1
|
Kieserling H, Sieg H, Heilscher J, Drusch S, Braeuning A, Thünemann AF, Rohn S. Towards understanding particle-protein complexes: Physicochemical, structural, and cellbiological characterization of β-lactoglobulin interactions with silica, polylactic acid, and polyethylene terephthalate nanoparticles. Colloids Surf B Biointerfaces 2025; 253:114702. [PMID: 40300285 DOI: 10.1016/j.colsurfb.2025.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/01/2025]
Abstract
Nanoplastic particles and their additives are increasingly present in the food chain, interacting with biomacromolecules with not yet known consequences. A protein corona forms around the particles in these usually complex matrices, primarily with a first contact at surface-active proteins. However, systematic studies on the interactions between the particles and proteins -especially regarding protein affinity and structural changes due to surface properties like polarity - are limited. It is also unclear whether the protein corona can "mask" the particles, mimic protein properties, and induce cytotoxic effects when internalized by mammalian cells. This study aimed at investigating the physicochemical properties of model particle-protein complexes, the structural changes of adsorbed proteins, and their effects on Caco-2 cells. Whey protein β-lactoglobulin (β-Lg) was used as a well-characterized model protein and studied in a mixture with nanoparticles of varying polarity, specifically silica, polylactic acid (PLA), and polyethylene terephthalate (PET). The physicochemical analyses included measurements of the hydrodynamic diameter and the zeta potential, while the protein conformational changes were analyzed using Fourier-transform-infrared spectroscopy (FTIR) and intrinsic fluorescence. Cellular uptake in Caco-2 cells was assessed through flow cytometry, cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay, and cellular impedance was analyzed with xCELLigence® technology. The results indicated that β-Lg had the highest affinity for hydrophilic silica particles, forming silica-β-Lg complexes and large aggregates through electrostatic interactions. The affinity decreased for PLA and was lowest for hydrophobic PET, which formed smaller complexes. Adsorption onto silica caused partial unfolding and refolding of β-Lg. The silica-β-Lg complexes were internalized by Caco-2 cells, impairing cell proliferation. In contrast, PLA- and PET-protein complexes were not internalized, though PLA complexes slightly reduced cell viability. This study enhances our understanding of protein adsorption on nanoparticles and its potential biological effects.
Collapse
Affiliation(s)
- Helena Kieserling
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin 13355, Germany
| | - Holger Sieg
- Department of Food Safety, Unit Effect-Based Analytics and Toxicogenomics, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Jasmin Heilscher
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin 13355, Germany
| | - Stephan Drusch
- Department of Food Technology and Material Science, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, Berlin 10623, Germany
| | - Albert Braeuning
- Department of Food Safety, Unit Effect-Based Analytics and Toxicogenomics, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Andreas F Thünemann
- Department of Synthesis and Scattering Methods of Nanostructured Materials, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin 13355, Germany.
| |
Collapse
|
2
|
Herrera PA, Santagapita PR, Moreno FL. Refractance window drying: A new approach for producing high-quality powdered dairy products. J Dairy Sci 2025; 108:2324-2339. [PMID: 39710265 DOI: 10.3168/jds.2024-25508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
Refractance window drying is an emerging technology that allows the development of new dried foods with an acceptable shelf life from products widely consumed in the world with high nutritional content and health benefits, such as dairy products. The present study aimed to determine the effect of temperature and product thickness during refractance window drying in a laboratory-scale dryer on the physicochemical properties of whole bovine milk and commercial flavored yogurt using an optimal design model. The drying temperature range was between 40°C and 80°C, and the evaluated thickness ranged from 1 to 3 mm. Energy consumption, pH, moisture, water activity, color, solubility, hygroscopicity, and protein denaturation were determined by reconstitution of the powders obtained and employing techniques such as gravimetric analysis, color analysis, and Fourier-transform infrared spectroscopy. Based on the results obtained, the drying temperatures and thicknesses studied did not affect the secondary structure of proteins; the optimal operational conditions were 64.7°C and 0.001 m for whole milk and 63.7°C and 0.001 m for yogurt. These findings suggest that refractance window drying is a suitable technology for obtaining dried dairy products, particularly for viscous foods such as yogurt.
Collapse
Affiliation(s)
- P A Herrera
- Process Design and Management Master, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Chía-Cundinamarca-Colombia 250001
| | - P R Santagapita
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina C1428EGA; Centro de Investigaciones en Hidratos de Carbono, CIHIDECAR, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina C1428EHA
| | - F L Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Chía, Cundinamarca, Colombia 250001.
