1
|
Dziura D, Dziura M, Marquardt D. Studying lipid flip-flop in asymmetric liposomes using 1H NMR and TR-SANS. Methods Enzymol 2024; 700:295-328. [PMID: 38971604 DOI: 10.1016/bs.mie.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The specific spatial and temporal distribution of lipids in membranes play a crucial role in determining the biochemical and biophysical properties of the system. In nature, the asymmetric distribution of lipids is a dynamic process with ATP-dependent lipid transporters maintaining asymmetry, and passive transbilayer diffusion, that is, flip-flop, counteracting it. In this chapter, two probe-free techniques, 1H NMR and time-resolved small angle neutron scattering, are described in detail as methods of investigating lipid flip-flop rates in synthetic liposomes that have been generated with an asymmetric bilayer composition.
Collapse
Affiliation(s)
- Dominik Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Maksymilian Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada; Department of Physics, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
2
|
van Ewijk C, Maity S, Roos WH. Visualizing Molecular Dynamics by High-Speed Atomic Force Microscopy. Methods Mol Biol 2024; 2694:355-372. [PMID: 37824013 DOI: 10.1007/978-1-0716-3377-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Dynamic processes and structural changes of biological molecules are essential to life. While conventional atomic force microscopy (AFM) is able to visualize molecules and supramolecular assemblies at sub-nanometer resolution, it cannot capture dynamics because of its low imaging rate. The introduction of high-speed atomic force microscopy (HS-AFM) solved this problem by providing a large increase in imaging velocity. Using HS-AFM, one is able to visualize dynamic molecular events with high spatiotemporal resolution under near-to physiological conditions. This approach opened new windows as finally dynamics of biomolecules at sub-nanometer resolution could be studied. Here we describe the working principles and an operation protocol for HS-AFM imaging and characterization of biological samples in liquid.
Collapse
Affiliation(s)
- Chris van Ewijk
- Molecular Biophysics, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Sourav Maity
- Molecular Biophysics, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - Wouter H Roos
- Molecular Biophysics, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Geng Y, Cao Y, Li Y, Zhao Q, Liu D, Fan G, Tian S. A Deeper Insight into the Interfacial Behavior and Structural Properties of Mixed DPPC/POPC Monolayers: Implications for Respiratory Health. MEMBRANES 2022; 13:33. [PMID: 36676840 PMCID: PMC9864691 DOI: 10.3390/membranes13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleyl-sn-glycerol-3-phosphorcholine (POPC) are important components in pulmonary surfactants (PSs), of which the relative content is related to lung compliance. Herein, the phase behavior and thermodynamic structure of mixed DPPC/POPC monolayers were studied to elucidate the intermolecular interaction between DPPC and POPC molecules. Surface pressure-molecular area isotherms demonstrated that POPC significantly affected the phase behavior of the lipid domain structure as a function of its concentration. The compression modulus of the mixed monolayers reduced with the increase in POPC proportion, which can be attributed to the intermolecular repulsion between DPPC and POPC. Brewster angle microscopy analysis showed that the ordered structure of the monolayers trended toward fluidization in the presence of POPC. Raman spectroscopy results revealed that the change in C-C skeleton stretching vibration was the main cause of the decrease in the monolayer packing density. These findings provide new insights into the role of different phospholipid components in the function of PS film at a molecular level, which can help us to understand the synergy effects of the proportional relationship between DPPC and POPC on the formation and progression of lung disease and provide some references for the synthesis of lung surfactants.
Collapse
Affiliation(s)
- Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- Faculty of Civil and Hydraulic Engineering, Xichang University, Xichang 615013, China
| | - Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Dan Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ge Fan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
5
|
Huang SH, Huang BC, Chao L. Development of Cell Membrane Electrophoresis to Measure the Diffusivity of a Native Transmembrane Protein. Anal Chem 2022; 94:4531-4537. [PMID: 35230091 DOI: 10.1021/acs.analchem.2c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lateral diffusion of transmembrane proteins in cell membranes is an important process that controls the dynamics and functions of the cell membrane. Several fluorescence-based techniques have been developed to study the diffusivities of transmembrane proteins. However, it is challenging to measure the diffusivity of a transmembrane protein with slow diffusion because of the photobleaching effect caused by long exposure times or multiple exposures to light. In this study, we developed a cell membrane electrophoresis platform to measure diffusivity. We deposited cell membrane vesicles derived from HeLa cells to form supported cell membrane patches. We demonstrated that the electrophoresis platform can be used to drive the movement of not only a lipid probe but also a native transmembrane protein, GLUT1. The movements were halted by the boundaries of the membrane patches and the concentration profiles reached steady states when the diffusion mass flux was balanced with the electrical mass flux. We used the Nernst-Planck equation as the mass balance equation to describe the steady concentration profiles and fitted these equations to our data to obtain the diffusivities. The obtained diffusivities were comparable to those obtained by fluorescence recovery after photobleaching, suggesting the validity of this new method of diffusivity measurement. Only a single snapshot is required for the diffusivity measurement, addressing the problems associated with photobleaching and allowing researchers to measure the diffusivity of transmembrane proteins with slow diffusion.
