14:36-51. [PMID: 16493121 PMCID: PMC2761763 DOI: 10.1038/oby.2006.6] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To characterize a model of atypical antipsychotic drug-induced obesity and evaluate its mechanism. RESEARCH METHODS AND PROCEDURES Chronically, olanzapine or clozapine was self-administered via cookie dough to rodents (Sprague-Dawley or Wistar rats; C57Bl/6J or A/J mice). Chronic studies measured food intake, body weight, adiponectin, active ghrelin, leptin, insulin, tissue wet weights, glucose, clinical chemistry endpoints, and brain dopaminergic D2 receptor density. Acute studies examined food intake, ghrelin, leptin, and glucose tolerance. RESULTS Olanzapine (1 to 8 mg/kg), but not clozapine, increased body weight in female rats only. Weight changes were detectable within 2 to 3 days and were associated with hyperphagia starting approximately 24 hours after the first dose. Chronic administration (12 to 29 days) led to adiposity, hyperleptinemia, and mild insulin resistance; no lipid abnormalities or changes in D2 receptor density were observed. Topiramate, which has reversed weight gain from atypical antipsychotics in humans, attenuated weight gain in rats. Acutely, olanzapine, but not clozapine, lowered plasma glucose and leptin. Increases in glucose, insulin, and leptin following a glucose challenge were also blunted. DISCUSSION A model of olanzapine-induced obesity was characterized which shares characteristics of patients with atypical antipsychotic drug-induced obesity; these characteristics include hyperphagia, hyperleptinemia, insulin resistance, and weight gain attenuation by topiramate. This model may be a useful and inexpensive model of uncomplicated obesity amenable to rapid screening of weight loss drugs. Olanzapine-induced weight gain may be secondary to hyperphagia associated with acute lowering of plasma glucose and leptin, as well as the inability to increase plasma glucose and leptin following a glucose challenge.
Collapse
Affiliation(s)
- Vance L. Albaugh
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Cathy R. Henry
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Nicholas T. Bello
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Susan L. Lynch
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Beth Halle
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Christopher J. Lynch
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
9
|
Speakman JR, Król E. Limits to sustained energy intake IX: a review of hypotheses. J Comp Physiol B 2005; 175:375-94. [PMID: 16047178 DOI: 10.1007/s00360-005-0013-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 03/08/2005] [Accepted: 05/03/2005] [Indexed: 02/01/2023]
Abstract
Several lines of evidence indicate that animals in the wild may be limited in their maximal rates of energy intake by their intrinsic physiology rather than food availability. Understanding the limits to sustained energy intake is important because this defines an envelope within which animals must trade-off competing activities. In the first part of this review, we consider the initial ideas that propelled this area and experimental evidence connected with them. An early conceptual advance in this field was the idea that energy intake could be centrally limited by aspects of the digestive process, or peripherally limited at the sites of energy utilisation. A model system that has been widely employed to explore these ideas is lactation in small rodents. Initial studies in the late 1980s indicated that energy intake might be centrally limited, but work by Hammond and colleagues in the 1990s suggested that it was more likely that the limits were imposed by capacity of the mammary glands, and other works tended to support this view. This consensus, however, was undermined by studies that showed milk production was higher in mice at low temperatures, suggesting that the capacity of the mammary gland is not a limiting factor. In the second part of the review we consider some additional hypotheses that might explain these conflicting data. These include the heat dissipation limits hypothesis, the seasonal investment hypothesis and the saturated neural control hypothesis. Current evidence with respect to these hypotheses is also reviewed. The limited evidence presently available does not unambiguously support any one of them.
