1
|
Isolation and Characterization of a Newly Discovered Phage, V-YDF132, for Lysing Vibrio harveyi. Viruses 2022; 14:v14081802. [PMID: 36016424 PMCID: PMC9413028 DOI: 10.3390/v14081802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
A newly discovered lytic bacteriophage, V-YDF132, which efficiently infects the pathogenic strain of Vibrio harveyi, was isolated from aquaculture water collected in Yangjiang, China. Electron microscopy studies revealed that V-YDF132 belonged to the Siphoviridae family, with an icosahedral head and a long noncontractile tail. The phage has a latent period of 25 min and a burst size of 298 pfu/infected bacterium. V-YDF132 was stable from 37 to 50 °C. It has a wide range of stability (pH 5-11) and can resist adverse external environments. In addition, in vitro the phage V-YDF132 has a strong lytic effect on the host. Genome sequencing results revealed that V-YDF132 has a DNA genome of 84,375 bp with a GC content of 46.97%. In total, 115 putative open reading frames (ORFs) were predicted in the phage V-YDF132 genome. Meanwhile, the phage genome does not contain any known bacterial virulence genes or antimicrobial resistance genes. Comparison of the genomic features of the phage V-YDF132 and phylogenetic analysis revealed that V-YDF132 is a newly discovered Vibrio phage. Multiple genome comparisons and comparative genomics showed that V-YDF132 is in the same genus as Vibrio phages vB_VpS_PG28 (MT735630.2) and VH2_2019 (MN794238.1). Overall, the results indicate that V-YDF132 is potentially applicable for biological control of vibriosis.
Collapse
|
2
|
Characterization and Comparative Genomics Analysis of a New Bacteriophage BUCT610 against Klebsiella pneumoniae and Efficacy Assessment in Galleria mellonella Larvae. Int J Mol Sci 2022; 23:ijms23148040. [PMID: 35887393 PMCID: PMC9321532 DOI: 10.3390/ijms23148040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
The spread of multidrug-resistant Klebsiella pneumoniae (MDR-KP) has become an emerging threat as a result of the overuse of antibiotics. Bacteriophage (phage) therapy is considered to be a promising alternative treatment for MDR-KP infection compared with antibiotic therapy. In this research, a lytic phage BUCT610 was isolated from hospital sewage. The assembled genome of BUCT610 was 46,774 bp in length, with a GC content of 48%. A total of 83 open reading frames (ORFs) and no virulence or antimicrobial resistance genes were annotated in the BUCT610 genome. Comparative genomics and phylogenetic analyses showed that BUCT610 was most closely linked with the Vibrio phage pYD38-A and shared 69% homology. In addition, bacteriophage BUCT610 exhibited excellent thermal stability (4–75 °C) and broad pH tolerance (pH 3–12) in the stability test. In vivo investigation results showed that BUCT610 significantly increased the survival rate of Klebsiella pneumonia-infected Galleria mellonella larvae from 13.33% to 83.33% within 72 h. In conclusion, these findings indicate that phage BUCT610 holds great promise as an alternative agent with excellent stability for the treatment of MDR-KP infection.
Collapse
|
3
|
Kornfeind EM, Visalli RJ. Human herpesvirus portal proteins: Structure, function, and antiviral prospects. Rev Med Virol 2018; 28:e1972. [PMID: 29573302 DOI: 10.1002/rmv.1972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 01/28/2023]
Abstract
Herpesviruses (Herpesvirales) and tailed bacteriophages (Caudovirales) package their dsDNA genomes through an evolutionarily conserved mechanism. Much is known about the biochemistry and structural biology of phage portal proteins and the DNA encapsidation (viral genome cleavage and packaging) process. Although not at the same level of detail, studies on HSV-1, CMV, VZV, and HHV-8 have revealed important information on the function and structure of herpesvirus portal proteins. During dsDNA phage and herpesviral genome replication, concatamers of viral dsDNA are cleaved into single length units by a virus-encoded terminase and packaged into preformed procapsids through a channel located at a single capsid vertex (portal). Oligomeric portals are formed by the interaction of identical portal protein monomers. Comparing portal protein primary aa sequences between phage and herpesviruses reveals little to no sequence similarity. In contrast, the secondary and tertiary structures of known portals are remarkable. In all cases, function is highly conserved in that portals are essential for DNA packaging and also play a role in releasing viral genomic DNA during infection. Preclinical studies have described small molecules that target the HSV-1 and VZV portals and prevent viral replication by inhibiting encapsidation. This review summarizes what is known concerning the structure and function of herpesvirus portal proteins primarily based on their conserved bacteriophage counterparts and the potential to develop novel portal-specific DNA encapsidation inhibitors.
Collapse
Affiliation(s)
- Ellyn M Kornfeind
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Robert J Visalli
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| |
Collapse
|
4
|
Daudén MI, Martín-Benito J, Sánchez-Ferrero JC, Pulido-Cid M, Valpuesta JM, Carrascosa JL. Large terminase conformational change induced by connector binding in bacteriophage T7. J Biol Chem 2013; 288:16998-17007. [PMID: 23632014 DOI: 10.1074/jbc.m112.448951] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During bacteriophage morphogenesis DNA is translocated into a preformed prohead by the complex formed by the portal protein, or connector, plus the terminase, which are located at an especial prohead vertex. The terminase is a powerful motor that converts ATP hydrolysis into mechanical movement of the DNA. Here, we have determined the structure of the T7 large terminase by electron microscopy. The five terminase subunits assemble in a toroid that encloses a channel wide enough to accommodate dsDNA. The structure of the complete connector-terminase complex is also reported, revealing the coupling between the terminase and the connector forming a continuous channel. The structure of the terminase assembled into the complex showed a different conformation when compared with the isolated terminase pentamer. To understand in molecular terms the terminase morphological change, we generated the terminase atomic model based on the crystallographic structure of its phage T4 counterpart. The docking of the threaded model in both terminase conformations showed that the transition between the two states can be achieved by rigid body subunit rotation in the pentameric assembly. The existence of two terminase conformations and its possible relation to the sequential DNA translocation may shed light into the molecular bases of the packaging mechanism of bacteriophage T7.