| |
Collapse
|
3
|
Ghorbani A, Rafe A, Hesarinejad MA, Lorenzo JM. Impact of pH on the Physicochemical, Structural, and Techno-Functional Properties of Sesame Protein Isolate. Food Sci Nutr 2025; 13:e4760. [PMID: 39844794 PMCID: PMC11751715 DOI: 10.1002/fsn3.4760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Sesame protein isolate (SPI) is a highly nutritious plant protein distinguished by its essential amino acid profile. This study investigates the influence of pH on SPI's physicochemical, structural, and techno-functional properties, highlighting its potential as a sustainable protein source for various food applications. Our findings revealed that SPI had a protein content of 90.60% and a protein extraction yield of 77.2%. The density is measured at 0.72 g/mL, with a critical compressibility index of 19.22, indicating excellent flowability for weaning foods. Notably, the ζ-potential shifts from +39 mV at pH 3.0 to 0 at the isoelectric point (pI, 5-5.5) and becomes negative at higher pH levels. We observed a direct correlation between solubility, fluorescence intensity, and functional characteristics of SPI, with peak solubility and functional properties at acidic and alkaline pH levels and lowest values at the pI. Structural analyses confirmed the relationship between electrical charge, hydrophobicity, and functional attributes, with the highest surface hydrophobicity observed at pH 2.0. In conclusion, our findings underscore the critical role of pH in modulating the physicochemical properties of sesame protein isolate, enhancing its applicability in food formulations. SPI demonstrates significant potential as a versatile ingredient in the functional food product development.
Collapse
Affiliation(s)
- Azade Ghorbani
- Department of Food PhysicsResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Ali Rafe
- Department of Food PhysicsResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Mohammad Ali Hesarinejad
- Department of Food Sensory and Cognitive ScienceResearch Institute of Food Science and Technology (RIFST)MashhadIran
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de GaliciaParque Tecnológico de GaliciaOurenseSpain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de OurenseUniversidad de VigoOurenseSpain
| |
Collapse
|
4
|
Zhang Y, Lu Y, Liu Y, Zhao R, Huang X, Wang C, Zhang T. Formation of whey protein, pectin, and chlorogenic acid ternary complexes and their application in emulsions. Int J Biol Macromol 2024; 283:137871. [PMID: 39566761 DOI: 10.1016/j.ijbiomac.2024.137871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/19/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Physicochemical properties, stability, and digestive behavior of lycopene-loaded emulsions prepared by ternary complexes fabricated with different mixing sequences based on whey protein isolate (WPI), high methoxyl pectin (HMP), and chlorogenic acid (CA) were investigated. Spectroscopic and molecular docking analyses confirmed the non-covalent interactions among the compounds within the ternary complexes, as well as the conformational changes in the protein induced by the mixing sequence. The interfacial tension (6.92-9.44 mN/m) influenced by the different mixing sequences of WPI, HMP and CA was HMP-CA-WPI > WPI-CA-HMP > WPI-HMP-CA, and the size of emulsions stabilized by HMP-CA-WPI was approximately 10 nm larger than that of the other two. Complexes with mixing sequence of HMP, CA and WPI outperformed in antioxidant properties (Ferric reducing power absorbance 0.43, ABTS∙ radical scavenging activity 66.04 %), lycopene retention rate (after UV irradiation 85.11 %, after thermal treatment 83.15 %), and storage stability of emulsions than those prepared by WPI-HMP-CA and WPI-CA-HMP. Emulsions stabilized by different ternary complexes showed similar free fatty acid release profiles (39.62 %-41.59 %) and lycopene bio-accessibility (28.87 %-29.94 %) during digestion. This study mat offer novel insights for the rational utilization in emulsions of ternary complexes based on proteins, polysaccharides, and phenolic acids.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China; School of Grains, Jilin Business and Technology College, Changchun, Jilin 130507, China
| | - Yingcong Lu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Yaxuan Liu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xin Huang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Tiehua Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
5
|
van Haaren C, Byrne B, Kazarian SG. Study of Monoclonal Antibody Aggregation at the Air-Liquid Interface under Flow by ATR-FTIR Spectroscopic Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5858-5868. [PMID: 38445553 PMCID: PMC10956494 DOI: 10.1021/acs.langmuir.3c03730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Throughout bioprocessing, transportation, and storage, therapeutic monoclonal antibodies (mAbs) experience stress conditions that may cause protein unfolding and/or chemical modifications. Such structural changes may lead to the formation of aggregates, which reduce mAb potency and may cause harmful immunogenic responses in patients. Therefore, aggregates need to be detected and removed or ideally prevented from forming. Air-liquid interfaces, which arise during various stages of bioprocessing, are one of the stress factors causing mAb aggregation. In this study, the behavior of an immunoglobulin G (IgG) at the air-liquid interface was investigated under flow using macro attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic imaging. This chemically specific imaging technique allows observation of adsorption of IgG to the air-liquid interface and detection of associated secondary structural changes. Chemical images revealed that IgG rapidly accumulated around an injected air bubble under flow at 45 °C; however, no such increase was observed at 25 °C. Analysis of the second derivative spectra of IgG at the air-liquid interface revealed changes in the protein secondary structure associated with increased intermolecular β-sheet content, indicative of aggregated IgG. The addition of 0.01% w/v polysorbate 80 (PS80) reduced the amount of IgG at the air-liquid interface in a static setup at 30 °C; however, this protective effect was lost at 45 °C. These results suggest that the presence of air-liquid interfaces under flow may be detrimental to mAb stability at elevated temperatures and demonstrate the power of ATR-FTIR spectroscopic imaging for studying the structural integrity of mAbs under bioprocessing conditions.