Collapse
Affiliation(s)
- Sin-Han Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Chuan Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Mukhina T, Gerelli Y, Hemmerle A, Koutsioubas A, Kovalev K, Teulon JM, Pellequer JL, Daillant J, Charitat T, Fragneto G. Insertion and activation of functional Bacteriorhodopsin in a floating bilayer. J Colloid Interface Sci 2021; 597:370-382. [PMID: 33894545 DOI: 10.1016/j.jcis.2021.03.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
The proton pump transmembrane protein bacteriorhodopsin was successfully incorporated into planar floating lipid bilayers in gel and fluid phases, by applying a detergent-mediated incorporation method. The method was optimized on single supported bilayers by using quartz crystal microbalance, atomic force and fluorescence microscopy techniques. Neutron and X-ray reflectometry were used on both single and floating bilayers with the aim of determining the structure and composition of this membrane-protein system before and after protein reconstitution at sub-nanometer resolution. Lipid bilayer integrity and protein activity were preserved upon the reconstitution process. Reversible structural modifications of the membrane, induced by the bacteriorhodopsin functional activity triggered by visible light, were observed and characterized at the nanoscale.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France; Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Yuri Gerelli
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France; Marche Polytechnic University, Department of Life and Environmental Sciences, Via Brecce Bianche, 60131 Ancona, Italy
| | - Arnaud Hemmerle
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Kirill Kovalev
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France; Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, 52428, Wilhelm-Johnen-Straße, Jülich, Germany; Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany; Jülich Centre for Structural Biology, Forschungszentrum Jülich, 52428, Wilhelm-Johnen-Straße, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141071, 9 Institutskiy per., Dolgoprudny, Russia; Institute of Crystallography, RWTH Aachen University, 52066, Jägerstraße 17-19, Aachen, Germany
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Jean Daillant
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Thierry Charitat
- Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France
| |
Collapse
|
7
|
Ungai-Salánki R, Peter B, Gerecsei T, Orgovan N, Horvath R, Szabó B. A practical review on the measurement tools for cellular adhesion force. Adv Colloid Interface Sci 2019; 269:309-333. [PMID: 31128462 DOI: 10.1016/j.cis.2019.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
Cell-cell and cell-matrix adhesions are fundamental in all multicellular organisms. They play a key role in cellular growth, differentiation, pattern formation and migration. Cell-cell adhesion is substantial in the immune response, pathogen-host interactions, and tumor development. The success of tissue engineering and stem cell implantations strongly depends on the fine control of live cell adhesion on the surface of natural or biomimetic scaffolds. Therefore, the quantitative and precise measurement of the adhesion strength of living cells is critical, not only in basic research but in modern technologies, too. Several techniques have been developed or are under development to quantify cell adhesion. All of them have their pros and cons, which has to be carefully considered before the experiments and interpretation of the recorded data. Current review provides a guide to choose the appropriate technique to answer a specific biological question or to complete a biomedical test by measuring cell adhesion.
Collapse
|
8
|
Berselli GB, Sarangi NK, Ramadurai S, Murphy PV, Keyes TE. Microcavity-Supported Lipid Membranes: Versatile Platforms for Building Asymmetric Lipid Bilayers and for Protein Recognition. ACS APPLIED BIO MATERIALS 2019; 2:3404-3417. [DOI: 10.1021/acsabm.9b00378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guilherme B. Berselli
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Sivaramakrishnan Ramadurai
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Paul V. Murphy
- School of Chemistry, NUI Galway, University Road, Galway, Ireland
| | - Tia E. Keyes
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
9
|
Hu SK, Lo FY, Hsieh CC, Chao L. Sensing Ability and Formation Criterion of Fluid Supported Lipid Bilayer Coated Graphene Field-Effect Transistors. ACS Sens 2019; 4:892-899. [PMID: 30817891 DOI: 10.1021/acssensors.8b01623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Supported lipid bilayers (SLBs) have been widely used to provide native environments for membrane protein studies. In this study, we utilized graphene field-effect transistors (GFETs) coated with a fluid SLB to perform label-free detection of membrane-associated ligand-receptor interactions in their native lipid bilayer environment. It is known that the analyte-binding event needs to occur within the Debye length for it to be significantly sensed by an FET sensor. However, the thickness of a lipid bilayer is around 4-5-nm-thick, which is larger than the Debye length of a solution with physiologically relevant ionic strength. There is thus a question of whether an FET sensor can detect the binding event above the bilayer. In this study, we show how the existence of an SLB can influence the effective detection distance and the formation criterion of a fluid and continuous SLB on a graphene surface. We discovered that the water intercalation between the graphene and the underlying silica substrate hinders the SLB formation but is required for the stable electrical recording by a GFET. To verify the existence of a fluid SLB on graphene, which was previously complicated by the graphene fluorescence quenching effect, we developed a modified fluorescence recovery after photobleaching method. In addition, our results showed that SLB coated GFETs can quantitatively detect ligand binding onto the receptors embedded in the SLBs. The comparison of our experimental data with a theoretical model shows that the contribution of the SLB acyl chain hydrophobic region to the screening effect can be negligible and, therefore, that the effective detection region can extend beyond the SLB.
Collapse
Affiliation(s)
- Shu-Kai Hu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Fang-Yen Lo
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Chen Hsieh
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Abstract
Atomic force microscopy (AFM) is a form of contact microscopy that uses a very sharp tip to scan the surface of a sample. It provides a 3D image of the surface structure and in the force mode it can also be used to test the mechanical properties of the sample. AFM has been successfully applied to study the molecular mechanism of pore-forming proteins on model membranes. It gives information about both the structural reorganization of the membrane surface and the changes in the force required for membrane piercing upon incubation with this special type of proteins. Here we describe robust protocols to investigate the effect of pore-forming proteins in supported lipid bilayers .
Collapse
Affiliation(s)
- Joseph D Unsay
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Pleshakova TO, Bukharina NS, Archakov AI, Ivanov YD. Atomic Force Microscopy for Protein Detection and Their Physicoсhemical Characterization. Int J Mol Sci 2018; 19:E1142. [PMID: 29642632 PMCID: PMC5979402 DOI: 10.3390/ijms19041142] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
This review is focused on the atomic force microscopy (AFM) capabilities to study the properties of protein biomolecules and to detect the proteins in solution. The possibilities of application of a wide range of measuring techniques and modes for visualization of proteins, determination of their stoichiometric characteristics and physicochemical properties, are analyzed. Particular attention is paid to the use of AFM as a molecular detector for detection of proteins in solutions at low concentrations, and also for determination of functional properties of single biomolecules, including the activity of individual molecules of enzymes. Prospects for the development of AFM in combination with other methods for studying biomacromolecules are discussed.