Collapse
Affiliation(s)
- María I Daudén
- Department of Macromolecular Structure, 28049 Madrid, Spain
| | | | - Juan C Sánchez-Ferrero
- Computational Systems Biology Group, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Mar Pulido-Cid
- Department of Macromolecular Structure, 28049 Madrid, Spain
| | | | | |
Collapse
|
5
|
Andrews BT, Catalano CE. The enzymology of a viral genome packaging motor is influenced by the assembly state of the motor subunits. Biochemistry 2012; 51:9342-53. [PMID: 23134123 DOI: 10.1021/bi300890y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Terminase enzymes are responsible for the excision of a single genome from a concatemeric precursor (genome maturation) and concomitant packaging of DNA into the capsid shell. Here, we demonstrate that lambda terminase can be purified as a homogeneous "protomer" species, and we present a kinetic analysis of the genome maturation and packaging activities of the protomeric enzyme. The protomer assembles into a distinct maturation complex at the cos sequence of a concatemer. This complex rapidly nicks the duplex to form the mature left end of the viral genome, which is followed by procapsid binding, activation of the packaging ATPase, and translocation of the duplex into the capsid interior by the terminase motor complex. Genome packaging by the protomer shows high fidelity with only the mature left end of the duplex inserted into the capsid shell. In sum, the data show that the terminase protomer exhibits catalytic activity commensurate with that expected of a bone fide genome maturation and packaging complex in vivo and that both catalytically competent complexes are composed of four terminase protomers assembled into a ringlike structure that encircles duplex DNA. This work provides mechanistic insight into the coordinated catalytic activities of terminase enzymes in virus assembly that can be generalized to all of the double-stranded DNA viruses.
Collapse
Affiliation(s)
- Benjamin T Andrews
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98195-7610, United States
| | | |
Collapse
|
6
|
Feiss M, Rao VB. The Bacteriophage DNA Packaging Machine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:489-509. [DOI: 10.1007/978-1-4614-0980-9_22] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Abstract
Tailed bacteriophages use nanomotors, or molecular machines that convert chemical energy into physical movement of molecules, to insert their double-stranded DNA genomes into virus particles. These viral nanomotors are powered by ATP hydrolysis and pump the DNA into a preformed protein container called a procapsid. As a result, the virions contain very highly compacted chromosomes. Here, I review recent progress in obtaining structural information for virions, procapsids and the individual motor protein components, and discuss single-molecule in vitro packaging reactions, which have yielded important new information about the mechanism by which these powerful molecular machines translocate DNA.
Collapse
|
8
|
Biochemical dissection of the ATPase TraB, the VirB4 homologue of the Escherichia coli pKM101 conjugation machinery. J Bacteriol 2010; 192:2315-23. [PMID: 20172994 DOI: 10.1128/jb.01384-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV secretion (T4S) systems are involved in several secretion processes, including secretion of virulence factors, such as toxins or transforming molecules, or bacterial conjugation whereby two mating bacteria exchange genetic material. T4S systems are generally composed of 12 protein components, three of which, termed VirB4, VirB11, and VirD4, are ATPases. VirB4 is the largest protein of the T4S system, is known to play a central role, and interacts with many other T4S system proteins. In this study, we have biochemically characterized the protein TraB, a VirB4 homologue from the pKM101 conjugation T4S system. We demonstrated that TraB is a modular protein, composed of two domains, both able to bind DNA in a non-sequence-specific manner. Surprisingly, both TraB N- and C-terminal domains can bind ATP, revealing a new degenerated nucleotide-binding site in the TraB N-terminal domain. TraB purified from the membrane forms stable dimers and is unable to hydrolyze ATP while, when purified from the soluble fraction, TraB can form hexamers capable of hydrolyzing ATP. Remarkably, both the N- and C-terminal domains display ATP-hydrolyzing activity. These properties define a new class of VirB4 proteins.
Collapse
|
9
|
Feiss M, Reynolds E, Schrock M, Sippy J. DNA packaging by lambda-like bacteriophages: mutations broadening the packaging specificity of terminase, the lambda-packaging enzyme. Genetics 2010; 184:43-52. [PMID: 19841094 PMCID: PMC2815929 DOI: 10.1534/genetics.109.108548] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022] Open
Abstract
The DNA-packaging specificities of phages lambda and 21 depend on the specific DNA interactions of the small terminase subunits, which have support helix-turn-recognition helix-wing DNA-binding motifs. lambda-Terminase with the recognition helix of 21 preferentially packages 21 DNA. This chimeric terminase's ability to package lambdaDNA is reduced approximately 20-fold. Phage lambda with the chimeric terminase is unable to form plaques, but pseudorevertants are readily obtained. Some pseudorevertants have trans-acting suppressors that change codons of the recognition helix. Some of these codons appear to remove an unfavorable base-pair contact; others appear to create a novel nonspecific DNA contact. Helper-packaging experiments show that these mutant terminases have lost the ability to discriminate between lambda and 21 during DNA packaging. Two cis-acting suppressors affect cosB, the small subunit's DNA-binding site. Each changes a cosB(lambda)-specific base pair to a cosB(21)-specific base pair. These cosB suppressors cause enhanced DNA packaging by 21-specific terminase and reduce packaging by lambda-terminase. Both the cognate support helix and turn are required for strong packaging discrimination. The wing does not contribute to cosB specificity. Evolution of packaging specificity is discussed, including a model in which lambda- and 21-packaging specificities diverged from a common ancestor phage with broad packaging specificity.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
10
|
Al-Zahrani AS, Kondabagil K, Gao S, Kelly N, Ghosh-Kumar M, Rao VB. The small terminase, gp16, of bacteriophage T4 is a regulator of the DNA packaging motor. J Biol Chem 2009; 284:24490-500. [PMID: 19561086 DOI: 10.1074/jbc.m109.025007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tailed bacteriophages and herpes viruses use powerful molecular motors to translocate DNA into a preassembled prohead and compact the DNA to near crystalline density. The phage T4 motor, a pentamer of 70-kDa large terminase, gp17, is the fastest and most powerful motor reported to date. gp17 has an ATPase activity that powers DNA translocation and a nuclease activity that cuts concatemeric DNA and generates the termini of viral genome. An 18-kDa small terminase, gp16, is also essential, but its role in DNA packaging is poorly understood. gp16 forms oligomers, most likely octamers, exhibits no enzymatic activities, but stimulates the gp17-ATPase activity, and inhibits the nuclease activity. Extensive mutational and biochemical analyses show that gp16 contains three domains, a central oligomerization domain, and N- and C-terminal domains that are essential for ATPase stimulation. Stimulation occurs not by nucleotide exchange or enhanced ATP binding but by triggering hydrolysis of gp17-bound ATP, a mechanism reminiscent of GTPase-activating proteins. gp16 does not have an arginine finger but its interaction with gp17 seems to position a gp17 arginine finger into the catalytic pocket. gp16 inhibits DNA translocation when gp17 is associated with the prohead. gp16 restricts gp17-nuclease such that the putative packaging initiation cut is made but random cutting is inhibited. These results suggest that the phage T4 packaging machine consists of a motor (gp17) and a regulator (gp16). The gp16 regulator is essential to coordinate the gp17 motor ATPase, translocase, and nuclease activities, otherwise it could be suicidal to the virus.