Collapse
Affiliation(s)
- Céline van Haaren
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Bernadette Byrne
- Department
of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Sergei G. Kazarian
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|
6
|
Heiden-Hecht T, Wu B, Schwärzer K, Förster S, Kohlbrecher J, Holderer O, Frielinghaus H. New insights into protein stabilized emulsions captured via neutron and X-ray scattering: An approach with β-lactoglobulin at triacylglyceride-oil/water interfaces. J Colloid Interface Sci 2024; 655:319-326. [PMID: 37948805 DOI: 10.1016/j.jcis.2023.10.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
HYPOTHESIS To analyze protein stabilized emulsions, SAXS and SANS are emerging techniques capturing oil droplet radius, interfacial coverage and structure. Protein shape, thus protein structure change during interfacial adsorption with partial protein unfolding is detected via SAXS analysis at and below the monolayer concentration for proteins, known as critical interfacial concentration (CIC). SANS determines the same phenomena below and above the CIC, via contrast variation and coarse-grained modelling. EXPERIMENTS β-lactoglobulin concentration dependent SAXS experiments were performed focusing on molecular length scales to characterize protein shape in water, and interfacial structure in emulsions. Complementary SANS experiments with contrast variation via deuterated triacylglyceride-oil provided insight into oil droplet radius, interfacial coverage and structure via data analysis with scattering models and low-resolution shape reconstruction with the DENFERT model. FINDINGS SAXS and SANS experiments allowed to determine the interfacial structure below and above the CIC, as well as oil droplet radius and interfacial coverage. These findings were identified via Q-4 Porod scattering at low-Q, protein scattering at high Q, and a Q-2 scattering of the interface. Since SANS with accurate contrast variation highlights the interface in comparison to other techniques like FTIR, the presented results show a high impact to understand interfaces in emulsions.
Collapse
Affiliation(s)
- Theresia Heiden-Hecht
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany.
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Kuno Schwärzer
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Förster
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany; Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | - Olaf Holderer
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| |
Collapse
|
7
|
Venturi S, Rossi B, Tortora M, Torre R, Lapini A, Foggi P, Paolantoni M, Catalini S. Amyloidogenic and non-amyloidogenic molten globule conformation of β-lactoglobulin in self-crowded regime. Int J Biol Macromol 2023; 242:124621. [PMID: 37141974 DOI: 10.1016/j.ijbiomac.2023.124621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Molecular insights on the β-lactoglobulin thermal unfolding and aggregation are derived from FTIR and UV Resonance Raman (UVRR) investigations. We propose an in situ and in real-time approach that thanks to the identification of specific spectroscopic markers can distinguish the two different unfolding pathways pursued by β-lactoglobulin during the conformational transition from the folded to the molten globule state, as triggered by the pH conditions. For both the investigated pH values (1.4 and 7.5) the greatest conformational variation of β-lactoglobulin occurs at 80 °C and a high degree of structural reversibility after cooling is observed. In acidic condition β-lactoglobulin exposes to the solvent its hydrophobic moieties in a much higher extent than in neutral solution, resulting on a highly open conformation. Moving from the diluted to the self-crowded regime, the solution pH and consequently the different molten globule conformation select the amyloid or non-amyloid aggregation pathway. At acidic condition the amyloid aggregates form during the heating cycle leading to the formation of transparent hydrogel. On the contrary, in neutral condition the amyloid aggregates never form. Information on the secondary structure conformational change of β-lactoglobulin and the formation of amyloid aggregates are obtained by FTIR spectroscopy and are related to the information of the structural changes localized around the aromatic amino acid sites by UVRR technique. Our results highlight a strong involvement of the chain portions where tryptophan is located on the formation of amyloid aggregates.
Collapse
Affiliation(s)
- Sara Venturi
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - Mariagrazia Tortora
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy; AREA SCIENCE PARK, Padriciano, 99, 34149 Trieste, Italy
| | - Renato Torre
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; Dipartimento di Fisica ed Astronomia, Università di Firenze, Via G. Sansone, 1, 50019 Sesto Fiorentino, Italy
| | - Andrea Lapini
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze, 17/A, 43124 Parma, PR, Italy
| | - Paolo Foggi
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy; CNR-INO, Consiglio Nazionale Delle Ricerche - Istituto Nazionale di Ottica, Largo Fermi 6, 50125 Florence, Italy
| | - Marco Paolantoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy.
| | - Sara Catalini
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; CNR-INO, Consiglio Nazionale Delle Ricerche - Istituto Nazionale di Ottica, Largo Fermi 6, 50125 Florence, Italy; Dipartimento di Fisica e Geologia, Università di Perugia, 06123, Via Pascoli, Perugia, Italy.
| |
Collapse
|
8
|
Effect of mucin on β-lactoglobulin and lactose interaction. J DAIRY RES 2023. [DOI: 10.1017/s0022029923000092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Functions of mucin, as the major macromolecular component in saliva or gastric fluids, are drawing increasing attention in the context of understanding the oral processing or digestion of dairy foods at the molecular level. This study was designed to investigate the interactions between β-lactoglobulin (BLG)-lactose, mucin-lactose and BLG-lactose-mucin at the molecular level under different temperature and pH conditions using fluorescence spectroscopy in combination with scanning electron microscopes (sem). It is the first study of its kind. There was no lactose-dependent quenching on BLG fluorophore in the range of 0–10 mM lactose concentration. On the contrary, there was a continuous increase in the fluorescence intensity of the BLG protein when the lactose concentration increased, especially at 25°C. BLG-lactose complex became thermally unstable at 37 and 45°C. Moreover, BLG exhibited a pH dependent conformational change and had higher fluorescence intensity at pH 3 than pH 6.8. The fluorescence result was in correspondence with sem images where we observed lactose crystals gathering around and on the BLG molecule, but lactose molecules could not be seen in the presence of mucin. It was anticipated that mucin molecules interacted with BLG-lactose complex via electrostatic attraction and formed an extra protective layer around the BLG molecules to avoid solvent exposure.