Collapse
Affiliation(s)
| | - Natalia S Bukharina
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia.
| | | | - Yuri D Ivanov
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia.
| |
Collapse
|
12
|
Moores AN, Cadby AJ. Simultaneous AFM and fluorescence imaging: A method for aligning an AFM-tip with an excitation beam using a 2D galvanometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:023708. [PMID: 29495824 DOI: 10.1063/1.5006724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Correlative fluorescence and atomic force microscopy (AFM) imaging is a highly attractive technique for use in biological imaging, enabling force and mechanical measurements of particular structures whose locations are known due to the specificity of fluorescence imaging. The ability to perform these two measurements simultaneously (rather than consecutively with post-processing correlation) is highly valuable because it would allow the mechanical properties of a structure to be tracked over time as changes in the sample occur. We present an instrument which allows simultaneous AFM and fluorescence imaging by aligning an incident fluorescence excitation beam with an AFM-tip. Alignment was performed by calibrating a 2D galvanometer present in the excitation beam path and using it to reposition the incident beam. Two programs were developed (one manual and one automated) which correlate sample features between the AFM and fluorescence images, calculating the distance required to translate the incident beam towards the AFM-tip. Using this method, we were able to obtain beam-tip alignment (and therefore field-of-view alignment) from an offset of >15 μm to within one micron in two iterations of the program. With the program running alongside data acquisition for real-time feedback between AFM and optical images, this offset was maintained over a time period of several hours. Not only does this eliminate the need to image large areas with both techniques to ensure that fields-of-view overlap, but it also raises the possibility of using this instrument for tip-enhanced fluorescence applications, a technique in which super-resolution images have previously been achieved.
Collapse
Affiliation(s)
- A N Moores
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - A J Cadby
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
13
|
Frederickx W, Rocha S, Fujita Y, Kennes K, De Keersmaecker H, De Feyter S, Uji-I H, Vanderlinden W. Orthogonal Probing of Single-Molecule Heterogeneity by Correlative Fluorescence and Force Microscopy. ACS NANO 2018; 12:168-177. [PMID: 29257876 DOI: 10.1021/acsnano.7b05405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Correlative imaging by fluorescence and force microscopy is an emerging technology to acquire orthogonal information at the nanoscale. Whereas atomic force microscopy excels at resolving the envelope structure of nanoscale specimens, fluorescence microscopy can detect specific molecular labels, which enables the unambiguous recognition of molecules in a complex assembly. Whereas correlative imaging at the micrometer scale has been established, it remains challenging to push the technology to the single-molecule level. Here, we used an integrated setup to systematically evaluate the factors that influence the quality of correlative fluorescence and force microscopy. Optimized data processing to ensure accurate drift correction and high localization precision results in image registration accuracies of ∼25 nm on organic fluorophores, which represents a 2-fold improvement over the state of the art in correlative fluorescence and force microscopy. Furthermore, we could extend the Atto532 fluorophore bleaching time ∼2-fold, by chemical modification of the supporting mica surface. In turn, this enables probing the composition of macromolecular complexes by stepwise photobleaching with high confidence. We demonstrate the performance of our method by resolving the stoichiometry of molecular subpopulations in a heterogeneous EcoRV-DNA nucleoprotein ensemble.
Collapse
Affiliation(s)
- Wout Frederickx
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Susana Rocha
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Yasuhiko Fujita
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Koen Kennes
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Herlinde De Keersmaecker
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Hiroshi Uji-I
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Research Institute for Electronic Science, Nanomaterials and Nanoscopy, Hokkaido University , Kita 10 Nishi 20, North Ward, Sapporo 001-0020, Japan
| | - Willem Vanderlinden
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Department of Physics, Nanosystems Initiative Munich, and Center for NanoScience, LMU Munich , Amalienstrasse 54, 80799 Munich, Germany
| |
Collapse
|
14
|
Molecular mechanisms of action of sphingomyelin-specific pore-forming toxin, lysenin. Semin Cell Dev Biol 2018; 73:188-198. [DOI: 10.1016/j.semcdb.2017.07.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/21/2022]
|
15
|
Delguste M, Koehler M, Alsteens D. Probing Single Virus Binding Sites on Living Mammalian Cells Using AFM. Methods Mol Biol 2018; 1814:483-514. [PMID: 29956251 DOI: 10.1007/978-1-4939-8591-3_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the last years, atomic force microscopy (AFM)-based approaches have evolved into a powerful multiparametric tool that allows biological samples ranging from single receptors to membranes and tissues to be probed. Force-distance curve-based AFM (FD-based AFM) nowadays enables to image living cells at high resolution and simultaneously localize and characterize specific ligand-receptor binding events. In this chapter, we present how FD-based AFM permits to investigate virus binding to living mammalian cells and quantify the kinetic and thermodynamic parameters that describe the free-energy landscape of the single virus-receptor-mediated binding. Using a model virus, we probed the specific interaction with cells expressing its cognate receptor and measured the affinity of the interaction. Furthermore, we observed that the virus rapidly established specific multivalent interactions and found that each bond formed in sequence strengthens the attachment of the virus to the cell.
Collapse
Affiliation(s)
- Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
16
|
Munguira ILB, Takahashi H, Casuso I, Scheuring S. Lysenin Toxin Membrane Insertion Is pH-Dependent but Independent of Neighboring Lysenins. Biophys J 2017; 113:2029-2036. [PMID: 29117526 DOI: 10.1016/j.bpj.2017.08.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/11/2017] [Indexed: 10/18/2022] Open
Abstract
Pore-forming toxins form a family of proteins that act as virulence factors of pathogenic bacteria, but similar proteins are found in all kingdoms of life, including the vertebrate immune system. They are secreted as soluble monomers that oligomerize on target membranes in the so-called prepore state; after activation, they insert into the membrane and adopt the pore state. Lysenin is a pore-forming toxin from the earthworm Eisenida foetida, of which both the soluble and membrane-inserted structures are solved. However, the activation and membrane-insertion mechanisms have remained elusive. Here, we used high-speed atomic force microscopy to directly visualize the membrane-insertion mechanism. Changing the environmental pH from pH 7.5 to below pH 6.0 favored membrane insertion. We detected a short α-helix in the soluble structure that comprised three glutamic acids (Glu92, Glu94, and Glu97) that we hypothesized may represent a pH-sensor (as in similar toxins, e.g., Listeriolysin). Mutant lysenin still can form pores, but mutating these glutamic acids to glutamines rendered the toxin pH-insensitive. On the other hand, toxins in the pore state did not favor insertion of neighboring prepores; indeed, pore insertion breaks the hexagonal ordered domains of prepores and separates from neighboring molecules in the membrane. pH-dependent activation of toxins may represent a common feature of pore-forming toxins. High-speed atomic force microscopy with single-molecule resolution at high temporal resolution and the possibility of exchanging buffers during the experiments presents itself as a unique tool for the study of toxin-state conversion.
