1
|
Shang X, Guan Z, Zhang S, Shi L, You H. Predicting the aptamer SYL3C-EpCAM complex's structure with the Martini-based simulation protocol. Phys Chem Chem Phys 2021; 23:7066-7079. [PMID: 33496283 DOI: 10.1039/d0cp05003b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aptamers (small single strand DNA/RNAs) such as SYL3C are considered as ideal alternatives to antibodies in cancer related research studies. However, 3D structure predictions for aptamers and aptamer-protein complexes are scarce due to the high cost of experimental measurements and unreliable computer-based methods. Thus aptamers' diagnostic and therapeutic applications are severely restricted. To meet the challenge, we proposed a Martini-based aptamer-protein complex prediction protocol. By combining the base-base contact map from simulation and secondary structure prediction from various tools, improved secondary structure predictions can be obtained. This method reduced the risk of providing incorrect or incomplete base pairs in secondary structure prediction. Thus 3D structure modeling based on the secondary structure can be more reliable. We introduced the soft elastic network to the hairpin folded regions of the Martini ssDNAs to preserve their canonical structure. Using our protocol, we predicted the first 3D structure of the aptamer SYL3C and the SYL3C-EpCAM complex. We believe that our work could contribute to the future aptamer-related research studies and medical implications.
Collapse
Affiliation(s)
- Xu Shang
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | | | | | | | | |
Collapse
|
2
|
Towards Understanding of Polymorphism of the G-rich Region of Human Papillomavirus Type 52. Molecules 2019; 24:molecules24071294. [PMID: 30987050 PMCID: PMC6479982 DOI: 10.3390/molecules24071294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 11/17/2022] Open
Abstract
The potential to affect gene expression via G-quadruplex stabilization has been extended to all domains of life, including viruses. Here, we investigate the polymorphism and structures of G-quadruplexes of the human papillomavirus type 52 with UV, CD and NMR spectroscopy and gel electrophoresis. We show that oligonucleotide with five G-tracts folds into several structures and that naturally occurring single nucleotide polymorphisms (SNPs) have profound effects on the structural polymorphism in the context of G-quadruplex forming propensity, conformational heterogeneity and folding stability. With help of SNP analysis, we were able to select one of the predominant forms, formed by G-rich sequence d(G₃TAG₃CAG₄ACACAG₃T). This oligonucleotide termed HPV52(1-4) adopts a three G-quartet snap back (3 + 1) type scaffold with four syn guanine residues, two edgewise loops spanning the same groove, a no-residue V loop and a propeller type loop. The first guanine residue is incorporated in the central G-quartet and all four-guanine residues from G4 stretch are included in the three quartet G-quadruplex core. Modification studies identified several structural elements that are important for stabilization of the described G-quadruplex fold. Our results expand set of G-rich targets in viral genomes and address the fundamental questions regarding folding of G-rich sequences.
Collapse
|
3
|
Talbert PB, Henikoff S. Transcribing Centromeres: Noncoding RNAs and Kinetochore Assembly. Trends Genet 2018; 34:587-599. [DOI: 10.1016/j.tig.2018.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
|
4
|
Jeddi I, Saiz L. Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors. Sci Rep 2017; 7:1178. [PMID: 28446765 PMCID: PMC5430850 DOI: 10.1038/s41598-017-01348-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/24/2017] [Indexed: 12/11/2022] Open
Abstract
Aptamers consist of short oligonucleotides that bind specific targets. They provide advantages over antibodies, including robustness, low cost, and reusability. Their chemical structure allows the insertion of reporter molecules and surface-binding agents in specific locations, which have been recently exploited for the development of aptamer-based biosensors and direct detection strategies. Mainstream use of these devices, however, still requires significant improvements in optimization for consistency and reproducibility. DNA aptamers are more stable than their RNA counterparts for biomedical applications but have the disadvantage of lacking the wide array of computational tools for RNA structural prediction. Here, we present the first approach to predict from sequence the three-dimensional structures of single stranded (ss) DNA required for aptamer applications, focusing explicitly on ssDNA hairpins. The approach consists of a pipeline that integrates sequentially building ssDNA secondary structure from sequence, constructing equivalent 3D ssRNA models, transforming the 3D ssRNA models into ssDNA 3D structures, and refining the resulting ssDNA 3D structures. Through this pipeline, our approach faithfully predicts the representative structures available in the Nucleic Acid Database and Protein Data Bank databases. Our results, thus, open up a much-needed avenue for integrating DNA in the computational analysis and design of aptamer-based biosensors.
Collapse
Affiliation(s)
- Iman Jeddi
- Modeling of Biological Networks and Systems Therapeutics Laboratory, Department of Biomedical Engineering, University of California, 451 East Health Sciences Drive, Davis, CA, 95616, USA
| | - Leonor Saiz
- Modeling of Biological Networks and Systems Therapeutics Laboratory, Department of Biomedical Engineering, University of California, 451 East Health Sciences Drive, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Ma Z, Jing X, Cheng J, Wang X, Lv Z. The effects of a short sequence enhancer (5′-GTGAAATAAATGCAAATAAAGT) and its derived sequences on green fluorescent protein expression. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0180-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
|
7
|
Islam B, Sgobba M, Laughton C, Orozco M, Sponer J, Neidle S, Haider S. Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale. Nucleic Acids Res 2013; 41:2723-35. [PMID: 23293000 PMCID: PMC3575793 DOI: 10.1093/nar/gks1331] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
The human telomeric DNA sequence with four repeats can fold into a parallel-stranded propeller-type topology. NMR structures solved under molecular crowding experiments correlate with the crystal structures found with crystal-packing interactions that are effectively equivalent to molecular crowding. This topology has been used for rationalization of ligand design and occurs experimentally in a number of complexes with a diversity of ligands, at least in the crystalline state. Although G-quartet stems have been well characterized, the interactions of the TTA loop with the G-quartets are much less defined. To better understand the conformational variability and structural dynamics of the propeller-type topology, we performed molecular dynamics simulations in explicit solvent up to 1.5 μs. The analysis provides a detailed atomistic account of the dynamic nature of the TTA loops highlighting their interactions with the G-quartets including formation of an A:A base pair, triad, pentad and hexad. The results present a threshold in quadruplex simulations, with regards to understanding the flexible nature of the sugar-phosphate backbone in formation of unusual architecture within the topology. Furthermore, this study stresses the importance of simulation time in sampling conformational space for this topology.