Collapse
|
9
|
Kopp MRG, Grigolato F, Zürcher D, Das TK, Chou D, Wuchner K, Arosio P. Surface-Induced Protein Aggregation and Particle Formation in Biologics: Current Understanding of Mechanisms, Detection and Mitigation Strategies. J Pharm Sci 2023; 112:377-385. [PMID: 36223809 DOI: 10.1016/j.xphs.2022.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 01/12/2023]
Abstract
Protein stability against aggregation is a major quality concern for the production of safe and effective biopharmaceuticals. Amongst the different drivers of protein aggregation, increasing evidence indicates that interactions between proteins and interfaces represent a major risk factor for the formation of protein aggregates in aqueous solutions. Potentially harmful surfaces relevant to biologics manufacturing and storage include air-water and silicone oil-water interfaces as well as materials from different processing units, storage containers, and delivery devices. The impact of some of these surfaces, for instance originating from impurities, can be difficult to predict and control. Moreover, aggregate formation may additionally be complicated by the simultaneous presence of interfacial, hydrodynamic and mechanical stresses, whose contributions may be difficult to deconvolute. As a consequence, it remains difficult to identify the key chemical and physical determinants and define appropriate analytical methods to monitor and predict protein instability at these interfaces. In this review, we first discuss the main mechanisms of surface-induced protein aggregation. We then review the types of contact materials identified as potentially harmful or detected as potential triggers of proteinaceous particle formation in formulations and discuss proposed mitigation strategies. Finally, we present current methods to probe surface-induced instabilities, which represent a starting point towards assays that can be implemented in early-stage screening and formulation development of biologics.
Collapse
Affiliation(s)
- Marie R G Kopp
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Fulvio Grigolato
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Dominik Zürcher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Li G, Zuo YY. Molecular and colloidal self-assembly at the oil–water interface. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Wollborn T, Michaelis M, Ciacchi LC, Fritsching U. Protein conformational changes at the oil/water-interface induced by premix membrane emulsification. J Colloid Interface Sci 2022; 628:72-81. [PMID: 35908433 DOI: 10.1016/j.jcis.2022.07.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
We present combined experimental and modelling evidence that β-lactoglobulin proteins employed as stabilizers of oil/water emulsions undergo minor but significant conformational changes during premix membrane emulsification processes. Circular Dichroism spectroscopy and Molecular Dynamics simulations reveal that the native protein structure is preserved as a metastable state after adsorption at stress-free oil/water interfaces. However, the shear stress applied to the oil droplets during their fragmentation in narrow membrane pores causes a transition into a more stable, partially unfolded interfacial state. The protein's β-sheet content is reduced by up to 8% in a way that is largely independent of the pressure applied during emulsification, and is driven by an increase of contacts between the oil and hydrophobic residues at the expense of structural order within the protein core.
Collapse
Affiliation(s)
- Tobias Wollborn
- Leibniz Institute for Materials Engineering - IWT, Badgasteiner Straße 3, 28359 Bremen, Germany.
| | - Monika Michaelis
- Hybrid Materials Interfaces Group, University of Bremen, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), Am Fallturm 1, 28359 Bremen, Germany; Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, University of Bremen, Faculty of Production Engineering, Bremen Center for Computational Materials Science, Center for Environmental Research and Sustainable Technology (UFT), Am Fallturm 1, 28359 Bremen, Germany; MAPEX Center for Materials and Processes, Am Fallturm 1, 28359 Bremen, Germany
| | - Udo Fritsching
- Leibniz Institute for Materials Engineering - IWT, Badgasteiner Straße 3, 28359 Bremen, Germany; MAPEX Center for Materials and Processes, Am Fallturm 1, 28359 Bremen, Germany; Particles and Process Engineering, University of Bremen, Badgasteiner Straße 3, 28359 Bremen, Germany
| |
Collapse
|
12
|
Yu H, Yang S, Chen Z, Xu Z, Quan X, Zhou J. Orientation and Conformation of Hydrophobin at the Oil-Water Interface: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6191-6200. [PMID: 35508911 DOI: 10.1021/acs.langmuir.2c00614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrophobins, a new class of potential protein emulsifiers, have been extensively employed in the food, pharmaceutical, and chemical industries. However, the knowledge of the underlying molecular mechanism of protein adsorption at the oil-water interface remains elusive. In this study, all-atom molecular dynamics simulations were performed to probe the adsorption orientation and conformation change of class II hydrophobin HFBI at the cyclohexane-water interface. It was proposed that a hydrophobic dipole of the protein could be used to quantitatively predict the orientation of the adsorbed HFBI. Simulation results revealed that HFBI adsorbed at the interface with the patch-up orientation toward the oil phase, regardless of its initial orientations. HFBI's secondary structure was maintained to be intact in the course of simulations despite relatively significant variations in the tertiary structure observed, which could well preserve the bioactivity of HFBI. From the energy analysis, the driving force for interface adsorption was primarily determined by van der Waals interactions between HFBI and cyclohexane. Further analysis indicated that the adsorption orientation and conformation of HFBI at the oil-water interface were typically regulated by the hydrophobic patch and some key residues. This study provides some insights into the orientation, conformation, and adsorption mechanism of proteins at the oil-water interface and theoretical guidelines for the design and development of novel biological emulsifiers involved in the food, pharmaceutical, and chemical industries.