Collapse
|
11
|
Abstract
An ATP-powered DNA translocation machine encapsidates the viral genome in the large dsDNA bacteriophages. The essential components include the empty shell, prohead, and the packaging enzyme, terminase. During translocation, terminase is docked on the prohead's portal protein. The translocation ATPase and the concatemer-cutting endonuclease reside in terminase. Remarkably, terminases, portal proteins, and shells of tailed bacteriophages and herpes viruses show conserved features. These DNA viruses may have descended from a common ancestor. Terminase's ATPase consists of a classic nucleotide binding fold, most closely resembling that of monomeric helicases. Intriguing models have been proposed for the mechanism of dsDNA translocation, invoking ATP hydrolysis-driven conformational changes of portal or terminase powering DNA motion. Single-molecule studies show that the packaging motor is fast and powerful. Recent advances permit experiments that can critically test the packaging models. The viral genome translocation mechanism is of general interest, given the parallels between terminases, helicases, and other motor proteins.
Collapse
Affiliation(s)
- Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, USA.
| | | |
Collapse
|
12
|
Ortega ME, Gaussier H, Catalano CE. The DNA maturation domain of gpA, the DNA packaging motor protein of bacteriophage lambda, contains an ATPase site associated with endonuclease activity. J Mol Biol 2007; 373:851-65. [PMID: 17870092 PMCID: PMC2082050 DOI: 10.1016/j.jmb.2007.07.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 07/20/2007] [Accepted: 07/25/2007] [Indexed: 12/17/2022]
Abstract
Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in Escherichia coli. Biochemical characterization of gpA-DeltaN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A "P-loop" sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme, DNA maturation and DNA packaging, are discussed.
Collapse
Affiliation(s)
- Marcos E. Ortega
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO
| | - Helene Gaussier
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO
| | - Carlos E. Catalano
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO
| |
Collapse
|
13
|
Maluf NK, Gaussier H, Bogner E, Feiss M, Catalano CE. Assembly of bacteriophage lambda terminase into a viral DNA maturation and packaging machine. Biochemistry 2006; 45:15259-68. [PMID: 17176048 DOI: 10.1021/bi0615036] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Terminase enzymes are common to complex double-stranded DNA viruses and function to package viral DNA into the capsid. We recently demonstrated that the bacteriophage lambda terminase gpA and gpNu1 proteins assemble into a stable heterotrimer with a molar ratio gpA1/gpNu1(2). This terminase protomer possesses DNA maturation and packaging activities that are dependent on the E. coli integration host factor protein (IHF). Here, we show that the protomer further assembles into a homogeneous tetramer of protomers of composition (gpA1/gpNu1(2))4. Electron microscopy shows that the tetramer forms a ring structure large enough to encircle duplex DNA. In contrast to the heterotrimer, the ring tetramer can mature and package viral DNA in the absence of IHF. We propose that IHF induced bending of viral DNA facilitates the assembly of four terminase protomers into a ring tetramer that represents the catalytically competent DNA maturation and packaging complex in vivo. This work provides, for the first time, insight into the functional assembly state of a viral DNA packaging motor.
Collapse
Affiliation(s)
- Nasib Karl Maluf
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue C238, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
14
|
Ponchon L, Boulanger P, Labesse G, Letellier L. The Endonuclease Domain of Bacteriophage Terminases Belongs to the Resolvase/Integrase/Ribonuclease H Superfamily. J Biol Chem 2006; 281:5829-36. [PMID: 16377618 DOI: 10.1074/jbc.m511817200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage terminases are essential molecular motors involved in the encapsidation of viral DNA. They are hetero-multimers whose large subunit encodes both ATPase and endonuclease activities. Although the ATPase domain is well characterized from sequence and functional analysis, the C-terminal region remains poorly defined. We describe sequence-structure comparisons of the endonuclease region of various bacteriophages that revealed new sequence similarities shared by this region and the Holliday junction resolvase RuvC and to a lesser extent the HIV integrase and the ribonuclease H. Extensive sequence comparison and motif refinement led to a common signature of terminases and resolvases with three conserved acidic residues engaged in catalytic activity. Sequence analyses were validated by in vivo and in vitro functional assays showing that the nuclease activity of the endonuclease domain of bacteriophage T5 terminase was abolished by mutation of any of the three predicted catalytic aspartates. Overall, these data suggest that the endonuclease domains of terminases operate autonomously and that they adopt a fold similar to that of resolvases and share the same divalent cation-dependent enzymatic mechanism.
Collapse
Affiliation(s)
- Luc Ponchon
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Unite Mixte de Recherche CNRS 8619, Bātiment 430, Université de Paris-Sud, 91405 Orsay, France
| | | | | | | |
Collapse
|
15
|
Maluf NK, Yang Q, Catalano CE. Self-association properties of the bacteriophage lambda terminase holoenzyme: implications for the DNA packaging motor. J Mol Biol 2005; 347:523-42. [PMID: 15755448 DOI: 10.1016/j.jmb.2005.01.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/01/2005] [Accepted: 01/06/2005] [Indexed: 11/23/2022]
Abstract
Terminases are enzymes common to complex double-stranded DNA viruses and are required for packaging of viral DNA into a protective capsid. Bacteriophage lambda terminase holoenzyme is a hetero-oligomer composed of the A and Nu1 lambda gene products; however, the self-association properties of the holoenzyme have not been investigated systematically. Here, we report the results of sedimentation velocity, sedimentation equilibrium, and gel-filtration experiments studying the self-association properties of the holoenzyme. We find that purified, recombinant lambda terminase forms a homogeneous, heterotrimeric structure, consisting of one gpA molecule associated with two gpNu1 molecules (114.2 kDa). We further show that lambda terminase adopts a heterogeneous mixture of higher-order structures, with an average molecular mass of 528(+/-34) kDa. Both the heterotrimer and the higher-order species possess site-specific cos cleavage activity, as well as DNA packaging activity; however, the heterotrimer is dependent upon Escherichia coli integration host factor (IHF) for these activities. Furthermore, the ATPase activity of the higher-order species is approximately 1000-fold greater than that of the heterotrimer. These data suggest that IHF bending of the duplex at the cos site in viral DNA promotes the assembly of the heterotrimer into a biologically active, higher-order packaging motor. We propose that a single, higher-order hetero-oligomer of gpA and gpNu1 functions throughout lambda development.