Collapse
Affiliation(s)
- Ignacio L B Munguira
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Hirohide Takahashi
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France; Departments of Anesthesiology and Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Ignacio Casuso
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Simon Scheuring
- U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France; Departments of Anesthesiology and Physiology and Biophysics, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
17
|
Marquardt D, Heberle FA, Miti T, Eicher B, London E, Katsaras J, Pabst G. 1H NMR Shows Slow Phospholipid Flip-Flop in Gel and Fluid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3731-3741. [PMID: 28106399 PMCID: PMC5397887 DOI: 10.1021/acs.langmuir.6b04485] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We measured the transbilayer diffusion of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in large unilamellar vesicles, in both the gel (Lβ') and fluid (Lα) phases. The choline resonance of headgroup-protiated DPPC exchanged into the outer leaflet of headgroup-deuterated DPPC-d13 vesicles was monitored using 1H NMR spectroscopy, coupled with the addition of a paramagnetic shift reagent. This allowed us to distinguish between the inner and outer bilayer leaflet of DPPC, to determine the flip-flop rate as a function of temperature. Flip-flop of fluid-phase DPPC exhibited Arrhenius kinetics, from which we determined an activation energy of 122 kJ mol-1. In gel-phase DPPC vesicles, flip-flop was not observed over the course of 250 h. Our findings are in contrast to previous studies of solid-supported bilayers, where the reported DPPC translocation rates are at least several orders of magnitude faster than those in vesicles at corresponding temperatures. We reconcile these differences by proposing a defect-mediated acceleration of lipid translocation in supported bilayers, where long-lived, submicron-sized holes resulting from incomplete surface coverage are the sites of rapid transbilayer movement.
Collapse
Affiliation(s)
- Drew Marquardt
- Institute
of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
- E-mail: (D.M.)
| | - Frederick A. Heberle
- The Bredesen
Center and Department of Physics and Astronomy, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences, Biology and Soft
Matter Division, and Shull Wollan
Center—A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- E-mail: (F.A.H.)
| | - Tatiana Miti
- Department
of Physics, University of South Florida, Tampa, Florida 33620,United States
| | - Barbara Eicher
- Institute
of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Erwin London
- Department
of Biochemistry and Cell Biology, Stony Brook, New York 11794, United States
| | - John Katsaras
- The Bredesen
Center and Department of Physics and Astronomy, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences, Biology and Soft
Matter Division, and Shull Wollan
Center—A Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Georg Pabst
- Institute
of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
- E-mail: (G.P.)
| |
Collapse
|
18
|
Dufrêne YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Müller DJ. Imaging modes of atomic force microscopy for application in molecular and cell biology. NATURE NANOTECHNOLOGY 2017; 12:295-307. [PMID: 28383040 DOI: 10.1038/nnano.2017.45] [Citation(s) in RCA: 527] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/23/2017] [Indexed: 05/22/2023]
Abstract
Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - Toshio Ando
- Department of Physics, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - David Alsteens
- Institute of Life Sciences and Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université catholique de Louvain, Croix du Sud 4-5, bte L7.07.06., B-1348 Louvain-la-Neuve, Belgium
| | - David Martinez-Martin
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| | - Andreas Engel
- Department of BioNanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Christoph Gerber
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 80, 4057 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 28, 4056 Basel, Switzerland
| |
Collapse
|
19
|
Atomic force microscopy for the investigation of molecular and cellular behavior. Micron 2016; 89:60-76. [DOI: 10.1016/j.micron.2016.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/27/2016] [Indexed: 12/19/2022]
|
20
|
Kreplak L. Introduction to Atomic Force Microscopy (AFM) in Biology. ACTA ACUST UNITED AC 2016; 85:17.7.1-17.7.21. [PMID: 27479503 DOI: 10.1002/cpps.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Laurent Kreplak
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Canada
| |
Collapse
|
21
|
Gillissen JJJ, Tabaei SR, Cho NJ. A phenomenological model of the solvent-assisted lipid bilayer formation method. Phys Chem Chem Phys 2016; 18:24157-63. [DOI: 10.1039/c6cp04816a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanism of solvent-assisted lipid bilayer assembly at the solid–liquid interface is elucidated by matching an adsorption model to quartz crystal microbalance data.