Collapse
Affiliation(s)
- Barira Islam
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Miriam Sgobba
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Charlie Laughton
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Modesto Orozco
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Jiri Sponer
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Stephen Neidle
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| | - Shozeb Haider
- Centre for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast BT9 7BL, UK, School of Pharmacy, Nottingham University, University Park, Nottingham NG7 2RD, UK, Institute of Research in Biomedicine, Barcelona 08028, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovoplka 135, Brno 612 65, Czech Republic, Central European Institute of Technology, Campus Bohunice, Kamenice 5, Brno 625 00, Czech Republic and University College London, School of Pharmacy, Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
8
|
Rubin Y, Belous L, Evstigneev M. On the a priori possibility of the formation of hexameric mini-hairpin d(GCGAGC) in solution. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.05.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Kannan S, Zacharias M. Role of the closing base pair for d(GCA) hairpin stability: free energy analysis and folding simulations. Nucleic Acids Res 2011; 39:8271-80. [PMID: 21724608 PMCID: PMC3201870 DOI: 10.1093/nar/gkr541] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/11/2011] [Accepted: 06/13/2011] [Indexed: 01/17/2023] Open
Abstract
Hairpin loops belong to the most important structural motifs in folded nucleic acids. The d(GNA) sequence in DNA can form very stable trinucleotide hairpin loops depending, however, strongly on the closing base pair. Replica-exchange molecular dynamics (REMD) were employed to study hairpin folding of two DNA sequences, d(gcGCAgc) and d(cgGCAcg), with the same central loop motif but different closing base pairs starting from single-stranded structures. In both cases, conformations of the most populated conformational cluster at the lowest temperature showed close agreement with available experimental structures. For the loop sequence with the less stable G:C closing base pair, an alternative loop topology accumulated as second most populated conformational state indicating a possible loop structural heterogeneity. Comparative-free energy simulations on induced loop unfolding indicated higher stability of the loop with a C:G closing base pair by ~3 kcal mol(-1) (compared to a G:C closing base pair) in very good agreement with experiment. The comparative energetic analysis of sampled unfolded, intermediate and folded conformational states identified electrostatic and packing interactions as the main contributions to the closing base pair dependence of the d(GCA) loop stability.
Collapse
Affiliation(s)
- Srinivasaraghavan Kannan
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale) and Physik-Department T38, Technische Universität München, 85747 Garching, Germany
| | - Martin Zacharias
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale) and Physik-Department T38, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
10
|
Rojsitthisak P, Jongaroonngamsang N, Romero RM, Haworth IS. HPLC-UV, MALDI-TOF-MS and ESI-MS/MS analysis of the mechlorethamine DNA crosslink at a cytosine-cytosine mismatch pair. PLoS One 2011; 6:e20745. [PMID: 21673963 PMCID: PMC3108972 DOI: 10.1371/journal.pone.0020745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 05/12/2011] [Indexed: 01/19/2023] Open
Abstract
Background Mechlorethamine [ClCH2CH2N(CH3)CH2CH2Cl], a nitrogen mustard alkylating agent, has been proven to form a DNA interstrand crosslink at a cytosine-cytosine (C-C) mismatch pair using gel electrophoresis. However, the atomic connectivity of this unusual crosslink is unknown. Methodology/Principal Findings HPLC-UV, MALDI-TOF-MS, and ESI-MS/MS were used to determine the atomic connectivity of the DNA C-C crosslink formed by mechlorethamine, MALDI-TOF-MS of the HPLC-purified reaction product of mechlorethamine with the DNA duplex d[CTCACACCGTGGTTC]•d[GAACCACCGTGTGAG] (underlined bases are a C-C mismatch pair) indicated formation of an interstrand crosslink at m/z 9222.088 [M−2H+Na]+. Following enzymatic digestion of the crosslinked duplex by snake venom phosphodiesterase and calf intestinal phosphatase, ESI-MS/MS indicated the presence of dC-mech-dC [mech = CH2CH2N(CH3)CH2CH2] at m/z 269.2 [M]2+ (expected m/z 269.6, exact mass 539.27) and its hydrolytic product dC-mech-OH at m/z 329.6 [M]+ (expected m/z 329.2). Fragmentation of dC-mech-dC gave product ions at m/z 294.3 and 236.9 [M]+, which are both due to loss of the 4-amino group of cytosine (as ammonia), in addition to dC and dC+HN(CH3)CH = CH2, respectively. The presence of m/z 269.2 [M]2+ and loss of ammonia exclude crosslink formation at cytosine N4 or O2 and indicate crosslinking through cytosine N3 with formation of two quaternary ammonium ions. Conclusions Our results provide an important addition to the literature, as the first example of the use of HPLC and MS for analysis of a DNA adduct at the N3 position of cytosine.
Collapse
Affiliation(s)
- Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| | | | | | | |
Collapse
|
11
|
Santini GPH, Cognet JAH, Xu D, Singarapu KK, Hervé du Penhoat C. Nucleic acid folding determined by mesoscale modeling and NMR spectroscopy: solution structure of d(GCGAAAGC). J Phys Chem B 2009; 113:6881-93. [PMID: 19374420 DOI: 10.1021/jp8100656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Determination of DNA solution structure is a difficult task even with the high-sensitivity method used here based on simulated annealing with 35 restraints/residue (Cryoprobe 750 MHz NMR). The conformations of both the phosphodiester linkages and the dinucleotide segment encompassing the sharp turn in single-stranded DNA are often underdetermined. To obtain higher quality structures of a DNA GNRA loop, 5'-d(GCGAAAGC)-3', we have used a mesoscopic molecular modeling approach, called Biopolymer Chain Elasticity (BCE), to provide reference conformations. By construction, these models are the least deformed hairpin loop conformation derived from canonical B-DNA at the nucleotide level. We have further explored this molecular conformation at the torsion angle level with AMBER molecular mechanics using different possible (epsilon,zeta) constraints to interpret the 31P NMR data. This combined approach yields a more accurate molecular conformation, compatible with all the NMR data, than each method taken separately, NMR/DYANA or BCE/AMBER. In agreement with the principle of minimal deformation of the backbone, the hairpin motif is stabilized by maximal base-stacking interactions on both the 5'- and 3'-sides and by a sheared G.A mismatch base pair between the first and last loop nucleotides. The sharp turn is located between the third and fourth loop nucleotides, and only two torsion angles beta6 and gamma6 deviate strongly with respect to canonical B-DNA structure. Two other torsion angle pairs epsilon3,zeta3 and epsilon5,zeta5 exhibit the newly recognized stable conformation BIIzeta+ (-70 degrees, 140 degrees). This combined approach has proven to be useful for the interpretation of an unusual 31P chemical shift in the 5'-d(GCGAAAGC)-3' hairpin.
Collapse
Affiliation(s)
- Guillaume P H Santini
- Laboratoire de Biophysique Moleculaire, Cellulaire et Tissulaire, UMR 7033 CNRS, Universite Pierre et Marie Curie Paris 6, Genopole Campus 1, 5 rue Henri Desbrueres, Evry 91030, France
| | | | | | | | | |
Collapse
|
12
|
Kannan S, Zacharias M. Folding of a DNA hairpin loop structure in explicit solvent using replica-exchange molecular dynamics simulations. Biophys J 2007; 93:3218-28. [PMID: 17660316 PMCID: PMC2025651 DOI: 10.1529/biophysj.107.108019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hairpin loop structures are common motifs in folded nucleic acids. The 5'-GCGCAGC sequence in DNA forms a characteristic and stable trinucleotide hairpin loop flanked by a two basepair stem helix. To better understand the structure formation of this hairpin loop motif in atomic detail, we employed replica-exchange molecular dynamics (RexMD) simulations starting from a single-stranded DNA conformation. In two independent 36 ns RexMD simulations, conformations in very close agreement with the experimental hairpin structure were sampled as dominant conformations (lowest free energy state) during the final phase of the RexMDs ( approximately 35% at the lowest temperature replica). Simultaneous compaction and accumulation of folded structures were observed. Comparison of the GCA trinucleotides from early stages of the simulations with the folded topology indicated a variety of central loop conformations, but arrangements close to experiment that are sampled before the fully folded structure also appeared. Most of these intermediates included a stacking of the C(2) and G(3) bases, which was further stabilized by hydrogen bonding to the A(5) base and a strongly bound water molecule bridging the C(2) and A(5) in the DNA minor groove. The simulations suggest a folding mechanism where these intermediates can rapidly proceed toward the fully folded hairpin and emphasize the importance of loop and stem nucleotide interactions for hairpin folding. In one simulation, a loop motif with G(3) in syn conformation (dihedral flip at N-glycosidic bond) accumulated, resulting in a misfolded hairpin. Such conformations may correspond to long-lived trapped states that have been postulated to account for the folding kinetics of nucleic acid hairpins that are slower than expected for a semiflexible polymer of the same size.