Collapse
Affiliation(s)
- Nasib K Maluf
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Ave, C238, Denver, CO 80262, USA
| | | | | |
Collapse
|
16
|
Dhar A, Feiss M. Bacteriophage lambda terminase: alterations of the high-affinity ATPase affect viral DNA packaging. J Mol Biol 2005; 347:71-80. [PMID: 15733918 DOI: 10.1016/j.jmb.2004.12.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 12/15/2004] [Accepted: 12/15/2004] [Indexed: 11/25/2022]
Abstract
DNA packaging by large DNA viruses such as the tailed bacteriophages and the herpesviruses involves DNA translocation into a preformed protein shell, called the prohead. Translocation is driven by an ATP hydrolysis-powered DNA packaging motor. The bacteriophages encode a heterodimeric viral DNA packaging protein, called terminase. The terminases have an ATPase center located in the N terminus of the large subunit implicated in DNA translocation. In previous work with phage lambda, lethal mutations that changed ATP-reactive residues 46 and 84 of gpA, the large terminase subunit, were studied. These mutant enzymes retained the terminase endonuclease and helicase activities, but had severe defects in virion assembly, and lacked the terminase high-affinity ATPase activity. Surprisingly, in the work described here, we found that enzymes with the conservative gpA changes Y46F and Y46A had only mild packaging defects. These mild defects contrast with their profound virion assembly defects. Thus, these mutant enzymes have, in addition to the mild DNA packaging defects, a severe post-DNA packaging defect. In contrast, the gpA K84A enzyme had similar virion assembly and DNA packaging defects. The DNA packaging energy budget, i.e. DNA packaged/ATP hydrolyzed, was unchanged for the mutant enzymes, indicating that DNA translocation is tightly coupled to ATP hydrolysis. A model is proposed in which gpA residues 46 and 84 are important for terminase's high-affinity ATPase activity. Assembly of the translocation complex remodels this ATPase so that residues 46 and 84 are not crucial for the activated translocation ATPase. Changing gpA residues 46 and 84 primarily affects assembly, rather than the activity, of the translocation complex.
Collapse
Affiliation(s)
- Alok Dhar
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
17
|
Sippy J, Feiss M. Initial cos cleavage of bacteriophage lambda concatemers requires proheads and gpFI in vivo. Mol Microbiol 2004; 52:501-13. [PMID: 15066036 DOI: 10.1111/j.1365-2958.2004.03990.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The development of bacteriophage lambda and double-stranded DNA viruses in general involves the convergence of two separate pathways: DNA replication and head assembly. Clearly, packaging will proceed only if an empty capsid shell, the prohead, is present to receive the DNA, but genetic evidence suggests that proheads play another role in the packaging process. For example, lambda phages with an amber mutation in any head gene or in FI, the gene encoding the accessory packaging protein gpFI, are able to produce normal amounts of DNA concatemers but they are not cut, or matured, into unit length chromosomes for packaging. Similar observations have been made for herpes simplex 1 virus. In the case of lambda, a negative model proposes that in the amber phages, unassembled capsid components are inhibitory to maturation, and a positive model suggests that assembled proheads are required for cutting. We tested the negative model by using a deletion mutant devoid of all prohead genes and FI in an in vivo cos cleavage assay; in this deleted phage, the cohesive ends were not cut. When lambda proheads and gpFI were provided in vivo via a second prophage, cutting was restored, and gpFI was required, results that support the positive model. Phage 21 is a sister phage of lambda, and although its capsid proteins share approximately 60% residue identity with lambda's, phage 21 proheads did not restore cutting, even when provided with the accessory protein gpFI. Models for the role of proheads and gpFI in cos cutting are discussed.
Collapse
Affiliation(s)
- Jean Sippy
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
18
|
Wieczorek DJ, Didion L, Feiss M. Alterations of the portal protein, gpB, of bacteriophage lambda suppress mutations in cosQ, the site required for termination of DNA packaging. Genetics 2002; 161:21-31. [PMID: 12019220 PMCID: PMC1462103 DOI: 10.1093/genetics/161.1.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cosQ site of bacteriophage lambda is required for DNA packaging termination. Previous studies have shown that cosQ mutations can be suppressed in three ways: by a local suppressor within cosQ, an increase in the length of the lambda chromosome, and missense mutations affecting the prohead's portal protein, gpB. In the present work, revertants of a set of lethal cosQ mutants were screened for suppressors. Seven new cosQ suppressors affected gene B, which encodes the portal protein of the prohead. All seven were allele-nonspecific suppressors of cosQ mutations. Experiments with several phages having two cosQ suppressors showed that the suppression effects were additive. Furthermore, these double suppressors had minimal effects on the growth of cosQ(+) phages. These trans-acting suppressors affecting the portal protein are proposed to allow the mutant cosQ site to be more efficiently recognized, due to the slowing of the rate of translocation.