Collapse
Affiliation(s)
- Jurriaan J. J. Gillissen
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Seyed R. Tabaei
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - Nam-Joon Cho
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| |
Collapse
|
22
|
Assemblies of pore-forming toxins visualized by atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:500-11. [PMID: 26577274 DOI: 10.1016/j.bbamem.2015.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/23/2015] [Accepted: 11/09/2015] [Indexed: 02/05/2023]
Abstract
A number of pore-forming toxins (PFTs) can assemble on lipid membranes through their specific interactions with lipids. The oligomeric assemblies of some PFTs have been successfully revealed either by electron microscopy (EM) and/or atomic force microscopy (AFM). Unlike EM, AFM imaging can be performed under physiological conditions, enabling the real-time visualization of PFT assembly and the transition from the prepore state, in which the toxin does not span the membrane, to the pore state. In addition to characterizing PFT oligomers, AFM has also been used to examine toxin-induced alterations in membrane organization. In this review, we summarize the contributions of AFM to the understanding of both PFT assembly and PFT-induced membrane reorganization. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
|
23
|
Novel experimental strategy for high resolution AFM imaging of membrane-associated bacterial toxins. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s12204-014-1543-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Pfreundschuh M, Martinez-Martin D, Mulvihill E, Wegmann S, Muller DJ. Multiparametric high-resolution imaging of native proteins by force-distance curve–based AFM. Nat Protoc 2014; 9:1113-30. [DOI: 10.1038/nprot.2014.070] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Yilmaz N, Yamada T, Greimel P, Uchihashi T, Ando T, Kobayashi T. Real-time visualization of assembling of a sphingomyelin-specific toxin on planar lipid membranes. Biophys J 2014; 105:1397-405. [PMID: 24047991 DOI: 10.1016/j.bpj.2013.07.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022] Open
Abstract
Pore-forming toxins (PFTs) are soluble proteins that can oligomerize on the cell membrane and induce cell death by membrane insertion. PFT oligomers sometimes form hexagonal close-packed (hcp) structures on the membrane. Here, we show the assembling of the sphingomyelin (SM)-binding PFT, lysenin, into an hcp structure after oligomerization on SM/cholesterol membrane. This process was monitored by high-speed atomic force microscopy. Hcp assembly was driven by reorganization of lysenin oligomers such as association/dissociation and rapid diffusion along the membrane. Besides rapid association/dissociation of oligomers, the height change for some oligomers, possibly resulting from conformational changes in lysenin, could also be visualized. After the entire membrane surface was covered with a well-ordered oligomer lattice, the lysenin molecules were firmly bound on the membrane and the oligomers neither dissociated nor diffused. Our results reveal the dynamic nature of the oligomers of a lipid-binding toxin during the formation of an hcp structure. Visualization of this dynamic process is essential for the elucidation of the assembling mechanism of some PFTs that can form ordered structures on the membrane.
Collapse
Affiliation(s)
- Neval Yilmaz
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Naulin PA, Alveal NA, Barrera NP. Toward atomic force microscopy and mass spectrometry to visualize and identify lipid rafts in plasmodesmata. FRONTIERS IN PLANT SCIENCE 2014; 5:234. [PMID: 24910637 PMCID: PMC4038920 DOI: 10.3389/fpls.2014.00234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 05/11/2014] [Indexed: 05/08/2023]
Abstract
Plant cell-to-cell communication is mediated by nanopores called plasmodesmata (PDs) which are complex structures comprising plasma membrane (PM), highly packed endoplasmic reticulum and numerous membrane proteins. Although recent advances on proteomics have led to insights into mechanisms of transport, there is still an inadequate characterization of the lipidic composition of the PM where membrane proteins are inserted. It has been postulated that PDs could be formed by lipid rafts, however no structural evidence has shown to visualize and analyse their lipid components. In this perspective article, we discuss proposed experiments to characterize lipid rafts and proteins in the PDs. By using atomic force microscopy (AFM) and mass spectrometry (MS) of purified PD vesicles it is possible to determine the presence of lipid rafts, specific bound proteins and the lipidomic profile of the PD under physiological conditions and after changing transport permeability. In addition, MS can determine the stoichiometry of intact membrane proteins inserted in lipid rafts. This will give novel insights into the role of membrane proteins and lipid rafts on the PD structure.
Collapse
Affiliation(s)
| | | | - Nelson P. Barrera
- *Correspondence: Nelson P. Barrera, Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile e-mail:
| |
Collapse
|
27
|
Leitch JJ, Brosseau CL, Roscoe SG, Bessonov K, Dutcher JR, Lipkowski J. Electrochemical and PM-IRRAS characterization of cholera toxin binding at a model biological membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:965-76. [PMID: 23256886 DOI: 10.1021/la304939k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A mixed phospholipid-cholestrol bilayer, with cholera toxin B (CTB) units attached to the monosialotetrahexosylganglioside (GM1) binding sites in the distal leaflet, was deposited on a Au(111) electrode surface. Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements were used to characterize structural and orientational changes in this model biological membrane upon binding CTB and the application of the electrode potential. The data presented in this article show that binding cholera toxin to the membrane leads to an overall increase in the tilt angle of the fatty acid chains; however, the conformation of the bilayer remains relatively constant as indicated by the small decrease in the total number of gauche conformers of acyl tails. In addition, the bound toxin caused a significant decrease in the hydration of the ester group contained within the lipid bilayer. Furthermore, changes in the applied potential had a minimal effect on the overall structure of the membrane. In contrast, our results showed significant voltage-dependent changes in the average orientation of the protein α-helices that may correspond to the voltage-gated opening and closing of the central pore that resides within the B subunit of cholera toxin.
Collapse
Affiliation(s)
- J Jay Leitch
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
28
|
On averaging force curves over heterogeneous surfaces in atomic force microscopy. Ultramicroscopy 2012; 121:16-24. [PMID: 22917859 DOI: 10.1016/j.ultramic.2012.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/10/2012] [Accepted: 06/25/2012] [Indexed: 11/21/2022]
Abstract
Atomic force microscopy (AFM) can be used to study mechanics at the nanoscale. Biological surfaces and nanocomposites have typically heterogeneous surfaces, both mechanically and chemically. When studying such surfaces with AFM, one needs to collect a large amount of data to make statistically sound conclusions. It is time- and resource-consuming to process each force curve separately. The analysis of an averaged raw force data is a simple and time saving option, which also averages out the noise and measurement artifacts of the force curves being analyzed. Moreover, some biomedical applications require just an average number per biological cell. Here we investigate such averaging, study the possible artifacts due to the averaging, and demonstrate how to minimize or even to avoid them. We analyze two ways of doing the averaging: over the force data for each particular distance (method 1, the most commonly used way), and over the distances for each particular force (method 2). We derive the errors of the methods in finding to the true average rigidity modulus. We show that both methods are accurate (the error is <2%) when the heterogeneity of the surface rigidity is small (<50%). When the heterogeneity is large (>100×), method 2 underestimates the average rigidity modulus by a factor of 2, whereas the error of method 1 is only 15%. However, when analyzing the different surface chemistry, which reveals itself in the changing long-range forces, the accuracy of the methods behave oppositely: method 1 can produce a noticeable averaging artifact in the deriving of the long-range forces; whereas method 2 can be successfully used to derive the averaged long-range force parameters without artifacts. We exemplify our conclusions by the study of human cervical cancer and normal epithelial cells, which demonstrate different degrees of heterogeneity.