Collapse
Affiliation(s)
- Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zheng Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
13
|
Zhang Y, Li S, Yang Y, Wang C, Zhang T. Formation and characterization of noncovalent ternary complexes based on whey protein concentrate, high methoxyl pectin, and phenolic acid. J Dairy Sci 2022; 105:2963-2977. [DOI: 10.3168/jds.2021-21088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022]
|
14
|
Fluid gels: A systematic review towards their application in pharmaceutical dosage forms and drug delivery systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Drusch S, Klost M, Kieserling H. Current knowledge on the interfacial behaviour limits our understanding of plant protein functionality in emulsions. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
|
17
|
Kieserling H, Pankow A, Keppler JK, Wagemans AM, Drusch S. Conformational state and charge determine the interfacial film formation and film stability of β-lactoglobulin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Li F, Fu Y, Yang H, Tang Y. The inhibition mechanism of luteolin on peroxidase based on multispectroscopic techniques. Int J Biol Macromol 2021; 166:1072-1081. [PMID: 33157143 DOI: 10.1016/j.ijbiomac.2020.10.262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 01/11/2023]
Abstract
Luteolin, a plant-derived flavonoid, was found to exert effective inhibitory effect to peroxidase activity in a non-competitive manner with an IC50 of (6.62 ± 0.45) × 10-5 mol L-1. The interaction between luteolin and peroxidase induced the formation of a static complex with a binding constant (Ksv) of 7.31 × 103 L mol-1 s-1 driven by hydrogen bond and hydrophobic interaction. Further, the molecular interaction between luteolin and peroxidase resulted in intrinsic fluorescence quenching, structural and conformational alternations which were determined by multispectroscopic techniques combined with computational molecular docking. Molecular docking results revealed that luteolin bound to peroxidase and interacted with relevant amino acid residues in the hydrophobic pocket. These results will provide information for screening additional peroxidase inhibitors and provide evidence of luteolin's potential application in preservation and processing of fruit and vegetables and clinical disease remedy.
Collapse
Affiliation(s)
- Fengmao Li
- College of Life Science, Southwest University, Chongqing 400715, China; Engineering & Technology Research Center for Sweet potato of Chongqing, Chongqing 400715, China
| | - Yufan Fu
- College of Life Science, Southwest University, Chongqing 400715, China; Engineering & Technology Research Center for Sweet potato of Chongqing, Chongqing 400715, China
| | - Hao Yang
- College of Life Science, Southwest University, Chongqing 400715, China; Engineering & Technology Research Center for Sweet potato of Chongqing, Chongqing 400715, China
| | - Yunming Tang
- College of Life Science, Southwest University, Chongqing 400715, China; Engineering & Technology Research Center for Sweet potato of Chongqing, Chongqing 400715, China.
| |
Collapse
|
19
|
|
20
|
Tian M, Wang C, Cheng J, Wang H, Jiang S, Guo M. Preparation and Characterization of Soy Isoflavones Nanoparticles Using Polymerized Goat Milk Whey Protein as Wall Material. Foods 2020; 9:E1198. [PMID: 32878004 PMCID: PMC7554741 DOI: 10.3390/foods9091198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Soy isoflavones (SIF) are a group of polyphenolic compounds with health benefits. However, application of SIF in functional foods is limited due to its poor aqueous solubility. SIF nanoparticles with different concentrations were prepared using polymerized goat milk whey protein (PGWP) as wall material. The goat milk whey protein was prepared from raw milk by membrane processing technology. The encapsulation efficiencies of all the nanoparticles were found to be greater than 70%. The nanoparticles showed larger particle size and lower zeta potential compared with the PGWP. Fourier Transform Infrared Spectroscopy indicated that the secondary structure of goat milk whey protein was changed after interacting with SIF, with transformation of α-helix and β-sheet to disordered structures. Fluorescence data indicated that interactions between SIF and PGWP decreased the fluorescence intensity. All nanoparticles had spherical microstructure revealed by Transmission Electron Microscope. Data indicated that PGWP may be a good carrier material for the delivery of SIF to improve its applications in functional foods.
