1
|
Selig KR, López-Torres S, Burrows AM, Silcox MT, Meng J. Dental caries in living and extinct strepsirrhines with insights into diet. Anat Rec (Hoboken) 2024; 307:1995-2006. [PMID: 38465830 DOI: 10.1002/ar.25420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Dental caries is one of the most common diseases afflicting modern humans and occurs in both living and extinct non-human primates, as well as other mammalian species. Compared to other primates, less is known about the etiology or frequency of caries among the Strepsirrhini. Given the link between caries and diet, caries frequency may be informative about the dietary ecology of a given animal. Understanding rates of caries in wild populations is also critical to assessing dental health in captive populations. Here, we examine caries frequency in a sample of 36 extant strepsirrhine species (n = 316 individuals) using odontological collections of wild-, non-captive animals housed at the American Museum of Natural History by counting the number of specimens characterized by the disease. Additionally, in the context of studying caries lesions in strepsirrhines, case studies were also conducted to test if similar lesions were found in their fossil relatives. In particular, two fossil strepsirrhine species were analyzed: the earliest Late Eocene Karanisia clarki, and the subfossil lemur Megaladapis madagascariensis. Our results suggest that caries affects 13.92% of the extant individuals we examined. The frugivorous and folivorous taxa were characterized by the highest overall frequency of caries, whereas the insectivores, gummivores, and omnivores had much lower caries frequencies. Our results suggest that caries may be common among wild populations of strepsirrhines, and in fact is more prevalent than in many catarrhines and platyrrhines. These findings have important implications for understanding caries, diet, and health in living and fossil taxa.
Collapse
Affiliation(s)
- Keegan R Selig
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Sergi López-Torres
- University of Warsaw, Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, Warsaw, Poland
- Division of Paleontology, American Museum of Natural History, New York, New York, USA
| | - Anne M Burrows
- Department of Physical Therapy, Duquesne University, Pittsburgh, Pennsylvania, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York, New York, USA
- Earth and Environmental Sciences, Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
2
|
Towle I, Constantino PJ, Borths MR, Loch C. Tooth chipping patterns in Archaeolemur provide insight into diet and behavior. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:401-408. [PMID: 36790760 PMCID: PMC10107942 DOI: 10.1002/ajpa.24674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/20/2022] [Accepted: 11/13/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Archaeolemur is a recently extinct genus of lemur that is often compared to some Cercopithecidae, especially baboons. This is due in part to their derived dentition, with large anterior teeth and reduced bilophodont molars. Research involving comparative morphology, analysis of coprolites, isotopes, and enamel structure, have suggested Archaeolemur had an omnivorous diet involving mechanically challenging items. Yet, microwear analysis of posterior teeth does not necessarily support this conclusion. MATERIALS AND METHODS In this macroscopic study, dental chipping was recorded on permanent teeth of Archaeolemur from different localities (53 individuals; 447 permanent teeth; including both A. edwardsi and A. majori specimens). This study aimed to compare chipping patterns across the dentition of Archaeolemur with chipping in other primates. RESULTS The results show enamel chipping was prevalent on the anterior teeth of Archaeolemur (38.9% of anterior teeth showed at least one fracture) yet rare in posterior teeth (9%). There was a decrease in chipping frequency across the dentition, moving distally from incisors (50%; 20/40), through caniniform teeth (30%; 15/50), premolars (9.5%; 16/169), and molars (8.5%; 16/188). DISCUSSION The results support previous research suggesting Archaeolemur had a varied omnivorous diet in which the anterior dentition was used for extensive food processing. This likely included mechanically challenging items such as tough/hard large fruits, small vertebrates, and crustaceans. Such a high rate of chipping in the anterior dentition is uncommon in other primates, with exception of hominins.