Collapse
|
29
|
Czajkowsky DM, Li L, Sun J, Hu J, Shao Z. Heteroepitaxial streptavidin nanocrystals reveal critical role of proton "fingers" and subsurface atoms in determining adsorbed protein orientation. ACS NANO 2012; 6:190-198. [PMID: 22148246 DOI: 10.1021/nn203356p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Characterization of noncovalent interactions between nanometer-sized structures, such as proteins, and solid surfaces is a subject of intense interest of late owing to the rapid development of numerous solid materials for medical and technological applications. Yet the rational design of these surfaces to promote the adsorption of specific nanoscale complexes is hindered by a lack of an understanding of the noncovalent interactions between nanostructures and solid surfaces. Here we take advantage of the unexpected observation of two-dimensional nanocrystals of streptavidin on muscovite mica to provide details of the streptavidin-mica interface. Analysis of atomic force microscopic images together with structural modeling identifies six positively charged residues whose terminal amine locations match the positions of the single atom-sized anionic cavities in the basal mica surface to within 1 Å. Moreover, we find that the streptavidin crystallites are oriented only along a single direction on this surface and not in either of three different directions as they must be if the protein interacted solely with the 3-fold symmetric basal surface atoms. Hence, this broken symmetry indicates that the terminal amine protons must also interact directly with the subsurface hydroxide atoms that line the bottom of these anionic cavities and generate only a single axis of symmetry. Thus, in total, these results reveal that subsurface atoms can have a significant influence on protein adsorption and orientation and identify the insertion of proton "fingers" as a means by which proteins may generally interact with solid surfaces.
Collapse
Affiliation(s)
- Daniel M Czajkowsky
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
30
|
Kycia AH, Wang J, Merrill AR, Lipkowski J. Atomic force microscopy studies of a floating-bilayer lipid membrane on a Au(111) surface modified with a hydrophilic monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10867-77. [PMID: 21766864 DOI: 10.1021/la2016269] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The surface of a gold electrode was functionalized with a hydrophilic monolayer of 1-thio-β-D-glucose formed by spontaneous self-assembly. The Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) method was then used to assemble a bilayer onto the modified Au(111) surface. The bilayer lipid membrane (BLM) was separated from the Au(111) electrode surface by incorporating the monosialoganglioside GM1 into the inner leaflet of a bilayer composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol. To make the inner leaflet, monolayers of GM1/DMPC/cholesterol with mole ratios of 1:6:3, 2:5:3, and 3:4:3 were used. The outer leaflet was composed of a 7:3 mole ratio of DMPC/cholesterol. Because of the amphiphilic properties of GM1, the hydrophobic acyl chains were incorporated into the BLM, whereas the large hydrophilic carbohydrate headgroups were physically adsorbed to the Au(111) electrode surface, creating a "floating" BLM (fBLM). This model contained a water-rich reservoir between the BLM and the gold surface. In addition, because of the bilayer being physically adsorbed onto the support, the fluidity of the BLM was maintained. The compression isotherms were measured at the air/water interface to determine the phase behavior and optimal transfer conditions. The images acquired using atomic force microscopy (AFM) and the force-distance measurements showed that the structure of the fBLM evolved with increasing GM1 content from 10 to 30 mol %, undergoing a transition from a corrugated to a homogeneous phase. This change was associated with a significant increase in bilayer thickness (from ∼5.3 to 7.3 nm). The highest-quality fBLM was produced with 30 mol % GM1.
Collapse
Affiliation(s)
- Annia H Kycia
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
31
|
|
32
|
Sheikh KH, Giordani C, Kilpatrick JI, Jarvis SP. Direct submolecular scale imaging of mesoscale molecular order in supported dipalmitoylphosphatidylcholine bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3749-3753. [PMID: 21370902 DOI: 10.1021/la104640v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Supported dipalmitoylphosphatidylcholine (DPPC) bilayers are widely used membrane systems in biophysical and biochemical studies. Previously, short-range positional and orientational order of lipid headgroups of supported DPPC bilayers was observed at room temperature using low deflection noise frequency modulation atomic force microscopy (FM-AFM). While this ordering was supported by X-ray diffraction studies, it conflicted with diffusion coefficient measurements of gel-phase bilayers determined from fluorescence photobleaching experiments. In this work, we have directly imaged mica-supported DPPC bilayers with submolecular resolution over scan ranges up to 146 nm using low deflection noise FM-AFM. Both orientational and positional molecular ordering were observed in the mesoscale, indicative of crystalline order. We discuss these results in relation to previous biophysical studies and propose that the mica support induces mesoscopic crystalline order of the DPPC bilayer at room temperature. This study also demonstrates the recent advance in the scan range of submolecular scale AFM imaging.