Collapse
Affiliation(s)
- Douglas J Wieczorek
- Genetics Ph.D. Program and Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
19
|
Duffy C, Feiss M. The large subunit of bacteriophage lambda's terminase plays a role in DNA translocation and packaging termination. J Mol Biol 2002; 316:547-61. [PMID: 11866517 DOI: 10.1006/jmbi.2001.5368] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DNA packaging enzyme of bacteriophage lambda, terminase, is a heteromultimer composed of a small subunit, gpNu1, and a large subunit, gpA, products of the Nu1 and A genes, respectively. The role of terminase in the initial stages of packaging involving the site-specific binding and cutting of the DNA has been well characterized. While it is believed that terminase plays an active role in later post-cleavage stages of packaging, such as the translocation of DNA into the head shell, this has not been demonstrated. Accordingly, we undertook a generalized mutagenesis of lambda's A gene and found ten lethal mutations, nine of which cause post-cleavage packaging defects. All were located in the amino-terminal two-thirds of gpA, separate from the carboxy-terminal region where mutations affecting the protein's endonuclease activity have been found. The mutants fall into five groups according to their packaging phenotypes: (1) two mutants package part of the lambda chromosome, (2) one mutant packages the entire chromosome, but very slowly compared to wild-type, (3) two mutants do not package any DNA, (4) four mutants, though inviable, package the entire lambda chromosome, and (5) one mutant may be defective in both early and late stages of DNA packaging. These results indicate that gpA is actively involved in late stages of packaging, including DNA translocation, and that this enzyme contains separate functional domains for its early and late packaging activities.
Collapse
Affiliation(s)
- Carol Duffy
- Department of Microbiology College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
20
|
Cue D, Feiss M. Bacteriophage lambda DNA packaging: DNA site requirements for termination and processivity. J Mol Biol 2001; 311:233-40. [PMID: 11478856 DOI: 10.1006/jmbi.2001.4840] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage lambda chromosomes are processively packaged into preformed shells, using end-to-end multimers of intracellular viral DNA as the packaging substate. A 200 bp long DNA segment, cos, contains all the sequences needed for DNA packaging. The work reported here shows that efficient DNA packaging termination requires cos's I2 segment, in addition to the required termination subsite, cosQ, and the nicking site, cosN. Efficient processivity requires cosB, in addition to cosQ and cosN. An initiation-defective mutant form of cosB sponsored efficient processivity, indicating that the terminase-cosB interactions required for termination are less stringent than those required at initiation. The finding that an initiation-defective form of cosB is functional for processivity allows a re-interpretation of a similar finding, obtained previously, that the initiation-defective cosB of phage 21 is functional for processivity by the lambda packaging machinery. The cosBphi21 result can now be interpreted as indicating that interactions between cosBphi21 and lambda terminase, while insufficient for initiation, function for processivity.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
21
|
Wieczorek DJ, Feiss M. Defining cosQ, the site required for termination of bacteriophage lambda DNA packaging. Genetics 2001; 158:495-506. [PMID: 11404316 PMCID: PMC1461673 DOI: 10.1093/genetics/158.2.495] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacteriophage lambda is a double-stranded DNA virus that processes concatemeric DNA into virion chromosomes by cutting at specific recognition sites termed cos. A cos is composed of three subsites: cosN, the nicking site; cosB, required for packaging initiation; and cosQ, required for termination of chromosome packaging. During packaging termination, nicking of the bottom strand of cosN depends on cosQ, suggesting that cosQ is needed to deliver terminase to the bottom strand of cosN to carry out nicking. In the present work, saturation mutagenesis showed that a 7-bp segment comprises cosQ. A proposal that cosQ function requires an optimal sequence match between cosQ and cosNR, the right cosN half-site, was tested by constructing double cosQ mutants; the behavior of the double mutants was inconsistent with the proposal. Substitutions in the 17-bp region between cosQ and cosN resulted in no major defects in chromosome packaging. Insertional mutagenesis indicated that proper spacing between cosQ and cosN is required. The lethality of integral helical insertions eliminated a model in which DNA looping enables cosQ to deliver a gpA protomer for nicking at cosN. The 7 bp of cosQ coincide exactly with the recognition sequence for the Escherichia coli restriction endonuclease, EcoO109I.
Collapse
Affiliation(s)
- D J Wieczorek
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
22
|
Hwang Y, Hang JQ, Neagle J, Duffy C, Feiss M. Endonuclease and helicase activities of bacteriophage lambda terminase: changing nearby residue 515 restores activity to the gpA K497D mutant enzyme. Virology 2000; 277:204-14. [PMID: 11062051 DOI: 10.1006/viro.2000.0591] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminase, the DNA packaging enzyme of bacteriophage lambda, is a heteromultimer of gpNu1 and gpA subunits. In an earlier investigation, a lethal mutation changing gpA residue 497 from lysine to aspartic acid (K497D) was found to cause a mild change in the high-affinity ATPase that resides in gpA and a severe defect in the endonuclease activity of terminase. The K497D terminase efficiently sponsored packaging of mature lambda DNA into proheads. In the present work, K497D terminase was found to have a severe defect in the cohesive end separation, or helicase, activity. Plaque-forming pseudorevertants of lambda A K497D were found to carry mutations in A that suppressed the lethality of the A K497D mutation. The two suppressor mutations identified, A E515G and A E515K, affected residue 515, which is located near the putative P-loop of gpA. A codon substitution study of codon 515 showed that hydrophobic and basic residues suppress the K497D defect, but hydrophilic and acidic residues do not. The E515G change was demonstrated to reverse the endonuclease and helicase defects caused by the K497D change. Moreover, the gpA K497D E515G enzyme was found to have kinetic constants for the high-affinity ATPase center similar to those of the wild type enzyme, and the endonuclease activity of the K497D E515G enzyme was stimulated by ATP to an extent similar to the ATP stimulation of the endonuclease activity of the wild type enzyme.
Collapse
Affiliation(s)
- Y Hwang
- Department of Microbiology, College of Medicine, Iowa City, Iowa, 52242, USA
| | | | | | | | | |
Collapse
|
23
|
Gual A, Camacho AG, Alonso JC. Functional analysis of the terminase large subunit, G2P, of Bacillus subtilis bacteriophage SPP1. J Biol Chem 2000; 275:35311-9. [PMID: 10930407 DOI: 10.1074/jbc.m004309200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The terminase of bacteriophage SPP1, constituted by a large (G2P) and a small (G1P) subunit, is essential for the initiation of DNA packaging. A hexa-histidine G2P (H6-G2P), which is functional in vivo, possesses endonuclease, ATPase, and double-stranded DNA binding activities. H6-G2P introduces a cut with preference at the 5'-RCGG downward arrowCW-3' sequence. Distamycin A, which is a minor groove binder that mimics the architectural structure generated by G1P at pac, enhances the specific cut at both bona fide 5'-CTATTGCGG downward arrowC-3' sequences within pacC of SPP1 and SF6 phages. H6-G2P hydrolyzes rATP or dATP to the corresponding rADP or dADP and P(i). H6-G2P interacts with two discrete G1P domains (I and II). Full-length G1P and G1PDeltaN62 (lacking domain I) stimulate 3.5- and 1.9-fold, respectively, the ATPase activity of H6-G2P. The results presented suggest that a DNA structure, artificially promoted by distamycin A or facilitated by the assembly of G1P at pacL and/or pacR, stimulates H6-G2P cleavage at both target sites within pacC. In the presence of two G1P decamers per H6-G2P monomer, the H6-G2P endonuclease is repressed, and the ATPase activity stimulated. Based on these results, we propose a model that can account for the role of terminase in headful packaging.