Collapse
Affiliation(s)
- Ian Towle
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Paul J Constantino
- Department of Biology, Saint Michael's College, Colchester, Vermont, USA
| | - Matthew R Borths
- Duke Lemur Center Museum of Natural History, Duke University, Durham, North Carolina, USA
| | - Carolina Loch
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Marciniak S, Mughal MR, Godfrey LR, Bankoff RJ, Randrianatoandro H, Crowley BE, Bergey CM, Muldoon KM, Randrianasy J, Raharivololona BM, Schuster SC, Malhi RS, Yoder AD, Louis EE, Kistler L, Perry GH. Evolutionary and phylogenetic insights from a nuclear genome sequence of the extinct, giant, "subfossil" koala lemur Megaladapis edwardsi. Proc Natl Acad Sci U S A 2021; 118:e2022117118. [PMID: 34162703 PMCID: PMC8255780 DOI: 10.1073/pnas.2022117118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
No endemic Madagascar animal with body mass >10 kg survived a relatively recent wave of extinction on the island. From morphological and isotopic analyses of skeletal "subfossil" remains we can reconstruct some of the biology and behavioral ecology of giant lemurs (primates; up to ∼160 kg) and other extraordinary Malagasy megafauna that survived into the past millennium. Yet, much about the evolutionary biology of these now-extinct species remains unknown, along with persistent phylogenetic uncertainty in some cases. Thankfully, despite the challenges of DNA preservation in tropical and subtropical environments, technical advances have enabled the recovery of ancient DNA from some Malagasy subfossil specimens. Here, we present a nuclear genome sequence (∼2× coverage) for one of the largest extinct lemurs, the koala lemur Megaladapis edwardsi (∼85 kg). To support the testing of key phylogenetic and evolutionary hypotheses, we also generated high-coverage nuclear genomes for two extant lemurs, Eulemur rufifrons and Lepilemur mustelinus, and we aligned these sequences with previously published genomes for three other extant lemurs and 47 nonlemur vertebrates. Our phylogenetic results confirm that Megaladapis is most closely related to the extant Lemuridae (typified in our analysis by E. rufifrons) to the exclusion of L. mustelinus, which contradicts morphology-based phylogenies. Our evolutionary analyses identified significant convergent evolution between M. edwardsi and an extant folivore (a colobine monkey) and an herbivore (horse) in genes encoding proteins that function in plant toxin biodegradation and nutrient absorption. These results suggest that koala lemurs were highly adapted to a leaf-based diet, which may also explain their convergent craniodental morphology with the small-bodied folivore Lepilemur.
Collapse
Affiliation(s)
- Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
| | - Mehreen R Mughal
- Bioinformatics and Genomics Intercollege Graduate Program, Pennsylvania State University, University Park, PA 16082
| | - Laurie R Godfrey
- Department of Anthropology, University of Massachusetts, Amherst, MA 01003
| | - Richard J Bankoff
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
| | - Heritiana Randrianatoandro
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo 101, Madagascar
| | - Brooke E Crowley
- Department of Geology, University of Cincinnati, Cincinnati, OH 45220
- Department of Anthropology, University of Cincinnati, Cincinnati, OH 45220
| | - Christina M Bergey
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Department of Genetics, Rutgers University, New Brunswick, NJ 08854
| | | | - Jeannot Randrianasy
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo 101, Madagascar
| | - Brigitte M Raharivololona
- Mention Anthropobiologie et Développement Durable, Faculté des Sciences, Université d'Antananarivo, Antananarivo 101, Madagascar
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 639798
| | - Ripan S Malhi
- Department of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Department of Ecology, Evolution and Behavior, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708
| | - Edward E Louis
- Department of Conservation Genetics, Omaha's Henry Doorly Zoo and Aquarium, Omaha, NE 68107;
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560;
| | - George H Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802;
- Bioinformatics and Genomics Intercollege Graduate Program, Pennsylvania State University, University Park, PA 16082
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
4
|
Perry JMG. Inferring the Diets of Extinct Giant Lemurs from Osteological Correlates of Muscle Dimensions. Anat Rec (Hoboken) 2018; 301:343-362. [DOI: 10.1002/ar.23719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/01/2017] [Accepted: 08/24/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan M. G. Perry
- Center for Functional Anatomy and Evolution; The Johns Hopkins University School of Medicine; Baltimore Maryland
| |
Collapse
|
5
|
Godfrey LR, Crowley BE, Muldoon KM, Kelley EA, King SJ, Best AW, Berthaume MA. What did Hadropithecus eat, and why should paleoanthropologists care? Am J Primatol 2015; 78:1098-112. [PMID: 26613562 DOI: 10.1002/ajp.22506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 11/05/2022]
Abstract
Over 40 years ago, Clifford Jolly noted different ways in which Hadropithecus stenognathus converged in its craniodental anatomy with basal hominins and with geladas. The Malagasy subfossil lemur Hadropithecus departs from its sister taxon, Archaeolemur, in that it displays comparatively large molars, reduced incisors and canines, a shortened rostrum, and thickened mandibular corpus. Its molars, however, look nothing like those of basal hominins; rather, they much more closely resemble molars of grazers such as Theropithecus. A number of tools have been used to interpret these traits, including dental microwear and texture analysis, molar internal and external morphology, and finite element analysis of crania. These tools, however, have failed to provide support for a simple dietary interpretation; whereas there is some consistency in the inferences they support, dietary inferences (e.g., that it was graminivorous, or that it specialized on hard objects) have been downright contradictory. Cranial shape may correlate poorly with diet. But a fundamental question remains unresolved: why do the various cranial and dental convergences exemplified by Hadropithecus, basal hominins, and Theropithecus exist? In this paper we review prior hypotheses regarding the diet of Hadropithecus. We then use stable carbon and nitrogen isotope data to elucidate this species' diet, summarizing earlier stable isotope analyses and presenting new data for lemurs from the central highlands of Madagascar, where Hadropithecus exhibits an isotopic signature strikingly different from that seen in other parts of the island. We offer a dietary explanation for these differences. Hadropithecus likely specialized neither on grasses nor hard objects; its staples were probably the succulent leaves of CAM plants. Nevertheless, aspects of prior hypotheses regarding the ecological significance of its morphology can be supported. Am. J. Primatol. 78:1098-1112, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laurie R Godfrey
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts.