Collapse
|
13
|
Monzingo AF, Ozburn A, Xia S, Meyer RJ, Robertus JD. The structure of the minimal relaxase domain of MobA at 2.1 A resolution. J Mol Biol 2006; 366:165-78. [PMID: 17157875 PMCID: PMC1894915 DOI: 10.1016/j.jmb.2006.11.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/03/2006] [Accepted: 11/08/2006] [Indexed: 11/26/2022]
Abstract
The plasmid R1162 encodes proteins that enable its conjugative mobilization between bacterial cells. It can transfer between many different species and is one of the most promiscuous of the mobilizable plasmids. The plasmid-encoded protein MobA, which has both nicking and priming activities on single-stranded DNA, is essential for mobilization. The nicking, or relaxase, activity has been localized to the 186 residue N-terminal domain, called minMobA. We present here the 2.1 A X-ray structure of minMobA. The fold is similar to that seen for two other relaxases, TraI and TrwC. The similarity in fold, and action, suggests these enzymes are evolutionary homologs, despite the lack of any significant amino acid similarity. MinMobA has a well- defined target DNA called oriT. The active site metal is observed near Tyr25, which is known to form a phosphotyrosine adduct with the substrate. A model of the oriT substrate complexed with minMobA has been made, based on observed substrate binding to TrwC and TraI. The model is consistent with observations of substrate base specificity, and provides a rationalization for elements of the likely enzyme mechanism.
Collapse
Affiliation(s)
- Arthur F Monzingo
- Institute of Cellular and Molecular Biology, Department of Chemistry and Biochemistry, 1 University Station A5300, University of Texas, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
14
|
Lamoureux M, Patard L, Hernandez B, Couesnon T, Santini GPH, Cognet JAH, Gouyette C, Cordier C. Spectroscopic and structural impact of a stem base-pair change in DNA hairpins: GTTC-ACA-GAAC versus GTAC-ACA-GTAC. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2006; 65:84-94. [PMID: 16530466 DOI: 10.1016/j.saa.2005.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/16/2005] [Accepted: 09/22/2005] [Indexed: 05/07/2023]
Abstract
Successive investigations over the last decade have revealed and confirmed a stable loop closure in a family of d-[GTAC-5Pur6N7N-GTAC] hairpins, where 5Pur6N7N is a AAA, GAG and AXC loop (X being any nucleotide). The trinucleotide loop is characterized by a well defined 5Pur-7N mispairing mode, and by upfield chemical shifts for three sugar protons of the apical nucleotide 6N. The GTTC-ACA-GAAC DNA hairpin, of interest for its likely involvement in Vibrio cholerae genome mutations, has now been investigated. The GTAC-ACA-GTAC DNA hairpin has also been studied because it is intermediate between the other structures, as it contains the loop of the hairpin under consideration and the stem of the above family. The two hairpins with the ACA loop are stable. They show the same mispairing mode and similar upfield shifts as the previous family, but GTTC-ACA-GAAC seems to be slightly less compact than any other. GTTC-ACA-GAAC is remarkable in that it exhibits a B(II) character for the phosphate-ester conformation at 8Gp9A, together with a swing of the upper hairpin into the major groove that, in particular, brings 6CH1' roughly as close to 7AH2 as to 6CH6. These unexpected structural features are qualitatively deduced from (1)H and (31)P NMR spectra, and confirmed by Raman spectroscopy. This comparative study shows that not only the loop sequence but also the stem sequence may control hairpin structures.
Collapse
Affiliation(s)
- Michèle Lamoureux
- Biophysique Moléculaire, Cellulaire et Tissulaire, BIOMOCETI-CNRS UMR 7033, Université Paris 6, GENOPOLE Campus 1, 5 rue Henri Desbruères, 91030 Evry Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Isaksson J, Plashkevych O, Pradeepkumar PI, Chatterjee S, Barman J, Pathmasiri W, Shrivastava P, Petit C, Chattopadhyaya J. Oxetane Locked Thymidine in the Dickerson-Drew Dodecamer Causes Local Base Pairing Distortions—An NMR Structure and Hydration Study. J Biomol Struct Dyn 2005; 23:299-330. [PMID: 16218756 DOI: 10.1080/07391102.2005.10507067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The introduction of a North-type sugar conformation constrained oxetane T block, 1-(1',3'-O-anhydro-beta-D-psicofuranosyl) thymine, at the T(7) position of the self-complementary Dickerson-Drew dodecamer, d[(5'-C(1)G(2)C(3)G(4)A(5)A(6)T(7)T(8)C(9)G(10)C(11)G(12)-3')](2), considerably perturbs the conformation of the four central base pairs, reducing the stability of the structure. UV spectroscopy and 1D NMR display a drop in melting temperature of approximately 10 degrees C per modification for the T(7) oxetane modified duplex, where the T(7) block has been introduced in both strands, compared to the native Dickerson-Drew dodecamer. The three dimensional structure has been determined by NMR spectroscopy and has subsequently been compared with the results of 2.4 ns MD simulations of the native and the T(7) oxetane modified duplexes. The modified T(7) residue is found to maintain its constrained sugar- and the related glycosyl torsion conformations in the duplex, resulting in staggered and stretched T(7).A(6) and A(6).T(7) non-linear base pairs. The stacking is less perturbed, but there is an increased roll between the two central residues compared to the native counterpart, which is compensated by tilts of the neighboring base steps. The one dimensional melting profile of base protons of the T(7) and T(8) residues reveals that the introduction of the North-type sugar constrained thymine destabilizes the core of the modified duplex, promoting melting to start simultaneously from the center as well as from the ends. Temperature dependent hydration studies by NMR demonstrate that the central T(7).A(6)/A(6).T(7) base pairs of the T(7) oxetane modified Dickerson-Drew dodecamer have at least one order of magnitude higher water exchange rates (correlated to the opening rate of the base pair) than the corresponding base pairs in the native duplex.