Collapse
Affiliation(s)
- A Gual
- Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | |
Collapse
|
24
|
Hang JQ, Tack BF, Feiss M. ATPase center of bacteriophage lambda terminase involved in post-cleavage stages of DNA packaging: identification of ATP-interactive amino acids. J Mol Biol 2000; 302:777-95. [PMID: 10993723 DOI: 10.1006/jmbi.2000.4086] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminase is the enzyme that mediates lambda DNA packaging into the viral prohead. The large subunit of terminase, gpA (641 amino acid residues), has a high-affinity ATPase activity (K(m)=5 microM). To directly identify gpA's ATP-interacting amino acids, holoterminase bearing a His(6)-tag at the C terminus of gpA was UV-crosslinked with 8-N(3)-[alpha-(32)P]ATP. Tryptic peptides from the photolabeled terminase were purified by affinity chromatography and reverse-phase HPLC. Two labeled peptides of gpA were identified. Amino acid sequencing failed to show the tyrosine residue of the first peptide, E(43)SAY(46)QEGR(50), or the lysine of the second peptide, V(80)GYSK(84)MLL(87), indicating that Y(46) and K(84) were the 8-N(3)-ATP-modified amino acids. To investigate their roles in lambda DNA packaging, Y(46) was changed to E, A, and F, and K(84) was changed to E and A. Purified His(6)-tagged terminases with changes at residues 46 and 84 lacked the gpA high-affinity ATPase activity, though the cos cleavage and cohesive end separation activities were near to those of the wild-type enzyme. In virion assembly reactions using virion DNA as a packaging substrate, the mutant terminases showed severe defects. In summary, the results indicate that Y(46) and K(84) are part of the high-affinity ATPase center of gpA, and show that this ATPase activity is involved in the post-cos cleavage stages of lambda DNA packaging.
Collapse
Affiliation(s)
- J Q Hang
- College of Medicine, The Molecular Biology Program and Department of Microbiology, Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
25
|
Hwang Y, Feiss M. A mutation correcting the DNA interaction defects of a mutant phage lambda terminase, gpNu1 K35A terminase. Virology 1999; 265:196-205. [PMID: 10600592 DOI: 10.1006/viro.1999.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminase, the DNA packaging enzyme of bacteriophage lambda, is a heteromultimer composed of gpNu1 (181 aa) and gpA (641 aa) subunits, encoded by the lambda Nu1 and A genes, respectively. Similarity between the deduced amino acid sequences of gpNu1 and gpA and the nucleotide binding site consensus sequence suggests that each terminase subunit has an ATP reactive center. Terminase has been shown to have two distinct ATPase activities. The gpNu1 subunit has a low-affinity ATPase stimulated by nonspecific DNA and gpA has a high-affinity ATPase. In previous work, a mutant terminase, gpNu1 K35A holoterminase, had a mild defect in interactions with DNA, such that twofold increased DNA concentrations were required both for full stimulation of the low-affinity ATPase and for saturation of the cos cleavage reaction. In addition, the gpNu1 K35A terminase exhibited a post-cleavage defect in DNA packaging that accounted for the lethality of the Nu1 K35A mutation [Y. Hwang and M. Feiss (1997) Virology 231, 218-230]. In the work reported here, a mutation in the turn of the putative helix-turn-helix DNA binding domain has been isolated as a suppressor of the gpNu1 K35A change. This suppressor mutation causes the change A14V in gpNu1. A14V reverses the DNA-binding defects of gpNu1 K35A terminase, both for stimulation of the low-affinity ATPase and for saturation of the cos cleavage defect. A14V suppresses the post-cleavage DNA packaging defect caused by the gpNu1 K35A change.
Collapse
Affiliation(s)
- Y Hwang
- College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
26
|
Arens JS, Hang Q, Hwang Y, Tuma B, Max S, Feiss M. Mutations that extend the specificity of the endonuclease activity of lambda terminase. J Bacteriol 1999; 181:218-24. [PMID: 9864333 PMCID: PMC103552 DOI: 10.1128/jb.181.1.218-224.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1998] [Accepted: 10/20/1998] [Indexed: 11/20/2022] Open
Abstract
Terminase, an enzyme encoded by the Nu1 and A genes of bacteriophage lambda, is crucial for packaging concatemeric DNA into virions. cosN, a 22-bp segment, is the site on the virus chromosome where terminase introduces staggered nicks to cut the concatemer to generate unit-length virion chromosomes. Although cosN is rotationally symmetric, mutations in cosN have asymmetric effects. The cosN G2C mutation (a G-to-C change at position 2) in the left half of cosN reduces the phage yield 10-fold, whereas the symmetric mutation cosN C11G, in the right half of cosN, does not affect the burst size. The reduction in phage yield caused by cosN G2C is correlated with a defect in cos cleavage. Three suppressors of the cosN G2C mutation, A-E515G, A-N509K, and A-R504C, have been isolated that restore the yield of lambda cosN G2C to the wild-type level. The suppressors are missense mutations that alter amino acids located near an ATPase domain of gpA. lambda A-E515G, A-N509K, and A-R504C phages, which are cosN+, also had wild-type burst sizes. In vitro cos cleavage experiments on cosN G2C C11G DNA showed that the rate of cleavage for A-E515G terminase is three- to fourfold higher than for wild-type terminase. The A-E515G mutation changes residue 515 of gpA from glutamic acid to glycine. Uncharged polar and hydrophobic residues at position 515 suppressed the growth defect of lambda cosN G2C C11G. In contrast, basic (K, R) and acidic (E, D) residues at position 515 failed to suppress the growth defect of lambda cosN G2C C11G. In a lambda cosN+ background, all amino acids tested at position 515 were functional. These results suggest that A-E515G plays an indirect role in extending the specificity of the endonuclease activity of lambda terminase.