| | - Brooke E Crowley
- Departments of Geology and Anthropology, University of Cincinnati, Cincinnati, Ohio
| | - Kathleen M Muldoon
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona
| | - Elizabeth A Kelley
- Department of Sociology and Anthropology, Saint Louis University, St. Louis, Missouri
| | - Stephen J King
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts
| | - Andrew W Best
- Department of Anthropology, University of Massachusetts, Amherst, Massachusetts
| | - Michael A Berthaume
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
6
|
Comparative and population mitogenomic analyses of Madagascar's extinct, giant ‘subfossil’ lemurs. J Hum Evol 2015; 79:45-54. [DOI: 10.1016/j.jhevol.2014.06.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/25/2014] [Accepted: 06/04/2014] [Indexed: 11/21/2022]
|
7
|
Christensen HB. Similar associations of tooth microwear and morphology indicate similar diet across marsupial and placental mammals. PLoS One 2014; 9:e102789. [PMID: 25099537 PMCID: PMC4123885 DOI: 10.1371/journal.pone.0102789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 06/24/2014] [Indexed: 11/23/2022] Open
Abstract
Low-magnification microwear techniques have been used effectively to infer diets within many unrelated mammalian orders, but the extent to which patterns are comparable among such different groups, including long extinct mammal lineages, is unknown. Microwear patterns between ecologically equivalent placental and marsupial mammals are found to be statistically indistinguishable, indicating that microwear can be used to infer diet across the mammals. Microwear data were compared to body size and molar shearing crest length in order to develop a system to distinguish the diet of mammals. Insectivores and carnivores were difficult to distinguish from herbivores using microwear alone, but combining microwear data with body size estimates and tooth morphology provides robust dietary inferences. This approach is a powerful tool for dietary assessment of fossils from extinct lineages and from museum specimens of living species where field study would be difficult owing to the animal’s behavior, habitat, or conservation status.
Collapse
Affiliation(s)
- Hilary B Christensen
- The University of Chicago, Department of Geophysical Sciences, Chicago, Illinois, United States of America; Bates College, Geology Department, Lewiston, Maine, United States of America
| |
Collapse
|
8
|
Patnaik R, Cerling TE, Uno KT, Fleagle JG. Diet and Habitat of Siwalik PrimatesIndopithecus, SivaladapisandTheropithecus. ANN ZOOL FENN 2014. [DOI: 10.5735/086.051.0214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Molar Microwear, Diet and Adaptation in a Purported Hominin Species Lineage from the Pliocene of East Africa. THE PALEOBIOLOGY OF AUSTRALOPITHECUS 2013. [DOI: 10.1007/978-94-007-5919-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Molar size and diet in the Strepsirrhini: Implications for size-adjustment in studies of primate dental adaptation. J Hum Evol 2012; 63:796-804. [DOI: 10.1016/j.jhevol.2012.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/01/2012] [Accepted: 09/17/2012] [Indexed: 11/21/2022]
|
11
|
Godfrey LR, Winchester JM, King SJ, Boyer DM, Jernvall J. Dental topography indicates ecological contraction of lemur communities. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 148:215-27. [PMID: 22610897 DOI: 10.1002/ajpa.21615] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Understanding the paleoecology of extinct subfossil lemurs requires reconstruction of dietary preferences. Tooth morphology is strongly correlated with diet in living primates and is appropriate for inferring dietary ecology. Recently, dental topographic analysis has shown great promise in reconstructing diet from molar tooth form. Compared with traditionally used shearing metrics, dental topography is better suited for the extraordinary diversity of tooth form among subfossil lemurs and has been shown to be less sensitive to phylogenetic sources of shape variation. Specifically, we computed orientation patch counts rotated (OPCR) and Dirichlet normal energy (DNE) of molar teeth belonging to 14 species of subfossil lemurs and compared these values to those of an extant lemur sample. The two metrics succeeded in separating species in a manner that provides insights into both food processing and diet. We used them to examine the changes in lemur community ecology in Southern and Southwestern Madagascar that accompanied the extinction of giant lemurs. We show that the poverty of Madagascar's frugivore community is a long-standing phenomenon and that extinction of large-bodied lemurs in the South and Southwest resulted not merely in a loss of guild elements but also, most likely, in changes in the ecology of extant lemurs.