Collapse
Affiliation(s)
- Mu Tian
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (M.T.); (C.W.); (J.C.); (H.W.)
| | - Cuina Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (M.T.); (C.W.); (J.C.); (H.W.)
| | - Jianjun Cheng
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (M.T.); (C.W.); (J.C.); (H.W.)
| | - Hao Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (M.T.); (C.W.); (J.C.); (H.W.)
| | - Shilong Jiang
- HeiLongJiang FeiHe Dairy Co., Ltd., Beijing 100015, China;
| | - Mingruo Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, China; (M.T.); (C.W.); (J.C.); (H.W.)
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
21
|
Chen W, Li T, Yu H, Ma C, Wang X, Qayum A, Hou J, Jiang Z. Structure and emulsifying properties of whey protein isolate: Effect of safflower yellow concentration. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Jin W, Wang Z, Peng D, Shen W, Zhu Z, Cheng S, Li B, Huang Q. Effect of pulsed electric field on assembly structure of α-amylase and pectin electrostatic complexes. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Schwaighofer A, Alcaraz MR, Lux L, Lendl B. pH titration of β-lactoglobulin monitored by laser-based Mid-IR transmission spectroscopy coupled to chemometric analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117636. [PMID: 31610466 DOI: 10.1016/j.saa.2019.117636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
A novel external cavity-quantum cascade laser (EC-QCL)-based setup for mid-IR transmission spectroscopy in the amide I and amide II region was employed for monitoring pH-induced changes of protein secondary structure. pH titration of β-lactoglobulin revealed unfolding of the native β-sheet secondary structure occurring at basic pH. Chemometric analysis of the dynamic IR spectra was performed by multivariate curve resolution-alternating least squares (MCR-ALS). Using this approach, spectral and abundance distribution profiles of the conformational transition were obtained. A proper post-processing procedure was implemented allowing to extract information about pure protein spectra and spurious signals that may interfere in the interpretation of the system. This work demonstrates the potential and versatility of the EC-QCL-based IR transmission setup for flow-through applications, benefitting from the high available optical path length.
Collapse
Affiliation(s)
- Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060, Vienna, Austria
| | - Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, S3000ZAA, Argentina; Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EGA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz, 2290 CABA, C1425FQB, Argentina
| | - Laurin Lux
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060, Vienna, Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060, Vienna, Austria.
| |
Collapse
|
24
|
Schestkowa H, Drusch S, Wagemans AM. FTIR analysis of β-lactoglobulin at the oil/water-interface. Food Chem 2020; 302:125349. [DOI: 10.1016/j.foodchem.2019.125349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
|
25
|
Lou L, Kendall RJ, Smith E, Ramkumar SS. Functional PVDF/rGO/TiO2 nanofiber webs for the removal of oil from water. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Su J, Guo Q, Chen Y, Mao L, Gao Y, Yuan F. Utilization of β-lactoglobulin- (−)-Epigallocatechin- 3-gallate(EGCG) composite colloidal nanoparticles as stabilizers for lutein pickering emulsion. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105293] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
27
|
Zhang J, Mei L, Chen N, Yuan Y, Zeng QZ, Wang Q. Study on β-lactoglobulin microgels adsorption onto a hydrophobic solid surface by QCM-D. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Wang R, Liu Y, Hu X, Pan J, Gong D, Zhang G. New insights into the binding mechanism between osthole and β-lactoglobulin: Spectroscopic, chemometrics and docking studies. Food Res Int 2019; 120:226-234. [DOI: 10.1016/j.foodres.2019.02.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
|
29
|
YE L, CHEN H. Characterization of the interactions between chitosan/whey protein at different conditions. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.29217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lizhu YE
- Xiamen Ocean Vocational College, China
| | - Huibin CHEN
- Xiamen Ocean Vocational College, China; Third Institute of Oceanography, China
| |
Collapse
|
30
|
Çelebioğlu HY, Lee S, Chronakis IS. Interactions of salivary mucins and saliva with food proteins: a review. Crit Rev Food Sci Nutr 2019; 60:64-83. [PMID: 30632771 DOI: 10.1080/10408398.2018.1512950] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mucins are long glycoprotein molecules responsible for the gel nature of the mucous layer that covers epithelial surfaces throughout the body. Mucins, as the major salivary proteins, are also important proteins for the food oral processing and digestion. The interactions of salivary mucins and saliva with several food proteins and food protein emulsions, as well as their functional properties related to the food oral processing were reviewed in this paper. The target food proteins of focus were whey proteins (lactoferrin and beta-lactoglobulin) and non-whey proteins (casein, gelatin, galectin/lectin, and proline-rich proteins). Most of the studies suggest that electrostatic attraction (between positively charged food proteins with negatively charged moieties of mucin mainly on glycosylated region of mucin) is the major mode of interaction between them. On the other hand, casein attracts the salivary proteins only via non-covalent interactions due to its naturally self-assembled micellar structure. Moreover, recent studies related to β-lactoglobulin (BLG)-mucin interactions have clarified the importance of hydrophobic as well as hydrophilic interactions, such as hydrogen bonding. Furthermore, in vitro studies between protein emulsions and saliva observed a strong aggregating effect of saliva on caseinate and whey proteins as well as on surfactant-stabilized emulsions. Besides, the sign and the density of the charge on the surface of the protein emulsion droplets contribute significantly to the behavior of the emulsion when mixed with saliva. Other studies also suggested that the interactions between saliva and whey proteins depends on the pH in addition to the flow rate of the saliva. Overall, the role of interactions of food proteins and food protein emulsions with mucin/saliva-proteins in the oral perception, as well as the physicochemical and structural changes of proteins were discussed.