Collapse
Affiliation(s)
- John R Speakman
- Aberdeen Centre for Energy Regulation and Obesity, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | | |
Collapse
|
10
|
Vergoni AV, Watanobe H, Guidetti G, Savino G, Bertolini A, Schiöth HB. Effect of repeated administration of prolactin releasing peptide on feeding behavior in rats. Brain Res 2002; 955:207-13. [PMID: 12419538 DOI: 10.1016/s0006-8993(02)03462-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Prolactin releasing peptide (PrRP) has been reported to reduce food intake in rats. We tested the effect of i.c.v. administration of PrRP-31 on food intake in both food deprived and free-feeding rats. We did not find any effect of PrRP-31 on food intake after single injections of up to an 8-nmol dose, but observed a marked decrease in food intake and body weight in rats that received a repeated twice daily administration of 8 nmol of PrRP-31. This effect was associated with an adverse behavioral pattern, indicating that the repeated high doses of the peptide caused non-specific effects inducing anorexia. We also tested several other behavioral parameters like locomotion and exploratory time, grooming and resting time, using lower doses of PrRP that did not cause the adverse behavior. Moreover, we carried out locomotor and sensory motor activity tests at the doses that exerted the most pronounced effect on the food intake. None of these tests suggested any specific behavioral effect of PrRP. We conclude that the behavioral pattern induced by PrRP is likely to be different from those induced by many other neuropeptides affecting food intake in rats.
Collapse
|
11
|
Grattan DR. The actions of prolactin in the brain during pregnancy and lactation. PROGRESS IN BRAIN RESEARCH 2001; 133:153-71. [PMID: 11589128 DOI: 10.1016/s0079-6123(01)33012-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vital role played by prolactin during pregnancy and lactation is emphasized by the physiological adaptations that occur in the mother to maintain a prolonged state of hyperprolactinemia. In many species the placenta provides a source of lactogenic hormones in the circulation, ensuring the continued presence of a hormone capable of activating the prolactin receptor throughout pregnancy. In addition, the tuberoinfundibular dopamine neurons, which normally maintain a tonic inhibitory influence over prolactin secretion, show a reduced ability to respond to prolactin during late pregnancy and lactation, allowing high levels of prolactin to be maintained unopposed by a regulatory feedback mechanisms. There is clear evidence that systemic prolactin gains access to the cerebrospinal fluid, from where it can diffuse to numerous brain regions. Prolactin receptors are expressed in several hypothalamic nuclei, including the medial preoptic and arcuate nuclei, and we have observed marked increases in expression of prolactin receptors in these nuclei during lactation. Moreover, a number of hypothalamic nuclei, including the paraventricular, supraoptic and ventromedial nuclei, in which prolactin receptors were not detected in diestrous rats, were found to express significant amounts of prolactin receptor during lactation. These observations have important implications for the variety of documented actions of prolactin on the brain. Prolactin has been reported to influence numerous brain functions, including maternal behavior, feeding and appetite, oxytocin secretion, and ACTH secretion in response to stress. In light of the high circulating levels of prolactin during pregnancy and lactation and the increased expression of prolactin receptors in the hypothalamus, many of these effects of prolactin may be enhanced or exaggerated during lactation. Hence, prolactin may be a key player in the coordination of neuroendocrine and behavioral adaptations of the maternal brain.
Collapse
Affiliation(s)
- D R Grattan
- Department of Anatomy and Structural Biology, School of Medical Sciences, Neuroscience Research Centre, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| |
Collapse
|
12
|
Grattan DR, Pi XJ, Andrews ZB, Augustine RA, Kokay IC, Summerfield MR, Todd B, Bunn SJ. Prolactin receptors in the brain during pregnancy and lactation: implications for behavior. Horm Behav 2001; 40:115-24. [PMID: 11534971 DOI: 10.1006/hbeh.2001.1698] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous studies have documented prolactin regulation of a variety of brain functions, including maternal behavior, regulation of oxytocin neurons, regulation of feeding and appetite, suppression of ACTH secretion in response to stress, and suppression of fertility. We have observed marked changes in expression of prolactin receptors in specific hypothalamic nuclei during pregnancy and lactation. This has important implications for neuronal functions regulated by prolactin. In light of the high circulating levels of prolactin during pregnancy and lactation and the increased expression of prolactin receptors in the hypothalamus, many of these functions may be enhanced or exaggerated in the maternal brain. The adaptations of the maternal brain allow the female to exhibit the appropriate behavior to feed and nurture her offspring, to adjust to the nutritional and metabolic demands of milk production, and to maintain appropriate hormone secretion to allow milk synthesis, secretion, and ejection. This review aims to summarize the evidence that prolactin plays a key role in regulating hypothalamic function during lactation and to discuss the hypothesis that the overall role of prolactin is to organize and coordinate this wide range of behavioral and neuroendocrine adaptations during pregnancy and lactation.