Collapse
Affiliation(s)
- J Isaksson
- Department of Bioorganic Chemistry, Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Edfeldt NBF, Harwood EA, Sigurdsson ST, Hopkins PB, Reid BR. Sequence context effect on the structure of nitrous acid induced DNA interstrand cross-links. Nucleic Acids Res 2004; 32:2795-801. [PMID: 15155848 PMCID: PMC419608 DOI: 10.1093/nar/gkh607] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the preceding paper in this journal, we described the solution structure of the nitrous acid cross-linked dodecamer duplex [d(GCATCCGGATGC)]2 (the cross-linked guanines are underlined). The structure revealed that the cross-linked guanines form a nearly planar covalently linked 'G:G base pair', with the complementary partner cytidines flipped out of the helix. Here we explore the flanking sequence context effect on the structure of nitrous acid cross-links in [d(CG)]2 and the factors allowing the extrahelical cytidines to adopt such fixed positions in the minor groove. We have used NMR spectroscopy to determine the solution structure of a second cross-linked dodecamer duplex, [d(CGCTACGTAGCG)]2, which shows that the identity of the flanking base pairs significantly alters the stacking patterns and phosphate backbone conformations. The cross-linked guanines are now stacked well on adenines preceding the extrahelical cytidines, illustrating the importance of purine- purine base stacking. Observation of an imino proton resonance at 15.6 p.p.m. provides evidence for hydrogen bonding between the two cross-linked guanines. Preliminary structural studies on the cross-linked duplex [d(CGCGACGTCGCG)]2 show that the extrahelical cytidines are very mobile in this sequence context. We suggest that favorable van der Waals interactions between the cytidine and the adenine 2 bp away from the cross-link localize the cytidines in the previous cross-linked structures.
Collapse
|
17
|
Edfeldt NBF, Harwood EA, Sigurdsson ST, Hopkins PB, Reid BR. Solution structure of a nitrous acid induced DNA interstrand cross-link. Nucleic Acids Res 2004; 32:2785-94. [PMID: 15155847 PMCID: PMC419607 DOI: 10.1093/nar/gkh606] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nitrous acid is a mutagenic agent. It can induce interstrand cross-links in duplex DNA, preferentially at d(CpG) steps: two guanines on opposite strands are linked via a single shared exocyclic imino group. Recent synthetic advances have led to the production of large quantities of such structurally homogenous cross-linked duplex DNA. Here we present the high resolution solution structure of the cross-linked dodecamer [d(GCATCCGGATGC)]2 (the cross-linked guanines are underlined), determined by 2D NMR spectroscopy, distance geometry, restrained molecular dynamics and iterative NOE refinement. The cross-linked guanines form a nearly planar covalently linked 'G:G base pair' with only minor propeller twisting, while the cytidine bases of their normal base pairing partners have been flipped out of the helix and adopt well defined extrahelical positions in the minor groove. On the 5'-side of the cross-link, the minor groove is widened to accommodate these extrahelical bases, and the major groove becomes quite narrow at the cross-link. The cross-linked 'G:G base pair' is well stacked on the spatially adjacent C:G base pairs, particularly on the 3'-side guanines. In addition to providing the first structure of a nitrous acid cross-link in DNA, these studies could be of major importance to the understanding of the mechanisms of nitrous acid cross-linking and mutagenicity, as well as the mechanisms responsible for its repair in intracellular environments. It is also the shortest DNA cross-link structure to be described.
Collapse
|
18
|
Dolinnaya NG, Fresco JR. Conformational polymorphism of d(A-G)n and related oligonucleotide sequences. ACTA ACUST UNITED AC 2004; 75:321-47. [PMID: 14604016 DOI: 10.1016/s0079-6603(03)75009-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Nina G Dolinnaya
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
19
|
Chen FM, Sha F, Chin KH, Chou SH. The nature of actinomycin D binding to d(AACCAXYG) sequence motifs. Nucleic Acids Res 2004; 32:271-7. [PMID: 14715925 PMCID: PMC373288 DOI: 10.1093/nar/gkh178] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Earlier studies by others had indicated that actinomycin D (ACTD) binds well to d(AACCATAG) and the end sequence TAG-3' is essential for its strong binding. In an effort to verify these assertions and to uncover other possible strong ACTD binding sequences as well as to elucidate the nature of their binding, systematic studies have been carried out with oligomers of d(AACCAXYG) sequence motifs, where X and Y can be any DNA base. The results indicate that in addition to TAG-3', oligomers ending with XAG-3' and XCG-3' all provide binding constants > or =1 x 10(7) M(-1) and even sequences ending with XTG-3' and XGG-3' exhibit binding affinities in the range 1-8 x 10(6) M(-1). The nature of the strong ACTD affinity of the sequences d(A1A2C3C4A5X6Y7G8) was delineated via comparative binding studies of d(AACCAAAG), d(AGCCAAAG) and their base substituted derivatives. Two binding modes are proposed to coexist, with the major component consisting of the 3'-terminus G base folding back to base pair with C4 and the ACTD inserting at A2C3C4 by looping out the C3 while both faces of the chromophore are stacked by A and G bases, respectively. The minor mode is for the G to base pair with C3 and to have the same A/chromophore/G stacking but without a looped out base. These assertions are supported by induced circular dichroic and fluorescence spectral measurements.
Collapse
Affiliation(s)
- Fu-Ming Chen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209-1561, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
Stable DNA loop structures closed by a novel G.C base-pair have been determined for the single-residue d(GXC) loops (X=A, T, G or C) in low-salt solution by high-resolution nuclear magnetic resonance (NMR) techniques. The closing G.C base-pair in these loops is not of the canonical Watson-Crick type, but adopts instead a unique sheared-type (trans Watson-Crick/sugar-edge) pairing, like those occurring in the sheared mismatched G.A or A.C base-pair, to draw the two opposite strands together. The cytidine residue in the closing base-pair is transformed into the rare syn domain to form two H-bonds with the guanine base and to prevent the steric clash between the G 2NH(2) and the C H-5 protons. Besides, the sugar pucker of the syn cytidine is still located in the regular C2'-endo domain, unlike the C3'-endo domain adopted for the pyrimidines of the out-of-alternation left-handed Z-DNA structure. The facile formation of the compact d(GXC) loops closed by a unique sheared-type G(anti).C(syn) base-pair demonstrates the great potential of the single-stranded d(GXC) triplet repeats to fold into stable hairpins.
Collapse
Affiliation(s)
- Ko-Hsin Chin
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, ROC
| | | |
Collapse
|
21
|
Abstract
Single-stranded DNA or double-stranded DNA has the potential to adopt a wide variety of unusual duplex and hairpin motifs in the presence (trans) or absence (cis) of ligands. Several principles for the formation of those unusual structures have been established through the observation of a number of recurring structural motifs associated with different sequences. These include: (i) internal loops of consecutive mismatches can occur in a B-DNA duplex when sheared base pairs are adjacent to each other to confer extensive cross- and intra-strand base stacking; (ii) interdigitated (zipper-like) duplex structures form instead when sheared G*A base pairs are separated by one or two pairs of purine*purine mismatches; (iii) stacking is not restricted to base, deoxyribose also exhibits the potential to do so; (iv) canonical G*C or A.T base pairs are flexible enough to exhibit considerable changes from the regular H-bonded conformation. The paired bases become stacked when bracketed by sheared G.A base pairs, or become extruded out and perpendicular to their neighboring bases in the presence of interacting drugs; (v) the purine-rich and pyrimidine-rich loop structures are notably different in nature. The purine-rich loops form compact triloop structures closed by a sheared G*A, A*A, A*C or sheared-like G(anti)*C(syn) base pair that is stacked by a single residue. On the other hand, the pyrimidine-rich loops with a thymidine in the first position exhibit no base pairing but are characterized by the folding of the thymidine residue into the minor groove to form a compact loop structure. Identification of such diverse duplex or hairpin motifs greatly enlarges the repertoire for unusual DNA structural formation.