Collapse
Affiliation(s)
- Hilal Y Çelebioğlu
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Lyngby, Denmark
| | - Seunghwan Lee
- Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ioannis S Chronakis
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
31
|
Wei Y, Vriesekoop F, Yuan Q, Liang H. β-Lactoglobulin as a Nanotransporter for Glabridin: Exploring the Binding Properties and Bioactivity Influences. ACS OMEGA 2018; 3:12246-12252. [PMID: 31459299 PMCID: PMC6645583 DOI: 10.1021/acsomega.8b01576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/13/2018] [Indexed: 06/10/2023]
Abstract
Based on the fact that β-lactoglobulin (β-lg) can solubilize readily in water and bind many small hydrophobic molecules, a novel nanocomplexed glabridin with β-lg was developed by an antisolvent precipitation method. After binding to β-lg, the solubility of glabridin in aqueous solution was enhanced 21 times. Fluorescence spectroscopy of β-lg revealed that the interaction of glabridin with β-lg made the environment of Trp and Tyr residues on β-lg more hydrophilic. The morphology and crystal form of the nanocomplexed glabridin with β-lg was characterized and the changes in β-lg conformation was also been investigated. In combination with molecular docking modeling, the results revealed that glabridin was bound to β-lg by hydrophobic forces and hydrogen-bond interactions. Furthermore, the nanocomplexed glabridin with β-lg had a better 2,2-diphenyl-1-picrylhydrazyl radical-scavenging capacity and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid radical-scavenging capacity compared to free glabridin at the same concentration during in vitro tests. Thus, nanocomplexing with β-lg, by virtue of its ability to enhance the solubility of glabridin in aqueous systems, provides a suitable opportunity as a nanocarrier molecule.
Collapse
Affiliation(s)
- Yongqin Wei
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Frank Vriesekoop
- Department
of Food Science, Harper Adams University, Newport TF10 8NB, Shropshire, England
| | - Qipeng Yuan
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Hao Liang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
32
|
Lazidis A, de Almeida Parizotto L, Spyropoulos F, Norton I. Reprint of: Microstructural design of aerated food systems by soft-solid materials. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Lazidis A, de Almeida Parizotto L, Spyropoulos F, Norton I. Microstructural design of aerated food systems by soft-solid materials. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Latshaw DC, Randolph TW, Hall CK. Aggregation of amphipathic peptides at an aqueous–organic interface using coarse-grained simulations. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1319058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- David C. Latshaw
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Theodore W. Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Carol K. Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
35
|
Jia J, Gao X, Hao M, Tang L. Comparison of binding interaction between β-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods. Food Chem 2017; 228:143-151. [DOI: 10.1016/j.foodchem.2017.01.131] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/11/2017] [Accepted: 01/26/2017] [Indexed: 01/29/2023]
|
36
|
Atomization of denatured whey proteins as a novel and simple way to improve oral drug delivery system properties. Int J Biol Macromol 2017; 105:801-809. [PMID: 28732731 DOI: 10.1016/j.ijbiomac.2017.07.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 01/17/2023]
Abstract
In the sphere of drug delivery, denatured whey protein (DWP) has in recent times gained press. However, to date, no scalable and affordable dosage form has been developed. The objective of our study was to evaluate the potential use of spray-dried DWP as a ready to use excipient for oral drug delivery. Therefore, solid state, FTIR spectra and wettability were studied. Dissolution, mucoadhesion and the effect on paracellular permeability were also evaluated. The spray-dried DWP particles were spherical with 4μm mean diameter. Further, relative to native WP, the spray-dried DWP particles bore reduced wettability, and their structure was characterized by the exposure of a high amount of free thiol and by the formation of intermolecular β-sheets. The DWP powders were mucoadhesive, enzymatic inhibitors, biocompatible and they induced the opening of tight junctions. Our study shows great potential for the use of spray-drying as a technique to modify the dissolution rate of drugs and enhance the oral bioavailability of molecules. That is, the use of spray drying as a single step ready to use DWP excipient.