Collapse
Affiliation(s)
- Khizar H Sheikh
- Nanoscale Function Group, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.
| | | | | | | |
Collapse
|
33
|
Casuso I, Rico F, Scheuring S. Biological AFM: where we come from - where we are - where we may go. J Mol Recognit 2011; 24:406-13. [DOI: 10.1002/jmr.1081] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Effects of curvature and composition on α-synuclein binding to lipid vesicles. Biophys J 2011; 99:2279-88. [PMID: 20923663 DOI: 10.1016/j.bpj.2010.07.056] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/23/2010] [Accepted: 07/26/2010] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease is characterized by the presence of intracellular aggregates composed primarily of the neuronal protein α-synuclein (αS). Interactions between αS and various cellular membranes are thought to be important to its native function as well as relevant to its role in disease. We use fluorescence correlation spectroscopy to investigate binding of αS to lipid vesicles as a function of the lipid composition and membrane curvature. We determine how these parameters affect the molar partition coefficient of αS, providing a quantitative measure of the binding energy, and calculate the number of lipids required to bind a single protein. Specific anionic lipids have a large effect on the free energy of binding. Lipid chain saturation influences the binding interaction to a lesser extent, with larger partition coefficients measured for gel-phase vesicles than for fluid-phase vesicles, even in the absence of anionic lipid components. Although we observe variability in the binding of the mutant proteins, differences in the free energies of partitioning are less dramatic than with varied lipid compositions. Vesicle curvature has a strong effect on the binding affinity, with a >15-fold increase in affinity for small unilamellar vesicles over large unilamellar vesicles, suggesting that αS may be a curvature-sensing protein. Our findings provide insight into how physical properties of the membrane may modulate interactions of αS with cellular membranes.
Collapse
|
35
|
Carton I, Brisson AR, Richter RP. Label-Free Detection of Clustering of Membrane-Bound Proteins. Anal Chem 2010; 82:9275-81. [DOI: 10.1021/ac102495q] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ixaskun Carton
- Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia−San Sebastian, Spain, Max-Planck-Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart, Germany, and Laboratory of Molecular Imaging and Nanobiotechnology, IECB, UMR-5248 CBMN, CNRS-University Bordeaux 1-ENITAB, Avenue des Facultés, 33402 Talence, France
| | - Alain R. Brisson
- Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia−San Sebastian, Spain, Max-Planck-Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart, Germany, and Laboratory of Molecular Imaging and Nanobiotechnology, IECB, UMR-5248 CBMN, CNRS-University Bordeaux 1-ENITAB, Avenue des Facultés, 33402 Talence, France
| | - Ralf P. Richter
- Biosurfaces Unit, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia−San Sebastian, Spain, Max-Planck-Institute for Metals Research, Heisenbergstrasse 3, 70569 Stuttgart, Germany, and Laboratory of Molecular Imaging and Nanobiotechnology, IECB, UMR-5248 CBMN, CNRS-University Bordeaux 1-ENITAB, Avenue des Facultés, 33402 Talence, France
| |
Collapse
|
36
|
Londoño-Londoño J, Lima VRD, Jaramillo C, Creczynski-pasa T. Hesperidin and hesperetin membrane interaction: Understanding the role of 7-O-glycoside moiety in flavonoids. Arch Biochem Biophys 2010; 499:6-16. [DOI: 10.1016/j.abb.2010.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/16/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
|
37
|
Giocondi MC, Yamamoto D, Lesniewska E, Milhiet PE, Ando T, Le Grimellec C. Surface topography of membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:703-18. [DOI: 10.1016/j.bbamem.2009.09.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/11/2009] [Accepted: 09/20/2009] [Indexed: 12/24/2022]
|
38
|
El Kirat K, Morandat S, Dufrêne YF. Nanoscale analysis of supported lipid bilayers using atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:750-65. [DOI: 10.1016/j.bbamem.2009.07.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/17/2009] [Accepted: 07/23/2009] [Indexed: 12/11/2022]
|
39
|
Tracking diffusion of GM1 gangliosides and zona pellucida binding molecules in sperm plasma membranes following cholesterol efflux. Dev Biol 2010; 339:398-406. [DOI: 10.1016/j.ydbio.2009.12.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/28/2009] [Accepted: 12/30/2009] [Indexed: 01/15/2023]
|
40
|
Goldsbury CS, Scheuring S, Kreplak L. Introduction to Atomic Force Microscopy (AFM) in Biology. ACTA ACUST UNITED AC 2009; Chapter 17:17.7.1-17.7.19. [DOI: 10.1002/0471140864.ps1707s58] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | - Laurent Kreplak
- Dalhousie University, Department of Physics & Atmospheric Science Halifax Canada
| |
Collapse
|
41
|
Tagami Y, Narita T, Ikigai H, Oishi Y. Penetration behavior of Vibrio cholerae hemolysin into (DMPC/cholesterol) mixed monolayer. Colloids Surf A Physicochem Eng Asp 2009. [DOI: 10.1016/j.colsurfa.2009.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Sisu C, Baron AJ, Branderhorst HM, Connell SD, Weijers CAGM, de Vries R, Hayes ED, Pukin AV, Gilbert M, Pieters RJ, Zuilhof H, Visser GM, Turnbull WB. The influence of ligand valency on aggregation mechanisms for inhibiting bacterial toxins. Chembiochem 2009; 10:329-37. [PMID: 19034953 DOI: 10.1002/cbic.200800550] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Divalent and tetravalent analogues of ganglioside GM1 are potent inhibitors of cholera toxin and Escherichia coli heat-labile toxin. However, they show little increase in inherent affinity when compared to the corresponding monovalent carbohydrate ligand. Analytical ultracentrifugation and dynamic light scattering have been used to demonstrate that the multivalent inhibitors induce protein aggregation and the formation of space-filling networks. This aggregation process appears to arise when using ligands that do not match the valency of the protein receptor. While it is generally accepted that multivalency is an effective strategy for increasing the activity of inhibitors, here we show that the valency of the inhibitor also has a dramatic effect on the kinetics of aggregation and the stability of intermediate protein complexes. Structural studies employing atomic force microscopy have revealed that a divalent inhibitor induces head-to-head dimerization of the protein toxin en route to higher aggregates.