Collapse
Affiliation(s)
- Shan-Ho Chou
- Department of Life Science, National Central University, Jung-Li, 320, Taiwan, ROC
| | | | | |
Collapse
|
22
|
Chin KH, Chen FM, Chou SH. Solution structure of the ActD-5'-CCGTT3GTGG-3' complex: drug interaction with tandem G.T mismatches and hairpin loop backbone. Nucleic Acids Res 2003; 31:2622-9. [PMID: 12736312 PMCID: PMC156035 DOI: 10.1093/nar/gkg353] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Binding of actinomycin D (ActD) to the seemingly single-stranded DNA (ssDNA) oligomer 5'-CCGTT3 GTGG-3' has been studied in solution using high-resolution nuclear magnetic resonance (NMR) techniques. A strong binding constant (8 x 10(6) M(-1)) and high quality NMR spectra have allowed us to determine the initial DNA structure using distance geometry as well as the final ActD-5'-CCGTT3 GTGG-3' complex structure using constrained molecular dynamics calculations. The DNA oligomer 5'-CCGTT3GTGG-3' in the complex forms a hairpin structure with tandem G.T mismatches at the stem region next to a loop of three stacked thymine bases pointing toward the major groove. Bipartite T2O-GH1 and T2O-G2NH2 hydrogen bonds were detected for the G.T mismatches that further stabilize this unusual DNA hairpin. The phenoxazone chromophore of ActD intercalates nicely between the tandem G.T mismatches in essentially one major orientation. Additional hydrophobic interactions between the ActD quinoid amino acid residues with the loop T5-T6-T7 backbone protons were also observed. The hydrophobic G-phenoxazone-G interaction in the ActD-5'-CCGTT3GTGG-3' complex is more robust than that of the classical ActD- 5'-CCGCT3GCGG-3' complex, consistent with the roughly 2-fold stronger binding of ActD to the 5'-CCGTT3GTGG-3' sequence than to its 5'-CCG CT3GCGG-3' counterpart. Stabilization by ActD of a hairpin containing non-canonical stem base pairs further strengthens the notion that ActD or other related compounds may serve as a sequence- specific ssDNA-binding agent that inhibits human immunodeficiency virus (HIV) and other retroviruses replicating through ssDNA intermediates.
Collapse
Affiliation(s)
- Ko-Hsin Chin
- Institute of Biochemistry, National Chung-Hsing University, Taichung, 40227, Taiwan
| | | | | |
Collapse
|
23
|
Santini GPH, Pakleza C, Cognet JAH. DNA tri- and tetra-loops and RNA tetra-loops hairpins fold as elastic biopolymer chains in agreement with PDB coordinates. Nucleic Acids Res 2003; 31:1086-96. [PMID: 12560507 PMCID: PMC149216 DOI: 10.1093/nar/gkg196] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Revised: 11/07/2002] [Accepted: 11/23/2002] [Indexed: 01/30/2023] Open
Abstract
The biopolymer chain elasticity (BCE) approach and the new molecular modelling methodology presented previously are used to predict the tri- dimensional backbones of DNA and RNA hairpin loops. The structures of eight remarkably stable DNA or RNA hairpin molecules closed by a mispair, recently determined in solution by NMR and deposited in the PDB, are shown to verify the predicted trajectories by an analysis automated for large numbers of PDB conformations. They encompass: one DNA tetraloop, -GTTA-; three DNA triloops, -AAA- or -GCA-; and four RNA tetraloops, -UUCG-. Folding generates no distortions and bond lengths and bond angles of main atoms of the sugar-phosphate backbone are well restored upon energy refinement. Three different methods (superpositions, distance of main chain atoms to the elastic line and RMSd) are used to show a very good agreement between the trajectories of sugar-phosphate backbones and between entire molecules of theoretical models and of PDB conformations. The geometry of end conditions imposed by the stem is sufficient to dictate the different characteristic DNA or RNA folding shapes. The reduced angular space, consisting of the new parameter, angle Omega, together with the chi angle offers a simple, coherent and quantitative description of hairpin loops.
Collapse
Affiliation(s)
- Guillaume P H Santini
- Laboratoire de Physico-chimie Biomoléculaire et Cellulaire, UMR 7033 CNRS, T22-12, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France
| | | | | |
Collapse
|
24
|
Gollmick FA, Lorenz M, Dornberger U, von Langen J, Diekmann S, Fritzsche H. Solution structure of dAATAA and dAAUAA DNA bulges. Nucleic Acids Res 2002; 30:2669-77. [PMID: 12060684 PMCID: PMC117287 DOI: 10.1093/nar/gkf375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The NMR structure analysis is described for two DNA molecules of identical stem sequences with a five base loop containing a pyrimidine, thymin or uracil, in between purines. These five unpaired nucleotides are bulged out and are known to induce a kink in the duplex structure. The dAATAA bulge DNA is kinked between the third and the fourth nucleotide. This contrasts with the previously studied dAAAAA bulge DNA where we found a kink between the fourth and fifth nucleotide. The total kinking angle is approximately 104 degrees for the dAATAA bulge. The findings were supported by electrophoretic data and fluorescence resonance energy transfer measurements of a similar DNA molecule end-labeled by suitable fluorescent dyes. For the dAAUAA bulge the NMR data result in a similar structure as reported for the dAATAA bulge with a kinking angle of approximately 87 degrees. The results are discussed in comparison with a rAAUAA RNA bulge found in a group I intron. Generally, the sequence-dependent structure of bulges is important to understand the role of DNA bulges in protein recognition.
Collapse
Affiliation(s)
- Friedrich A Gollmick
- Institut für Molekularbiologie, Friedrich-Schiller-Universität, Winzerlaer Strasse 10, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Pasternack LB, Lin SB, Chin TM, Lin WC, Huang DH, Kan LS. Proton NMR studies of 5'-d-(TC)(3) (CT)(3) (AG)(3)-3'--a paperclip triplex: the structural relevance of turns. Biophys J 2002; 82:3170-80. [PMID: 12023241 PMCID: PMC1302106 DOI: 10.1016/s0006-3495(02)75659-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In this study, we present the results of structural analysis of an 18-mer DNA 5'-T(1)C(2)T(3)C(4)T(5)C(6)C(7)T(8)C(9)T(10)C(11)T(12)A(13)G(14)A(15)G(16)A(17)G(18)-3' by proton nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The NMR data are consistent with characteristics for triple helical structures of DNA: downfield shifting of resonance signals, typical for the H3(+) resonances of Hoogsteen-paired cytosines; pH dependence of these H3(+) resonance; and observed nuclear Overhauser effects consistent with Hoogsteen and Watson-Crick basepairing. A three-dimensional model for the triplex is developed based on data obtained from two-dimensional NMR studies and molecular modeling. We find that this DNA forms an intramolecular "paperclip" pyrimidine-purine-pyrimidine triple helix. The central triads resemble typical Hoogsteen and Watson-Crick basepairing. The triads at each end region can be viewed as hairpin turns stabilized by a third base. One of these turns is comprised of a hairpin turn in the Watson-Crick basepairing portion of the 18-mer with the third base coming from the Hoogsteen pairing strand. The other turn is comprised of two bases from the continuous pyrimidine portion of the 18-mer, stabilized by a hydrogen-bond from a purine. This "triad" has well defined structure as indicated by the number of nuclear Overhauser effects and is shown to play a critical role in stabilizing triplex formation of the internal triads.