Collapse
Affiliation(s)
- D R Grattan
- Department of Anatomy and Structural Biology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Anxiolytic and anti-stress effects of brain prolactin: improved efficacy of antisense targeting of the prolactin receptor by molecular modeling. J Neurosci 2001. [PMID: 11312305 DOI: 10.1523/jneurosci.21-09-03207.2001] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We provide the first evidence that prolactin is a neuromodulator of behavioral and neuroendocrine stress coping in the rat. In virgin female and male rats, intracerebral infusion of ovine prolactin (oPRL) into the lateral cerebral ventricle (intracerebroventricular) exerted an anxiolytic effect on the elevated plus-maze in a dose-dependent manner (0.1 and 1.0 microg/5 microl; p < 0.01). In contrast, downregulation of the expression of the long form of brain prolactin receptors by chronic intracerebroventricular infusion of an antisense oligodeoxynucleotide (ODN) (osmotic minipump, 0.5 microg. 0.5 microl(-1). hr(-1); 5 d) increased anxiety-related behavior on the plus-maze compared with mixed bases-treated and vehicle-treated rats (p < 0.01), again demonstrating an anxiolytic effect of PRL acting at brain level. Furthermore, in jugular vein-catheterized female rats, the stress-induced increase of corticotropin secretion was decreased after chronic intracerebroventricular infusion of oPRL (osmotic minipump, 1.0 microg. 0.5 microl(-1). hr(-1); p < 0.05) and, in contrast, was further elevated by antisense targeting of the brain prolactin receptors (p < 0.01). This provides evidence for a receptor-mediated attenuation of the responsiveness of the hypothalamo-pituitary-adrenal (HPA) axis by prolactin. The antisense ODN sequence was selected on the basis of secondary structure molecular modeling of the target mRNA to improve antisense ODN-mRNA hybridization. Receptor autoradiography confirmed the expected improvement in the efficacy of downregulation of prolactin receptor expression [empirically designed antisense, 30%; p > 0.05, not significant; adjustment of target position after mRNA modeling, 72%; p < 0.05). Taken together, prolactin acting at brain level has to be considered as a novel regulator of both emotionality and HPA axis reactivity.
Collapse
|
14
|
Sauvé D, Woodside B. Neuroanatomical specificity of prolactin-induced hyperphagia in virgin female rats. Brain Res 2000; 868:306-14. [PMID: 10854583 DOI: 10.1016/s0006-8993(00)02344-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intracerebroventricular (i.c.v.) administration of PRL increases food intake in virgin female rats but the brain site(s) at which PRL acts to promote feeding behavior is not known. The present studies investigated the role of the paraventricular nucleus (PVN), ventromedial nucleus (VMH), and medial preoptic nucleus (MPOA) in the hyperphagic actions of PRL. Ad-libitum-fed virgin female rats received twice daily site-specific injections of PRL (800 ng) over a period of 10 days. Only subjects demonstrating regular vaginal cyclicity were included in the study. Food intake, body weight, and vaginal cyclicity were measured daily. Results showed that PRL significantly increased food intake when injected into the PVN. A nonsignificant trend towards a hyperphagic response in the last 5 days of testing was observed in rats receiving intra-VMH injections of PRL, and the MPOA was not responsive to the feeding-stimulating properties of PRL. None of the manipulations affected body weight or vaginal cyclicity as demonstrated by vaginal smears. In sum, the present results reveal that one brain site at which PRL acts to increase food intake is the PVN, but these studies do not rule out the possibility that the effects of PRL on food intake may also involve other brain areas.
Collapse
Affiliation(s)
- D Sauvé
- Centre for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Québec, H4B 1R6, Montréal, Canada
| | | |
Collapse
|
15
|
Heil SH. Activational and organizational actions of gonadal hormones and the sex-specific effects of prolactin on food intake by rats. Dev Psychobiol 1999. [DOI: 10.1002/(sici)1098-2302(199907)35:1<61::aid-dev8>3.0.co;2-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|