Collapse
|
43
|
Guo PF, Huang WY, Liu HB, Xiao SJ. AFM and multiple transmission-reflection infrared spectroscopy (MTR-IR) studies on formation of air-stable supported lipid bilayers. Int J Mol Sci 2009; 10:1407-1418. [PMID: 19399256 PMCID: PMC2672037 DOI: 10.3390/ijms10031407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 03/11/2009] [Accepted: 03/19/2009] [Indexed: 11/17/2022] Open
Abstract
Supported lipid bilayers (SLBs) were prepared by deposition of unilamellar vesicles on a silicon substrate. Atomic force microscopy (AFM) and a new Multiple Transmission-Reflection Infrared Spectroscopy (MTR-IR) developed by us were used to trace the dynamic formation of lipid bilayers on the silicon surfaces. The evolution from deformation of vesicles to formation of bilayers can be distinguished clearly by AFM imaging. MTR-IR provided high quality infrared spectra of ultrathin lipid bilayers with high sensitivity and high signal to noise ratio (SNR). The structural and orientational changes during vesicle's fusion were monitored with MTR-IR. MTR-IR shows superiority over other infrared approaches for ultrathin films on standard silicon wafers in view of its economy and high sensitivity. Both MTR-IR and AFM results were consistent with each other and they provided more information for understanding the self-assembling procedure of SLBs.
Collapse
Affiliation(s)
| | | | | | - Shou-Jun Xiao
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +81-25-83621001; Fax: +81-25-83314502
| |
Collapse
|
44
|
Brosseau CL, Leitch J, Bin X, Chen M, Roscoe SG, Lipkowski J. Electrochemical and PM-IRRAS a glycolipid-containing biomimetic membrane prepared using Langmuir-Blodgett/Langmuir-Schaefer deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:13058-13067. [PMID: 18925767 DOI: 10.1021/la802201h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Differential capacitance, chronocoulometry, and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements were used to characterize the structure and orientation of a DMPC + cholesterol + GM 1 (60:30:10 mol %) bilayer supported at a Au(111) electrode surface prepared using combined Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) deposition. The electrochemical measurements indicate that the incorporation of ganglioside GM 1 into the membrane significantly improves the quality of the bilayer, reflected in the very low capacitance value of approximately 0.8 microF cm (-2). An analysis of the infrared data suggests that the incorporation of the glycolipid into the membrane changes both the orientation of the lipid acyl chains in the membrane and the hydration of the membrane, particularly with respect to the interfacial region of the lipids.
Collapse
Affiliation(s)
- C L Brosseau
- Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Affiliation(s)
- Daniel J. Muller
- Biotechnology Center, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
47
|
Goldsbury C, Scheuring S. Introduction to atomic force microscopy (AFM) in biology. ACTA ACUST UNITED AC 2008; Chapter 17:17.7.1-17.7.17. [PMID: 18429225 DOI: 10.1002/0471140864.ps1707s29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The atomic force microscope has the unique capability of imaging biological samples with molecular resolution in buffer solution. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated. Importantly, the measurements are made in buffer solutions, allowing biological samples to stay alive within a physiological-like environment while temporal changes in structure are measured. This overview provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins. The physical principles of the technique and methodological aspects of its practical use and applications are also described.
Collapse
Affiliation(s)
- Claire Goldsbury
- Cytoskeleton Group, Max Planck Unit for Structural Molecular Biology, Hamburg, Germany
| | | |
Collapse
|
48
|
Efimov AE, Tonevitsky AG, Dittrich M, Matsko NB. Atomic force microscope (AFM) combined with the ultramicrotome: a novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples. J Microsc 2008; 226:207-17. [PMID: 17535260 DOI: 10.1111/j.1365-2818.2007.01773.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new device (NTEGRA Tomo) that is based on the integration of the scanning probe microscope (SPM) (NT-MDT NTEGRA SPM) and the Ultramicrotome (Leica UC6NT) is presented. This integration enables the direct monitoring of a block face surface immediately following each sectioning cycle of ultramicrotome sectioning procedure. Consequently, this device can be applied for a serial section tomography of the wide range of biological and polymer materials. The automation of the sectioning/scanning cycle allows one to acquire up to 10 consecutive sectioned layer images per hour. It also permits to build a 3-D nanotomography image reconstructed from several tens of layer images within one measurement session. The thickness of the layers can be varied from 20 to 2000 nm, and can be controlled directly by its interference colour in water. Additionally, the NTEGRA Tomo with its nanometer resolution is a valid instrument narrowing and highlighting an area of special interest within volume of the sample. For embedded biological objects the ultimate resolution of SPM mostly depends on the quality of macromolecular preservation of the biomaterial during sample preparation procedure. For most polymer materials it is comparable to transmission electron microscopy (TEM). The NTEGRA Tomo can routinely collect complementary AFM and TEM images. The block face of biological or polymer sample is investigated by AFM, whereas the last ultrathin section is analyzed with TEM after a staining procedure. Using the combination of both of these ultrastructural methods for the analysis of the same particular organelle or polymer constituent leads to a breakthrough in AFM/TEM image interpretation. Finally, new complementary aspects of the object's ultrastructure can be revealed.
Collapse
|
49
|
Müller DJ, Wu N, Palczewski K. Vertebrate membrane proteins: structure, function, and insights from biophysical approaches. Pharmacol Rev 2008; 60:43-78. [PMID: 18321962 PMCID: PMC2561275 DOI: 10.1124/pr.107.07111] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function.
Collapse
Affiliation(s)
- Daniel J Müller
- Biotechnology Center, University of Technology, Dresden, Germany
| | | | | |
Collapse
|
50
|
Stolz M, Aebi U, Stoffler D. Developing scanning probe–based nanodevices—stepping out of the laboratory into the clinic. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2007; 3:53-62. [PMID: 17379169 DOI: 10.1016/j.nano.2007.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/19/2006] [Indexed: 10/23/2022]
Abstract
This report focuses on nanotools based on the scanning force microscope (SFM) for imaging, measuring, and manipulating biological matter at the sub-micron scale. Because pathophysiological processes often occur at the (sub-) cellular scale, the SFM has opened the exciting possibility to spot diseases at a stage before they become symptomatic and cause functional impairments in the affected part of the body. Such presymptomatic detection will be key to developing effective therapies to slow or halt disease progression.
Collapse
Affiliation(s)
- Martin Stolz
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Switzerland
| | | | | |
Collapse
|