Collapse
Affiliation(s)
- J S Arens
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242,
| | | | | | | | | | | |
Collapse
|
27
|
Kuebler D, Rao VB. Functional analysis of the DNA-packaging/terminase protein gp17 from bacteriophage T4. J Mol Biol 1998; 281:803-14. [PMID: 9719636 DOI: 10.1006/jmbi.1998.1952] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In bacteriophage T4, the terminase complex constituted by the large subunit gp17 (69 kDa) and the small subunit gp16 (18 kDa) is a critical component of the ATP-driven DNA-packaging pump that translocates DNA into an empty capsid shell. Evidence suggests that the large subunit gp17 is the critical component and consists of a number of the functional sites required for DNA-packaging. It exhibits a terminase activity that introduces non-specific cuts into DNA, a portal vertex binding site that allows linkage of cleaved DNA to an empty prohead, an in vitro DNA-packaging activity, and an ATPase activity. In addition, a consensus metal-binding motif and two consensus ATP-binding sites have been identified by sequence analysis. In order to understand the mechanism of action of the multifunctional gp17, we developed an expression-based selection strategy to select for mutants that are defective in terminase function. Characterization of one of the mutants revealed a unique phenotype in which a single H436R mutation resulted in a dramatic loss of both the terminase and the DNA-packaging functions. Indeed, in vivo substitution of H436 with any of the 12 amino acids for which a suppressor is available was lethal to T4 development. According to one hypothesis, H436 is part of a metal-binding motif that is essential for gp17 function. This hypothesis was tested by introducing mutations at each of the three histidine pairs, the H382-X2-H385 pair, the H411-X2-H414 pair and the H430-X5-H436 pair, which constitute the histidine-rich region near the C terminus of gp17. A mutation at either the H411 pair or the H430 pair resulted in a loss of gp17 function, whereas a mutation at the H382 pair had no effect. In addition to the putative metal-binding motif, substitutions at residue K166 within the putative N terminus-proximal ATP-binding site also resulted in a loss of gp17 function. We propose that a metal-binding motif involving the histidine residues within the sequence H411-X2-H414-X15-H430-X5-H436 is essential for gp17 function. Metal-terminase interactions may be required for structural alignment and stabilization of functional sites in phage T4 terminase and other double-stranded DNA phage terminases.
Collapse
Affiliation(s)
- D Kuebler
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | | |
Collapse
|
28
|
Babbar BK, Gold M. ATP-reactive sites in the bacteriophage lambda packaging protein terminase lie in the N-termini of its subunits, gpA and gpNu1. Virology 1998; 247:251-64. [PMID: 9705918 DOI: 10.1006/viro.1998.9221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-reactive sites in terminase and its subunits have been successfully identified using three different affinity analogs of ATP (2-and 8-azidoATP and FITC) GpA, the larger subunit of terminase, was shown to have a higher affinity for these analogs than gpNu1, the smaller subunit. The suitability of these reagents as affinity analogs of ATP was demonstrated by ATP protection experiments and in vitro assays done with the modified proteins. These analogs were thus shown to modify the ATP-reactive sites. The results obtained from these experiments also indicate the importance of subunit-subunit interactions in the holoenzyme. Terminase, gpA, and gpNu1 were modified with these analogs and the ATP-reactive sites were identified by isolating the modified peptide by reverse-phase chromatography. The sequence analysis of the modified peptides indicates a region including amino acids 18-35 in the N-terminus of gpNu1 and a region including amino acids 59-85 in the N-terminus of gpA as being the ATP-reactive sites.
Collapse
Affiliation(s)
- B K Babbar
- Department of Molecular and Medical Genetics, University of Toronto, Canada
| | | |
Collapse
|
29
|
Cue D, Feiss M. Termination of packaging of the bacteriophage lambda chromosome: cosQ is required for nicking the bottom strand of cosN. J Mol Biol 1998; 280:11-29. [PMID: 9653028 DOI: 10.1006/jmbi.1998.1841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Termination of packaging of the lambda chromosome involves completion of translocation of the DNA into the head shell, and conversion of the translocation complex into a cleavage complex. The cleavage reaction introduces staggered nicks into the downstream cosN to generate the right cohesive end of the chromosome. cosQ, a site adjacent to cosN, was found to be required for nicking the bottom strand of cosN; bottom strand nicking was also sequence-specific for bps at the nick site. Nicking of the top strand of cosN (cosNL) was stimulated by cosQ, but fidelity and efficiency of cosNL nicking were largely dictated by other cos subsites (i.e. cosB and I2). Aberrant top-strand cleavage within cosQ was observed in the absence of I2, and nicking at a site 8 nt 5' to the normal cosNL nick site occurred in the absence of cosB. The presence of cosQ was found to be insufficient to arrest DNA translocation in vivo, indicating that cosQ, per se, is not a packaging stop signal. A model is presented in which the role of cosQ is to depolarize the asymmetric arrangement of terminase protomers in the translocation complex so that protomers are configured to match the 2-fold rotational symmetry of cosN.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
30
|
Yu D, Weller SK. Genetic analysis of the UL 15 gene locus for the putative terminase of herpes simplex virus type 1. Virology 1998; 243:32-44. [PMID: 9527913 DOI: 10.1006/viro.1998.9041] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The herpes simplex virus (HSV-1) UL15 gene encodes one of the six viral gene products required for viral DNA cleavage and packaging. UL15 is a spliced gene and encodes two separately translated proteins, UL15 and UL15.5. Sequence analysis reveals that UL15 shares homology with gp 17, the large catalytic subunit of the bacteriophage T4 terminase, a protein which cleaves the polymeric T4 DNA into monomers. Both proteins contain a putative ATP binding motif known as the Walker A and B boxes. In this report, immunofluorescence was used to show that UL15 localizes to the nucleus in the absence of any other viral proteins; this indicates that UL15 contains its own nuclear localization signal. In addition, we found that UL15 colocalizes with replication compartments at early times (6 h postinfection). Since, at this time, preformed capsids as well as other cleavage and packaging proteins are also recruited to replication compartments, it seems likely that cleavage and packaging occurs in the same compartments in which DNA synthesis occurs. Also in this report, we have investigated UL15.5, the N-terminally truncated gene product of the UL15 open reading frame (ORF). The start codon has been mapped to Met443 within the UL15 ORF. Furthermore, we have shown that plasmids containing a UL15.5 knockout mutation still complement the growth of UL15 insertion mutant viruses, indicating that UL15.5 is not required for viral growth in cell culture. Last, we constructed a UL15 mutant, UL15C(G263A), in which the invariant Gly263 in the Walker box A of the ATP binding motif (GKT) was substituted with an alanine. We show that the mutant gene fails to support the growth of UL15 insertion mutant viruses, indicating that the putative ATP binding motif of UL15 is indispensable for its function.