Collapse
Affiliation(s)
- Laurie R Godfrey
- Department of Anthropology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Scott RS, Teaford MF, Ungar PS. Dental microwear texture and anthropoid diets. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2012; 147:551-79. [DOI: 10.1002/ajpa.22007] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 11/27/2011] [Indexed: 11/11/2022]
|
14
|
SCOTT JE, HOGUE AS, RAVOSA MJ. The adaptive significance of mandibular symphyseal fusion in mammals. J Evol Biol 2012; 25:661-73. [DOI: 10.1111/j.1420-9101.2012.02457.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Dumont ER, Ryan TM, Godfrey LR. The Hadropithecus conundrum reconsidered, with implications for interpreting diet in fossil hominins. Proc Biol Sci 2011; 278:3654-61. [PMID: 21525060 DOI: 10.1098/rspb.2011.0528] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fossil 'monkey lemur' Hadropithecus stenognathus has long excited palaeontologists because its skull bears an astonishing resemblance to those of robust australopiths, an enigmatic side branch of the human family tree. Multiple lines of evidence point to the likelihood that these australopiths ate at least some 'hard', stress-limited food items, but conflicting data from H. stenognathus pose a conundrum. While its hominin-like craniofacial architecture is suggestive of an ability to generate high bite forces, details of its tooth structure suggest that it was not well equipped to withstand the forces imposed by cracking hard objects. Here, we use three-dimensional digital reconstructions and finite-element analysis to test the hard-object processing hypothesis. We show that Archaeolemur sp. cf. A. edwardsi, a longer-faced close relative of H. stenognathus that lacked hominin convergences, was probably capable of breaking apart large, stress-limited food items, while Hadropithecus was better suited to processing small, displacement-limited (tougher but more compliant) foods. Our suggestion that H. stenognathus was not a hard-object feeder has bearing on the interpretation of hominin cranial architecture; the features shared by H. stenognathus and robust australopiths do not necessarily reflect adaptations for hard-object processing.
Collapse
Affiliation(s)
- Elizabeth R Dumont
- 221 Morrill Science Center, Department of Biology, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
16
|
Muchlinski MN, Godfrey LR, Muldoon KM, Tongasoa L. Evidence for dietary niche separation based on infraorbital foramen size variation among subfossil lemurs. Folia Primatol (Basel) 2011; 81:330-45. [PMID: 21266824 DOI: 10.1159/000323277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 11/25/2010] [Indexed: 11/19/2022]
Abstract
The size of the infraorbital foramen (IOF) has been used in drawing both phylogenetic and ecological inferences regarding fossil taxa. Within the order Primates, frugivores have relatively larger IOFs than folivores or insectivores. This study uses relative IOF size in lemurs to test prior trophic inferences for subfossil lemurs and to explore the pattern of variation within and across lemur families. The IOFs of individuals belonging to 12 extinct lemur species were measured and compared to those of extant Malagasy strepsirhines. Observations matched expectations drawn from more traditional approaches (e.g. dental morphology and microwear, stable isotope analysis) remarkably well. We confirm that extinct lemurs belonging to the families Megaladapidae and Palaeopropithecidae were predominantly folivorous and that species belonging to the genus Pachylemur (Lemuridae) were frugivores. Very high values for relative IOF area in Archaeolemur support frugivory but are also consistent with omnivory, as certain omnivores use facial touch cues while feeding. These results provide additional evidence that the IOF can be used as an informative osteological feature in both phylogenetic and paleoecological interpretations of the fossil record.
Collapse
Affiliation(s)
- Magdalena N Muchlinski
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
17
|
Sauther ML, Cuozzo FP. The impact of fallback foods on wild ring-tailed lemur biology: A comparison of intact and anthropogenically disturbed habitats. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 140:671-86. [DOI: 10.1002/ajpa.21128] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Scott J, Godfrey L, Jungers W, Scott R, Simons E, Teaford M, Ungar P, Walker A. Dental microwear texture analysis of two families of subfossil lemurs from Madagascar. J Hum Evol 2009; 56:405-16. [DOI: 10.1016/j.jhevol.2008.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/03/2008] [Accepted: 11/16/2008] [Indexed: 11/26/2022]
|
19
|
A reconstruction of the Vienna skull of Hadropithecus stenognathus. Proc Natl Acad Sci U S A 2008; 105:10699-702. [PMID: 18663217 DOI: 10.1073/pnas.0805195105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Franz Sikora found the first specimen and type of the recently extinct Hadropithecus stenognathus in Madagascar in 1899 and sent it to Ludwig Lorenz von Liburnau of the Austrian Imperial Academy of Sciences. Later, he sent several more specimens including a subadult skull that was described by Lorenz von Liburnau in 1902. In 2003, some of us excavated at the locality and found more specimens belonging to this species, including much of a subadult skeleton. Two frontal fragments were found, and these, together with most of the postcranial bones, belong to the skull. CT scans of the skull and other jaw fragments were made in Vienna and those of the frontal fragments at Penn State University. The two fragments have been reunited with the skull in silico, and broken parts from one side of the skull have been replaced virtually by mirror-imaged complete parts from the other side. The parts of the jaw of another individual of a slightly younger dental age have also been reconstructed virtually from CT scans with mirror imaging and by using the maxillary teeth and temporomandibular joints as a guide to finish the reconstruction. Apart from forming a virtual skull for biomechanical and systematic analysis, we were also able to make a virtual endocast. Missing anterior pieces were reconstructed by using part of an endocast of the related Archaeolemur majori. The volume is 115 ml. Hadropithecus and Archaeolemur seem to have had relatively large brains compared with the other large-bodied subfossil lemurs.