Collapse
Affiliation(s)
- Laura B Pasternack
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
26
|
Chou SH, Chin KH, Chen FM. Looped out and perpendicular: deformation of Watson-Crick base pair associated with actinomycin D binding. Proc Natl Acad Sci U S A 2002; 99:6625-30. [PMID: 12011426 PMCID: PMC124453 DOI: 10.1073/pnas.102580399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many anticancer drugs interact directly with DNA to exert their biological functions. To date, all noncovalent, intercalating drugs interact with DNA exclusively by inserting their chromophores into base steps to form elongated and unwound duplex structures without disrupting the flanking base pairs. By using actinomycin D (ActD)-5'-GXC/CYG-5' complexes as examples, we have found a rather unusual interaction mode for the intercalated drug; the central Watson-Crick X/Y base pairs are looped out and displaced by the ActD chromophore. The looped-out bases are not disordered but interact perpendicularly with the base/chromophore and form specific H bonds with DNA. Such a complex structure provides intriguing insights into how ligand interacts with DNA and enlarges the repertoires for sequence-specific DNA recognition.
Collapse
Affiliation(s)
- Shan-Ho Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan 40227, Republic of China.
| | | | | |
Collapse
|
27
|
Chou SH, Chin KH. Quadruple intercalated G-6 stack: a possible motif in the fold-back structure of the Drosophila centromeric dodeca-satellite? J Mol Biol 2001; 314:139-52. [PMID: 11724539 DOI: 10.1006/jmbi.2001.5131] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purine-rich strand d(GTACGGGACCGA)(n) of the Drosophila centromeric dodeca-satellite sequence is highly conserved and was found to form stable fold-back structures in which the homopurine 5'-GGGA-3' sequence was determined to play a crucial role. Here, we report the stable formation of the d(GGGA)(2) motif in the stem of a DNA hairpin closed by a single-residue d(ACC) loop. Similar to the zipper-like d(GGA)(2) motif observed in the human centromeric (TGGAA)(n) sequence, the central four guanosine bases in the d(GGGA)(2) motif do not pair, but interdigitate to form an elongated zipper-like quadruple-intercalated G-6 stack bracketed by sheared G.A base-pairs. Comparison between the current d(GGGA)(2) structure and the published crystal d(GAAA)(2) structure implies that the alignment of the unpaired purine bases plays an important role in determining the minor groove width of the purine-rich d(GPuPuA)(2) motif. Similarity between the zipper-like motifs possibly present in the Drosophila centromeric dodeca-satellite sequence and in the human centromeric (TGGAA)(n) sequence led us to propose that these special zipper-like motifs may constitute common cores in organizing eukaryotic centromeres.
Collapse
Affiliation(s)
- S H Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan.
| | | |
Collapse
|
28
|
Zhang N, Gorin A, Majumdar A, Kettani A, Chernichenko N, Skripkin E, Patel DJ. Dimeric DNA quadruplex containing major groove-aligned A-T-A-T and G-C-G-C tetrads stabilized by inter-subunit Watson-Crick A-T and G-C pairs. J Mol Biol 2001; 312:1073-88. [PMID: 11580251 DOI: 10.1006/jmbi.2001.5002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report on an NMR study of unlabeled and uniformly 13C,15N-labeled d(GAGCAGGT) sequence in 1 M NaCl solution, conditions under which it forms a head-to-head dimeric quadruplex containing sequentially stacked G-C-G-C, G-G-G-G and A-T-A-T tetrads. We have identified, for the first time, a slipped A-T-A-T tetrad alignment, involving recognition of Watson-Crick A-T pairs along the major groove edges of opposing adenine residues. Strikingly, both Watson-Crick G-C and A-T pairings within the direct G-C-G-C and slipped A-T-A-T tetrads, respectively, occur between rather than within hairpin subunits of the dimeric d(GAGCAGGT) quadruplex. The hairpin turns in the head-to-head dimeric quadruplex involve single adenine residues and adds to our knowledge of chain reversal involving edgewise loops in DNA quadruplexes. Our structural studies, together with those from other laboratories, definitively establish that DNA quadruplex formation is not restricted to G(n) repeat sequences, with their characteristic stacked uniform G-G-G-G tetrad architectures. Rather, the quadruplex fold is a more versatile and robust architecture, accessible to a range of mixed sequences, with the potential to facilitate G-C-G-C and A-T-A-T tetrad through major and minor groove alignment, in addition to G-G-G-G tetrad formation. The definitive experimental identification of such major groove-aligned mixed A-T-A-T and G-C-G-C tetrads within a quadruplex scaffold, has important implications for the potential alignment of duplex segments during homologous recombination.
Collapse
Affiliation(s)
- N Zhang
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Metelev VG, Borisova OA, Volkov EM, Oretskaya TS, Dolinnaya NG. New chemically reactive dsDNAs containing single internucleotide monophosphoryldithio links: reactivity of 5'-mercapto-oligodeoxyribonucleotides. Nucleic Acids Res 2001; 29:4062-9. [PMID: 11574689 PMCID: PMC60246 DOI: 10.1093/nar/29.19.4062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Novel modified DNA duplexes with single bridging 5'-SS-monophosphoryldithio links [-OP(=O)-O(-)-SS-CH(2)-] were synthesized by autoligation of an oligonucleotide 3'-phosphorothioate and a 5'-mercapto-oligonucleotide previously converted to a 2-pyridyldisulfide adduct. Monophosphoryldisulfide link formation is not a stringent template-dependent process under the conditions used and does not require strong binding of the reactive oligomers to the complementary strand. The modified internucleotide linkage, resembling the natural phosphodiester bond in size and charge density, is stable in water, easily undergoes thiol-disulfide exchange and can be specifically cleaved by the action of reducing reagents. DNA molecules containing an internal -OP(=O)-O(-)-SS-CH(2)- bridge are stable to spontaneous exchange of disulfide-linked fragments (recombination) even in the single-stranded state and are promising reagents for autocrosslinking with cysteine-containing proteins. The chemical and supramolecular properties of oligonucleotides with 5'-sulfhydryl groups were further characterized. We have shown that under the conditions of chemical ligation the 5'-SH group of the oligonucleotide has a higher reactivity towards N-hydroxybenzotriazole-activated phosphate in an adjacent oligonucleotide than does the OH group. This autoligation, unlike disulfide bond formation, proceeds only in the presence of template oligonucleotide, necessary to provide the activated phosphate in close proximity to the SH-, OH- or phosphate function.