Collapse
Affiliation(s)
- D Yu
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
31
|
Woods L, Terpening C, Catalano CE. Kinetic analysis of the endonuclease activity of phage lambda terminase: assembly of a catalytically competent nicking complex is rate-limiting. Biochemistry 1997; 36:5777-85. [PMID: 9153418 DOI: 10.1021/bi963044m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The terminase enzyme from bacteriophage lambda is responsible for excision of a single genome from a concatameric DNA precursor and its insertion into an empty viral procapsid. The enzyme possesses a site-specific endonuclease activity which is responsible for excision of the viral genome and the formation of the 12 base-pair single-stranded "sticky" ends of mature lambda DNA. We have previously reported a kinetic analysis of the endonuclease activity of lambda terminase which showed an enzyme concentration-dependent change in the kinetic time course of the reaction [Tomka, M. A., & Catalano, C. E. (1993b) J. Biol. Chem. 268, 3056-3065]. We presented a model which suggested that the rate-limiting step in the nuclease reaction was the assembly of a catalytically competent prenicking complex. Here, we provide additional evidence for a slow assembly step in the nuclease reaction and demonstrate that the observed rate is affected by protein concentration, but not by the length of the DNA substrate. Consistent with our model, preincubation of terminase with DNA also yields an observable fast phase of the reaction, but only when large (> or = 3 kb) DNA substrates are used. Finally, we present data which demonstrate that phage lambda terminase can efficiently utilize DNA from the closely related phage phi21 as an endonuclease substrate and that the enzyme binds efficiently to the cosB region of both phage genomes. The implications of these results with respect to the assembly of a catalytically competent nucleoprotein complex required to initiate genome packaging are discussed.
Collapse
Affiliation(s)
- L Woods
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
32
|
Chen C, Guo P. Sequential action of six virus-encoded DNA-packaging RNAs during phage phi29 genomic DNA translocation. J Virol 1997; 71:3864-71. [PMID: 9094662 PMCID: PMC191537 DOI: 10.1128/jvi.71.5.3864-3871.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A 120-base pRNA encoded by bacteriophage b29 has a novel and essential role in genomic DNA packaging. Six DNA-packaging RNAs (pRNAs) were bound to the sixfold symmetrical portal vertex of procapsids during the DNA translocation process and left the procapsid after the DNA-packaging reaction was completed, suggesting that the pRNA participated in the translocation of genomic DNA into procapsids. To further investigate the mechanism of DNA packaging, it is crucial to determine whether these six pRNA molecules work as an integrated entity or each pRNA acts as a functional individual. If pRNAs work individually, then do they work in sequence with communication or in random order without interaction? Results from compensation and complementation analysis did not support the integrated model. Computation of the probability of combination between wild-type and mutant pRNAs and experimental data of competitive inhibition excluded the random model while favoring the proposal that the six pRNAs functioned sequentially. Sequential action of the pRNA also explains why the pRNA is so sensitive to mutation, since the effect of a pRNA mutation will be amplified by 6 orders of magnitude after six consecutive steps, resulting in the observed complete loss of DNA-packaging activity caused by small alterations. When any one of the six pRNAs was replaced with an inactive one, complete blockage of DNA packaging resulted, strongly supporting the speculation that individual pRNAs, presumably together with other components such as the packaging ATPase gp16, take turns mediating successive steps of packaging. Although the data provided here could not exclude the integrated model completely, there is no evidence so far to argue against the model of sequential action.
Collapse
Affiliation(s)
- C Chen
- Cancer Research Center, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
33
|
Cai ZH, Hwang Y, Cue D, Catalano C, Feiss M. Mutations in Nu1, the gene encoding the small subunit of bacteriophage lambda terminase, suppress the postcleavage DNA packaging defect of cosB mutations. J Bacteriol 1997; 179:2479-85. [PMID: 9098042 PMCID: PMC178993 DOI: 10.1128/jb.179.8.2479-2485.1997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The linear double-stranded DNA molecules in lambda virions are generated by nicking of concatemeric intracellular DNA by terminase, the lambda DNA packaging enzyme. Staggered nicks are introduced at cosN to generate the cohesive ends of virion DNA. After nicking, the cohesive ends are separated by terminase; terminase bound to the left end of the DNA to be packaged then binds the empty protein shell, i.e., the prohead, and translocation of DNA into the prohead occurs. cosB, a site adjacent to cosN, is a terminase binding site. cosB facilitates the rate and fidelity of the cosN cleavage reaction by serving as an anchoring point for gpNu1, the small subunit of terminase. cosB is also crucial for the formation of a stable terminase-DNA complex, called complex I, formed after cosN cleavage. The role of complex I is to bind the prohead. Mutations in cosB affect both cosB functions, causing mild defects in cosN cleavage and severe packaging defects. The lethal cosB R3- R2- R1- mutation contains a transition mutation in each of the three gpNu1 binding sites of cosB. Pseudorevertants of lambda cosB R3- R2- R1- DNA contain suppressor mutations affecting gpNu1. Results of experiments that show that two such suppressors, Nu1ms1 and Nu1ms3, do not suppress the mild cosN cleavage defect caused by the cosB R3- R2- R1- mutation but strongly suppress the DNA packaging defect are presented. It is proposed that the suppressing terminases, unlike the wild-type enzyme, are able to assemble a stable complex I with cosB R3- R2- R1- DNA. Observations on the adenosine triphosphatase activities and protease susceptibilities of gpNu1 of the Nu1ms1 and Nu1ms3 terminases indicate that the conformation of gpNu1 is altered in the suppressing terminases.
Collapse
Affiliation(s)
- Z H Cai
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|