Collapse
|
20
|
Cuozzo FP, Sauther ML, Yamashita N, Lawler RR, Brockman DK, Godfrey LR, Gould L, Youssouf IAJ, Lent C, Ratsirarson J, Richard AF, Scott JR, Sussman RW, Villers LM, Weber MA, Willis G. A comparison of salivary pH in sympatric wild lemurs (Lemur catta andPropithecus verreauxi) at Beza Mahafaly Special Reserve, Madagascar. Am J Primatol 2008; 70:363-71. [DOI: 10.1002/ajp.20500] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
The evolution of extinction risk: past and present anthropogenic impacts on the primate communities of Madagascar. Folia Primatol (Basel) 2007; 78:405-19. [PMID: 17855790 DOI: 10.1159/000105152] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There are two possible approaches to understanding natural and human-induced changes in the primate communities of Madagascar. One is to begin with present-day and recent historic interactions and work backwards. A second is to begin with paleoecological records of Malagasy primate communities before and immediately following human arrival, and the associated evidence of human and nonhuman primate interactions, and work forwards. On the basis of biological and climatic studies, as well as historic and ethnohistoric records, we are beginning to understand the abiotic and biotic characteristics of Madagascar's habitats, the lemurs' ecological adaptations to these unique habitats, the extent of forest loss, fragmentation and hunting, and the differential vulnerability of extant lemur species to these pressures. On the basis of integrated paleoecological, archaeological and paleontological research, we have begun to construct a detailed chronology for late prehistoric Madagascar. We are beginning to understand the complex sequence of events that led to one of the most dramatic recent megafaunal extinction/extirpation events. Combining the perspectives of the past and the present, we see a complex set of interactions affecting an initially rich but vulnerable fauna. The total evidence refutes any simple, unicausal (e.g. hunting/habitat destruction/climate change) explanation of megafaunal extinctions, yet unequivocally supports a major role--both direct and indirect--for humans as the trigger of the extinction process. It also supports a change over time in the relative importance of hunting versus habitat loss, and in the trophic characteristics of the primate communities in Madagascar.
Collapse
|
22
|
Dental Microwear Texture Analysis of Varswater Bovids and Early Pliocene Paleoenvironments of Langebaanweg, Western Cape Province, South Africa. J MAMM EVOL 2007. [DOI: 10.1007/s10914-007-9050-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Grine FE, Ungar PS, Teaford MF, El-Zaatari S. Molar microwear in Praeanthropus afarensis: Evidence for dietary stasis through time and under diverse paleoecological conditions. J Hum Evol 2006; 51:297-319. [PMID: 16750841 DOI: 10.1016/j.jhevol.2006.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 03/06/2006] [Accepted: 04/02/2006] [Indexed: 10/24/2022]
Abstract
Molar microwear fabrics in extant mammals vary with diet and, more particularly, the physical properties of the items that are consumed. Praeanthropus afarensis is well represented in the fossil record over a prolonged and radiometrically controlled temporal span, and reasonably robust paleoecological reconstructions are available for the various localities from which it is known. We therefore examined molar microwear in this species to determine whether diet varied in relation to time or in response to different ecological conditions. Of more than 70 specimens of Pr. afarensis that contain one or more worn permanent molars, only 19 were found to be suitable for microwear analysis. These derive from eight temporal horizons in the Laetolil Beds and Hadar Formation spanning approximately 400kyr (3.6-3.2Ma). Six paleoecological categories have been reconstructed for these horizons, and these were ranked on the basis of floral cover. None of the microwear variables observed for Pr. afarensis is significantly associated with either temporal or paleoecological rank. Thus, microwear and, by extension, diet does not appear to have altered significantly in Pr. afarensis through time or in response to different paleoecological circumstances. The wear pattern that appears to have characterized Pr. afarensis overlaps extensively that of Gorilla gorilla beringei and differs notably from the fabrics of extant primates (e.g., Cebus apella and Cercocebus albigena) that consume hard objects. The high proportion of scratches on Pr. afarensis molars suggests the inclusion of fine abrasives in or on the food items consumed by those individuals sampled in this study. Although Pr. afarensis may have been morphologically equipped to process hard, brittle items, the microwear data suggest that it did not necessarily do so, even in the face of varying environmental circumstances. Explanatory scenarios that describe Pr. afarensis as part of an evolutionary trajectory involving a more heavily masticated diet with an increased reliance on hard, brittle items need to be reconsidered. However, fallback foods that were consumed during relatively short, albeit critical periods may have exerted sufficient selective pressure to explain the evolution of the comparatively robust Pr. afarensis trophic apparatus. Because it is unlikely that many individuals from such restricted temporal intervals would be sampled in the paleontological record, we suggest that the most productive approach to the elucidation of paleodiet is the integration of genetic (morphological) and epigenetic (microwear and isotopic) lines of evidence.