Collapse
Affiliation(s)
- V G Metelev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119899, Russia
| | | | | | | | | |
Collapse
|
30
|
Abstract
A series of DNA heptadecamers containing the DNA analogues of RNA E-like 5'-d(GXA)/(AYG)-5' motifs (X/Y is complementary T/A, A/T, C/G, or G/C pair) were studied using nuclear magnetic resonance (NMR) methodology and distance geometry (DG)/molecular dynamics (MD) approaches. Such oligomers reveal excellent resolution in NMR spectra and exhibit many unusual nuclear Overhauser effects (NOEs) that allow for good characterization of an unusual zipper-like conformation with zipper-like Watson-Crick base-pairs; the potential canonical X.Y H-bonding is not present, and the central X/Y pairs are transformed instead into inter-strand stacks that are bracketed by sheared G.A base-pairs. Such phenomenal structural change is brought about mainly through two backbone torsional angle adjustments, i.e. delta from C2'-endo to C3'-endo for the sugar puckers of unpaired residues and gamma from gauche(+) to trans for the following 3'-adenosine residues. Such motifs are analogous to the previously studied (GGA)(2) motif presumably present in the human centromeric (TGGAA)(n) tandem repeat sequence. The novel zipper-like motifs are only 4-7 deg. C less stable than the (GGA)(2) motif, suggesting that inter-strand base stacking plays an important role in stabilizing unusual nucleic acid structures. The discovery that canonical Watson-Crick G.C or A.T hydrogen-bonded pairs can be transformed into stacking pairs greatly increases the repertoire for unusual nucleic acid structural motifs.
Collapse
Affiliation(s)
- S H Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung 40227, Taiwan.
| | | |
Collapse
|
31
|
Isaksson J, Zamaratski E, Maltseva TV, Agback P, Kumar A, Chattopadhyaya J. The first example of a Hoogsteen base-paired DNA duplex in dynamic equilibrium with a Watson-Crick base-paired duplex--a structural (NMR), kinetic and thermodynamic study. J Biomol Struct Dyn 2001; 18:783-806. [PMID: 11444368 DOI: 10.1080/07391102.2001.10506707] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A single-point substitution of the O4' oxygen by a CH2 group at the sugar residue of A6 (i.e. 2'-deoxyaristeromycin moiety) in a self-complementary DNA duplex, 5'-d(C1G2C3G4A5A6T7T8C9G10C11G12)2(-3), has been shown to steer the fully Watson-Crick basepaired DNA duplex (1A), akin to the native counterpart, to a doubly A6:T7 Hoogsteen basepaired (1B) B-type DNA duplex, resulting in a dynamic equilibrium of (1A)<==>(1B): Keq = k1/k(-1) = 0.56+/-0.08. The dynamic conversion of the fully Watson-Crick basepaired (1A) to the partly Hoogsteen basepaired (1B) structure is marginally kinetically and thermodynamically disfavoured [k1 (298K) = 3.9 0.8 sec(-1); deltaHdegrees++ = 164+/-14 kJ/mol; -TdeltaS degrees++ (298K) = -92 kJ/mol giving a deltaG degrees++ 298 of 72 kJ/mol. Ea (k1) = 167 14 kJ/mol] compared to the reverse conversion of the Hoogsteen (1B) to the Watson-Crick (1A) structure [k-1 (298K) = 7.0 0.6 sec-1, deltaH degrees++ = 153 13 kJ/mol; -TdeltaSdegrees++ (298K) = -82 kJ/mol giving a deltaGdegrees++(298) of 71 kJ/mol. Ea (k-1) = 155 13 kJ/mol]. Acomparison of deltaGdegrees++(298) of the forward (k1) and backward (k-1) conversions, (1A)<==>(1B), shows that there is ca 1 kJ/mol preference for the Watson-Crick (1A) over the double Hoogsteen basepaired (1B) DNA duplex, thus giving an equilibrium ratio of almost 2:1 in favour of the fully Watson-Crick basepaired duplex. The chemical environments of the two interconverting DNA duplexes are very different as evident from their widely separated sets of chemical shifts connected by temperature-dependent exchange peaks in the NOESY and ROESY spectra. The fully Watson-Crick basepaired structure (1A) is based on a total of 127 intra, 97 inter and 17 cross-strand distance constraints per strand, whereas the double A6:T7 Hoogsteen basepaired (1B) structure is based on 114 intra, 92 inter and 15 cross-strand distance constraints, giving an average of 22 and 20 NOE distance constraints per residue and strand, respectively. In addition, 55 NMR-derived backbone dihedral constraints per strand were used for both structures. The main effect of the Hoogsteen basepairs in (1B) on the overall structure is a narrowing of the minor groove and a corresponding widening of the major groove. The Hoogsteen basepairing at the central A6:T7 basepairs in (1B) has enforced a syn conformation on the glycosyl torsion of the 2'-deoxyaristeromycin moiety, A6, as a result of substitution of the endocyclic 4'-oxygen in the natural sugar with a methylene group in A6. A comparison of the Watson-Crick basepaired duplex (1A) to the Hoogsteen basepaired duplex (1B) shows that only a few changes, mainly in alpha, sigma and gamma torsions, in the sugar-phosphate backbone seem to be necessary to accommodate the Hoogsteen basepair.
Collapse
Affiliation(s)
- J Isaksson
- Department of Bioorganic Chemistry, University of Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Zacharias M. Conformational analysis of DNA-trinucleotide-hairpin-loop structures using a continuum solvent model. Biophys J 2001; 80:2350-63. [PMID: 11325735 PMCID: PMC1301424 DOI: 10.1016/s0006-3495(01)76205-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of trinucleotide sequences in DNA can form compact and stable hairpin loops that may have significance for DNA replication and transcription. The conformational analysis of these motifs is important for an understanding of the function and design of nucleic acid structures. Extensive conformational searches have been performed on three experimentally known trinucleotide hairpin loops (AGC, AAA, and GCA) closed by a four-base-pair stem. An implicit solvation model based on the generalized Born method has been employed during energy minimization and conformational search. In addition, energy-minimized conformers were evaluated using a finite-difference Poisson-Boltzmann approach. For all three loop sequences, conformations close to experiment were found as lowest-energy structures among several thousand alternative energy minima. The inclusion of reaction-field contributions was found to be important for a realistic conformer ranking. Most generated hairpin loop structures within approximately 5 kcal x mol(-1) of the lowest-energy structure have a similar topology. Structures within approximately 10 kcal x mol(-1) could be classified into about five structural families representing distinct arrangements of loop nucleotides. Although a large number of backbone torsion angle combinations were compatible with each structural class, some specific patterns could be identified. Harmonic mode analysis was used to account for differences in conformational flexibility of low-energy sub-states. Class-specific differences in the pattern of atomic fluctuations along the sequence were observed; however, inclusion of conformational entropy contributions did not change ranking of structural classes. For an additional loop sequence (AAG) with no available experimental structure, the approach suggests a lowest-energy loop topology overall similar to the other three loop sequences but closed by a different non-canonical base-pairing scheme.
Collapse
Affiliation(s)
- M Zacharias
- AG Theoretische Biophysik, Institut für Molekulare Biotechnologie, 07745 Jena, Germany.
| |
Collapse
|
33
|
Griffoni C, Laktionov PP, Rykova EY, Spisni E, Riccio M, Santi S, Bryksin A, Volodko N, Kraft R, Vlassov V, Tomasi V. The Rossmann fold of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a nuclear docking site for antisense oligonucleotides containing a TAAAT motif. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1530:32-46. [PMID: 11341957 DOI: 10.1016/s1388-1981(00)00166-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The subcellular localisation of oligodeoxynucleotides (ODN) is a major limitation for their use against nuclear targets. In this study we demonstrate that an antisense ODN directed against cytosolic phospholipase A(2) (cPLA2) mRNA is efficiently taken up and accumulates in the nuclei of endothelial cells (HUVEC), human monocytes and HeLa cells. Gel shift experiments and incubation of cells with oligonucleotide derivatives show that the anti-cPLA2 oligo binds a 37 kDa protein in nuclear extracts. The TAAAT sequence was identified as the major binding motif for the nuclear protein in competition experiments with mutated ODNs. Modification of the AAA triplet resulted in an ODN which failed to localise in the nucleus. Moreover, inserting a TAAAT motif into an ODN localising in the cytosol did not modify its localisation. The 37 kDa protein was purified and identified after peptide sequencing as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). It was shown by confocal microscopy that GAPDH co-localises with anti-cPLA2 ODN in the nucleus and commercial GAPDH effectively binds the oligo. Competition experiments with increasing concentration of NAD(+) co-factor indicate that the GAPDH Rossmann fold is a docking site for antisense oligonucleotides containing a TAAAT motif.