Collapse
|
37
|
Keppler JK, Martin D, Garamus VM, Berton-Carabin C, Nipoti E, Coenye T, Schwarz K. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 1 physicochemical and antibacterial properties of native and modified whey proteins at pH 2 to 7. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Sah B, McAinch A, Vasiljevic T. Modulation of bovine whey protein digestion in gastrointestinal tract: A comprehensive review. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Ward K, Stuckey DC. Refractive index matching to develop transparent polyaphrons: Characterization of immobilized proteins. Colloids Surf B Biointerfaces 2016; 142:159-164. [DOI: 10.1016/j.colsurfb.2016.02.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 11/29/2022]
|
40
|
Zare D, Allison JR, McGrath KM. Molecular Dynamics Simulation of β-Lactoglobulin at Different Oil/Water Interfaces. Biomacromolecules 2016; 17:1572-81. [DOI: 10.1021/acs.biomac.5b01709] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Davoud Zare
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, School of Chemical
and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
- Riddet
Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Jane R. Allison
- Centre
for Theoretical Chemistry and Physics, Institute of Natural and Mathematical
Sciences, Massey University Auckland (Oteha Rohe), Albany Highway, Albany 0632, New Zealand
- Biomolecular
Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Kathryn M. McGrath
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, School of Chemical
and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
- Riddet
Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
41
|
Çelebioğlu HY, Gudjónsdóttir M, Chronakis IS, Lee S. Investigation of the interaction between mucins and β-lactoglobulin under tribological stress. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.09.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Jacobsen C. Some strategies for the stabilization of long chain n-3 PUFA-enriched foods: A review. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500137] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Charlotte Jacobsen
- Division of Food Technology, National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| |
Collapse
|
44
|
Çelebioğlu HY, Gudjónsdóttir M, Meier S, Duus JØ, Lee S, Chronakis IS. Spectroscopic studies of the interactions between β-lactoglobulin and bovine submaxillary mucin. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Zare D, McGrath KM, Allison JR. Deciphering β-Lactoglobulin Interactions at an Oil-Water Interface: A Molecular Dynamics Study. Biomacromolecules 2015; 16:1855-61. [PMID: 25989152 DOI: 10.1021/acs.biomac.5b00467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein adsorption at liquid-liquid interfaces is of immense relevance to many biological processes and dairy-based functional foods. Due to experimental limitations, however, there is still a remarkable lack of understanding of the adsorption mechanism, particularly at a molecular level. In this study, atomistic molecular dynamics simulations were used to elucidate the approach and adsorption mechanism of β-lactoglobulin (β-LG) at a decane-water interface. Through multiple independent simulations starting from three representative initial orientations of β-LG relative to the decane surface the rate at which β-LG approaches the oil/water interface is found to be independent of its initial orientation, and largely stochastic in nature. While the residues that first make contact with the decane and the final orientation of β-LG upon adsorption are similar in all cases, the adsorption process is driven predominantly by structural rearrangements that preserve the secondary structure but expose hydrophobic residues to the decane surface. This detailed characterization of the adsorption of β-LG at an oil/water interface should inform the design and development of novel encapsulation and delivery systems in the food and pharmaceutical sciences.
Collapse
Affiliation(s)
- Davoud Zare
- †MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand.,‡Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Kathryn M McGrath
- †MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand.,‡Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Jane R Allison
- §Centre for Theoretical Chemistry and Physics, Institute of Natural and Mathematical Sciences, Massey University Auckland, Albany, Auckland 0632, New Zealand.,∥Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.,⊥Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
46
|
Qomarudin Q, Orbell JD, Ramchandran L, Gray SR, Stewart MB, Vasiljevic T. Properties of beta-lactoglobulin/alginate mixtures as a function of component ratio, pH and applied shear. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Ioannou J, Donald A, Tromp R. Characterising the secondary structure changes occurring in high density systems of BLG dissolved in aqueous pH 3 buffer. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.12.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Li Y, Wu Z, He W, Qin C, Yao J, Zhou J, Yin L. Globular Protein-Coated Paclitaxel Nanosuspensions: Interaction Mechanism, Direct Cytosolic Delivery, and Significant Improvement in Pharmacokinetics. Mol Pharm 2015; 12:1485-500. [DOI: 10.1021/mp5008037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongji Li
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhannan Wu
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei He
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Qin
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines and ‡Department of Pharmaceutics, School
of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
49
|
Ching SH, Bhandari B, Webb R, Bansal N. Visualizing the interaction between sodium caseinate and calcium alginate microgel particles. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.05.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Interaction of Quillaja bark saponins with food-relevant proteins. Adv Colloid Interface Sci 2014; 209:185-95. [PMID: 24802169 DOI: 10.1016/j.cis.2014.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/22/2022]
Abstract
The surface activity and aggregation behaviour of two Quillaja bark saponins (QBS) are compared using surface tension, conductometry and light scattering. Despite formally of the same origin (bark of the Quillaja saponaria Molina tree), the two QBS show markedly different ionic characters and critical micelle concentrations (7.7·10(-6) mol·dm(-3) and 1.2·10(-4) mol·dm(-3)). The new interpretation of the surface tension isotherms for both QBS allowed us to propose an explanation for the previous discrepancy concerning the orientation of the saponin molecules in the adsorbed layer. The effect of three food-related proteins (hen egg lysozyme, bovine β-lactoglobulin and β-casein) on surface tension of the saponins is also described. Dynamic surface tension was measured at fixed protein concentrations and QBS concentrations varying in the range 5·10(-7)-1·10(-3) mol·dm(-3). Both dynamic and extrapolated equilibrium surface tensions of the protein/QBS mixtures depend not only on the protein, but also on the QBS source. In general, the surface tension for mixtures of the QBS with lower CMC and less ionic character shows less pronounced synergistic effects. This is especially well visible for β-casein/QBS mixtures, where a characteristic maximum in the surface tension isotherm around the molar ratio of one can be noticed for one saponin product, but not for the other.
Collapse
|