Collapse
|
24
|
Curtis DJ, Rasmussen MA. The Evolution of Cathemerality in Primates and Other Mammals: A Comparative and Chronoecological Approach. Folia Primatol (Basel) 2006; 77:178-93. [PMID: 16415585 DOI: 10.1159/000089703] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Non-primate mammalian activity cycles are highly variable across and within taxonomic groups. In contrast, the order Primates has historically been recognized as displaying a diurnal-nocturnal dichotomy that mapped, for the most part, onto the taxonomic division between haplorhines and strepsirhines. However, it has become clear over the past two decades that activity cycles in primates are not quite so clear cut. Some primate species--like many large herbivorous mammals, mustelids, microtine rodents, and shrews--exhibit activity both at night and during the day. This activity pattern is often polyphasic or ultradian (several short activity bouts per 24-hour period), in contrast to the generally monophasic pattern (one long bout of activity per 24-hour period) observed in diurnal and nocturnal mammals. Alternatively, it can vary on a seasonal basis, with nocturnal activity exhibited during one season, and diurnal activity during the other season. The term now generally employed to describe the exploitation of both diurnal and nocturnal phases in primates is 'cathemeral'. Cathemerality has been documented in one haplorhine, the owl monkey, Aotus azarai, in the Paraguayan and Argentinian Chaco and in several Malagasy strepsirhines, including Eulemur spp., Hapalemur sp. and Lemur catta. In this paper, we review patterns of day-night activity in primates and other mammals and investigate the potential ecological and physiological bases underlying such 24-hour activity. Secondly, we will consider the role of cathemerality in primate evolution.
Collapse
Affiliation(s)
- D J Curtis
- Centre for Research in Evolutionary Anthropology, School of Human and Life Sciences, Roehampton University, London, UK.
| | | |
Collapse
|
25
|
Ungar PS, Grine FE, Teaford MF, El Zaatari S. Dental microwear and diets of African early Homo. J Hum Evol 2006; 50:78-95. [PMID: 16226788 DOI: 10.1016/j.jhevol.2005.08.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 07/28/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
Conventional wisdom ties the origin and early evolution of the genus Homo to environmental changes that occurred near the end of the Pliocene. The basic idea is that changing habitats led to new diets emphasizing savanna resources, such as herd mammals or underground storage organs. Fossil teeth provide the most direct evidence available for evaluating this theory. In this paper, we present a comprehensive study of dental microwear in Plio-Pleistocene Homo from Africa. We examined all available cheek teeth from Ethiopia, Kenya, Tanzania, Malawi, and South Africa and found 18 that preserved antemortem microwear. Microwear features were measured and compared for these specimens and a baseline series of five extant primate species (Cebus apella, Gorilla gorilla, Lophocebus albigena, Pan troglodytes, and Papio ursinus) and two protohistoric human foraging groups (Aleut and Arikara) with documented differences in diet and subsistence strategies. Results confirmed that dental microwear reflects diet, such that hard-object specialists tend to have more large microwear pits, whereas tough food eaters usually have more striations and smaller microwear features. Early Homo specimens clustered with baseline groups that do not prefer fracture resistant foods. Still, Homo erectus and individuals from Swartkrans Member 1 had more small pits than Homo habilis and specimens from Sterkfontein Member 5C. These results suggest that none of the early Homo groups specialized on very hard or tough foods, but that H. erectus and Swartkrans Member 1 individuals ate, at least occasionally, more brittle or tough items than other fossil hominins studied.
Collapse
Affiliation(s)
- Peter S Ungar
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | | | |
Collapse
|
26
|
Schwartz GT, Mahoney P, Godfrey LR, Cuozzo FP, Jungers WL, Randria GFN. Dental development in Megaladapis edwardsi (Primates, Lemuriformes): Implications for understanding life history variation in subfossil lemurs. J Hum Evol 2005; 49:702-21. [PMID: 16256170 DOI: 10.1016/j.jhevol.2005.08.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
Teeth grow incrementally and preserve within them a record of that incremental growth in the form of microscopic growth lines. Studying dental development in extinct and extant primates, and its relationship to adult brain and body size as well as other life history and ecological parameters (e.g., diet, somatic growth rates, gestation length, age at weaning), holds the potential to yield unparalleled insights into the life history profiles of fossil primates. Here, we address the absolute pace of dental development in Megaladapis edwardsi, a giant extinct lemur of Madagascar. By examining the microstructure of the first and developing second molars in a juvenile individual, we establish a chronology of molar crown development for this specimen (M1 CFT = 1.04 years; M2 CFT = 1.42 years) and determine its age at death (1.39 years). Microstructural data on prenatal M1 crown formation time allow us to calculate a minimum gestation length of 0.54 years for this species. Postnatal crown and root formation data allow us to estimate its age at M1 emergence (approximately 0.9 years) and to establish a minimum age for M2 emergence (>1.39 years). Finally, using reconstructions or estimates (drawn elsewhere) of adult body mass, brain size, and diet in Megaladapis, as well as the eruption sequence of its permanent teeth, we explore the efficacy of these variables in predicting the absolute pace of dental development in this fossil species. We test competing explanations of variation in crown formation timing across the order Primates. Brain size is the best single predictor of crown formation time in primates, but other variables help to explain the variation.
Collapse
Affiliation(s)
- Gary T Schwartz
- School of Human Evolution and Social Change & Institute of Human Origins, Arizona State University, P.O. Box 872402, Tempe, AZ 85287, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Godfrey LR, Semprebon GM, Schwartz GT, Burney DA, Jungers WL, Flanagan EK, Cuozzo FP, King SJ. New Insights into Old Lemurs: The Trophic Adaptations of the Archaeolemuridae. INT J PRIMATOL 2005. [DOI: 10.1007/s10764-005-5325-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Vinyard CJ, Hanna J. Molar scaling in strepsirrhine primates. J Hum Evol 2005; 49:241-69. [PMID: 15935438 DOI: 10.1016/j.jhevol.2005.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Revised: 03/26/2005] [Accepted: 04/05/2005] [Indexed: 11/28/2022]
Abstract
We examined how maxillary molar dimensions change with body and skull size estimates among 54 species of living and subfossil strepsirrhine primates. Strepsirrhine maxillary molar areas tend to scale with negative allometry, or possibly isometry, relative to body mass. This observation supports several previous scaling analyses showing that primate molar areas scale at or slightly below geometric similarity relative to body mass. Strepsirrhine molar areas do not change relative to body mass(0.75), as predicted by the metabolic scaling hypothesis. Relative to basicranial length, maxillary molar areas tend to scale with positive allometry. Previous claims that primate molar areas scale with positive allometry relative to body mass appear to rest on the incorrect assumption that skull dimensions scale isometrically with body mass. We identified specific factors that help us to better understand these observed scaling patterns. Lorisiform and lemuriform maxillary molar scaling patterns did not differ significantly, suggesting that the two infraorders had little independent influence on strepsirrhine scaling patterns. Contrary to many previous studies of primate dental allometry, we found little evidence for significant differences in molar area scaling patterns among frugivorous, folivorous, and insectivorous groups. We were able to distinguish folivorous species from frugivorous and insectivorous taxa by comparing M1 lengths and widths. Folivores tend to have a mesiodistally elongated M1 for a given buccolingual M1 width when compared to the other two dietary groups. It has recently been shown that brain mass has a strong influence on primate dental eruption rates. We extended this comparison to relative maxillary molar sizes, but found that brain mass appears to have little influence on the size of strepsirrhine molars. Alternatively, we observed a strong correlation between the relative size of the facial skull and relative molar areas among strepsirrhines. We hypothesize that this association may be underlain by a partial sharing of the patterning of development between molar and facial skull elements.
Collapse
|
29
|
El-Zaatari S, Grine FE, Teaford MF, Smith HF. Molar microwear and dietary reconstructions of fossil cercopithecoidea from the Plio-Pleistocene deposits of South Africa. J Hum Evol 2005; 49:180-205. [PMID: 15964607 DOI: 10.1016/j.jhevol.2005.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 03/17/2005] [Indexed: 11/21/2022]
Abstract
The South African Plio-Pleistocene cave deposits have yielded a diverse cercopithecoid fauna. In this study, the possible dietary proclivities of these extinct species are examined using details of molar microwear. Although sample sizes are often small, wear patterns suggest possible temporal changes in the diets of Parapapio jonesi from Makapansgat to Sterkfontein, of Papio robinsoni from Sterkfontein to Swartkrans, and Cercopithecoides williamsi from Makapansgat to Sterkfontein to Swartkrans. However, there does not appear to have been a significant change in the dietary habits of Parapapio broomi over time. The microwear patterns of the two temporally successive congeners, Theropithecus darti and T. oswaldi show no significant differences from one another. The sympatric congeners, Parapapio broomi and Pp. jonesi, have microwear signatures that differ significantly at Makapansgat (Members 3 and 4) but not at Sterkfontein (Member 4). Finally, the microwear analyses suggest that the extinct cercopithecoid species did not necessarily have diets similar to those of their closest living relatives.
Collapse
Affiliation(s)
- Sireen El-Zaatari
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA.
| | | | | | | |
Collapse
|
30
|
Karanth KP, Delefosse T, Rakotosamimanana B, Parsons TJ, Yoder AD. Ancient DNA from giant extinct lemurs confirms single origin of Malagasy primates. Proc Natl Acad Sci U S A 2005; 102:5090-5. [PMID: 15784742 PMCID: PMC555979 DOI: 10.1073/pnas.0408354102] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Indexed: 11/18/2022] Open
Abstract
The living Malagasy lemurs constitute a spectacular radiation of >50 species that are believed to have evolved from a common ancestor that colonized Madagascar in the early Tertiary period. Yet, at least 15 additional Malagasy primate species, some of which were relative giants, succumbed to extinction within the past 2,000 years. Their existence in Madagascar is recorded predominantly in its Holocene subfossil record. To rigorously test the hypothesis that all endemic Malagasy primates constitute a monophyletic group and to determine the evolutionary relationships among living and extinct taxa, we have conducted an ancient DNA analysis of subfossil species. A total of nine subfossil individuals from the extinct genera Palaeopropithecus and Megaladapis yielded amplifiable DNA. Phylogenetic analysis of cytochrome b sequences derived from these subfossils corroborates the monophyly of endemic Malagasy primates. Our results support the close relationship of sloth lemurs to living indriids, as has been hypothesized on morphological grounds. In contrast, Megaladapis does not show a sister-group relationship with the living genus Lepilemur. Thus, the classification of the latter in the family Megaladapidae is misleading. By correlating the geographic location of subfossil specimens with relative amplification success, we reconfirm the global trend of increased success rates of ancient DNA recovery from nontropical localities.
Collapse
Affiliation(s)
- K Praveen Karanth
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208105, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
31
|
Viguier B. Functional adaptations in the craniofacial morphology of Malagasy primates: shape variations associated with gummivory in the family Cheirogaleidae. Ann Anat 2005; 186:495-501. [PMID: 15646283 DOI: 10.1016/s0940-9602(04)80093-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The infraorder Lemuriformes is characterized by a high level of homoplasy that clouds the evolutionary signal. The analysis of the morphological disparity of the Malagasy primates' crania and mandibles demonstrates the high determinism of functional specializations and developmental constraints, regardless of the phylogeny. In the present work, the weight of functional constraints linked to diet--a putative source of homoplasy--is analyzed first at the level of the infraorder Lemuriformes as a whole, and secondly at the level of a single family, the Cheirogaleidae, chosen because it contains taxa with two different diets (omnivory and gummivory). Malagasy primates are characterized by a great variety of dietary habits: some of them are omnivores, folivores, frugivores, gummivores, insectivores or even specialized hard-object feeders. All cheirogaleids feed on tree exudates, but while gum consumption is occasional or limited for Microcebus, Cheirogaleus and Mirza, gums are the dominant food source for Phaner and Allocebus. Craniofacial shape variations are analyzed using geometric morphometrics: methods based on landmark identification (Procrustes superimpositions) are chosen for cranium shape analysis, and methods based on outline decomposition (elliptical Fourier functions) for study of mandible shape. The morphospaces obtained at the level of the infraorder appear to be highly constrained by dietary habits, especially in the case of the mandibles. At the finer level of the family Cheirogaleidae, the analyses permit (1) separation of craniomandibular shape variation associated with the two dietary categories and (2) among the omnivorous category, to distinguish variation associated with the percentage of gum consumption.
Collapse
Affiliation(s)
- Bénédicte Viguier
- UMR CNRS 5561 "Biogéosciences", Université de Bourgogne, 21000 Dijon, France.
| |
Collapse
|
32
|
Godfrey LR, Semprebon GM, Jungers WL, Sutherland MR, Simons EL, Solounias N. Dental use wear in extinct lemurs: evidence of diet and niche differentiation. J Hum Evol 2004; 47:145-69. [PMID: 15337413 DOI: 10.1016/j.jhevol.2004.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 06/08/2004] [Indexed: 11/18/2022]
Abstract
A new technique for molar use-wear analysis is applied to samples of all 16 species of extinct lemurs with known dentitions, as well as to a large comparative sample of extant primates. This technique, which relies on the light refractive properties of wear pits and scratches as seen under a standard stereoscopic microscope, has shown itself to be effective in distinguishing the diets of ungulates and extant primates. We draw dietary inferences for each of the 16 extinct lemur species in our database. There is a strong phylogenetic signal, with the Palaeopropithecidae showing use-wear signatures similar to those of the Indriidae; extinct lemurids (Pachylemur spp.) showing striking similarities to extant lemurids (except Hapalemur spp.); and Megaladapis showing similarities to Lepilemur spp. Only the Archaeolemuridae have dietary signatures unlike those of any extant lemurs, with the partial exception of Daubentonia. We conclude that the Archaeolemuridae were hard-object feeders; the Palaeopropithecidae were seed predators, consuming a mixed diet of foliage and fruit to varying degrees; Pachylemur was a fruit-dominated mixed feeder, but not a seed predator; and all Megaladapis were leaf browsers. There is no molar use wear evidence that any of the extinct lemurs relied on terrestrial foods (C4 grasses, tubers, rhizomes). This has possible implications for the role of the disappearance of wooded habitats in the extinction of lemurs.
Collapse
Affiliation(s)
- Laurie R Godfrey
- Department of Anthropology, University of Massachusetts, 240 Hicks Way, Amherst, MA 01003, USA.
| | | | | | | | | | | |
Collapse
|
33
|
|