Collapse
Affiliation(s)
- C Griffoni
- Department of Experimental Biology, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Metzler DE, Metzler CM, Sauke DJ. The Nucleic Acids. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Chemical ligation and recombination of DNA fragments through formation (exchange) of disulfide bonds located in the sugar-phosphate backbone. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2000. [DOI: 10.1007/bf02759167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Kettani A, Gorin A, Majumdar A, Hermann T, Skripkin E, Zhao H, Jones R, Patel DJ. A dimeric DNA interface stabilized by stacked A.(G.G.G.G).A hexads and coordinated monovalent cations. J Mol Biol 2000; 297:627-44. [PMID: 10731417 DOI: 10.1006/jmbi.2000.3524] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report on the identification of an A.(G.G.G.G).A hexad pairing alignment which involves recognition of the exposed minor groove of opposing guanines within a G.G.G.G tetrad through sheared G.A mismatch formation. This unexpected hexad pairing alignment was identified for the d(G-G-A-G-G-A-G) sequence in 150 mM Na(+) (or K(+)) cation solution where four symmetry-related strands align into a novel dimeric motif. Each symmetric half of the dimeric "hexad" motif is composed of two strands and contains a stacked array of an A.(G.G.G.G).A hexad, a G.G.G.G tetrad, and an A.A mismatch. Each strand in the hexad motif contains two successive turns, that together define an S-shaped double chain reversal fold, which connects the two G-G steps aligned parallel to each other along adjacent edges of the quadruplex. Our studies also establish a novel structural transition for the d(G-G-A-G-G-A-N) sequence, N=T and G, from an "arrowhead" motif stabilized through cross-strand stacking and mismatch formation in 10 mM Na(+) solution (reported previously), to a dimeric hexad motif stabilized by extensive inter-subunit stacking of symmetry-related A.(G.G.G.G).A hexads in 150 mM Na(+) solution. Potential monovalent cation binding sites within the arrowhead and hexad motifs have been probed by a combination of Brownian dynamics and unconstrained molecular dynamics calculations. We could not identify stable monovalent cation-binding sites in the low salt arrowhead motif. By contrast, five electronegative pockets were identified in the moderate salt dimeric hexad motif. Three of these are involved in cation binding sites sandwiched between G.G.G. G tetrad planes and two others, are involved in water-mediated cation binding sites spanning the unoccupied grooves associated with the adjacent stacked A.(G.G.G.G).A hexads. Our demonstration of A.(G. G.G.G).A hexad formation opens opportunities for the design of adenine-rich G-quadruplex-interacting oligomers that could potentially target base edges of stacked G.G.G.G tetrads. Such an approach could complement current efforts to design groove-binding and intercalating ligands that target G-quadruplexes in attempts designed to block the activity of the enzyme telomerase.
Collapse
Affiliation(s)
- A Kettani
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Aich P, Kraatz HB, Lee JS. M-DNA: pH Stability, Nuclease Resistance and Signal Transmission. J Biomol Struct Dyn 2000; 17 Suppl 1:297-301. [DOI: 10.1080/07391102.2000.10506635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
El Amri C, Mauffret O, Monnot M, Tevanian G, Lescot E, Porumb H, Fermandjian S. A DNA hairpin with a single residue loop closed by a strongly distorted Watson-Crick G x C base-pair. J Mol Biol 1999; 294:427-42. [PMID: 10610769 DOI: 10.1006/jmbi.1999.3270] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous NMR and modeling studies have shown that the single-stranded 19mer oligonucleotides d(AGCTTATC-ATC-GATAA GCT) -ATC- and d(AGCTTATC-GAT-GATAAGCT) -GAT- encompassing the strongest topoisomerase II cleavage site in pBR322 DNA could form stable hairpin structures. A new sheared base-pair, the pyrimidine-purine C x A, was found to close the single base -ATC- loop, while -GAT- displayed a flexible loop of three/five residues with no stabilizing interactions. Now we report a structural study on -GAC-, an analog of -GAT-, derived through the substitution of the loop residue T by C. The results obtained from NMR, non-denaturing PAGE, UV-melting, circular dichroism experiments and restrained molecular dynamics indicate that -GAC- adopts a hairpin structure folded through a single residue loop. In the -GAC- hairpin the direction of the G9 sugar is reversed relative to the C8 sugar, thus pushing the backbone of the loop into the major groove. The G9 x C11 base-pair closing the loop is thus neither a sheared base-pair nor a regular Watson-Crick one. Although G9 and C11 are paired through hydrogen bonds of Watson-Crick type, the base-pair is not planar but rather adopts a wedge-shaped geometry with the two bases stacked on top of each other in the minor groove. The distortion decreases the sugar C1'-C1' distance between the paired G9 and C11, to 8 A versus 11 A in the standard B-DNA. The A10 residue at the center of the loop interacts with the G9 x C11 base-pair, and seems to contribute to the extra thermal stability displayed by -GAC- compared to -GAT-. Test calculations allowed us to identify the experimental NOEs critical for inducing the distorted G.C Watson-Crick base-pair. The preference of -GAC- for a hairpin structure rather than a duplex is confirmed by the diffusion constant values obtained from pulse-field gradient NMR experiments. All together, the results illustrate the high degree of plasticity of single-stranded DNAs which can accommodate a variety of turn-loops to fold up on themselves.
Collapse
Affiliation(s)
- C El Amri
- Département de Biologie et Pharmacologie Structurales UMR 8532 CNRS, PR2, Institut Gustave-Roussy, 39 rue Camille-Desmoulins, Villejuif Cedex, 94805, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Vu HM, Pepe A, Mayol L, Kearns DR. NMR-derived solution structure of a 17mer hydroxymethyluracil-containing DNA. Nucleic Acids Res 1999; 27:4143-50. [PMID: 10518604 PMCID: PMC148687 DOI: 10.1093/nar/27.21.4143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Incorporation of 5-(hydroxymethyl)-2'-deoxyuridine into DNA in place of thymine by SPO1, a Bacillus subtilis bacteriophage, allows the viral DNA to bind selectively to transcription factor 1. We have synthesized a TF1-binding site: d(5'-ACCHACHCHHHGHAGGT-3')-d(5'-ACCHACAAAGAGHAGGT-3') and studied this molecule using NMR spectroscopy. The chemical shifts of exchangeable and non-exchangeable protons were sequentially assigned. Absence of corresponding NOEs in the imino-imino region suggested that the end base pairs did not form Watson-Crick hydrogen bond. Restrained molecular dynamics calculation yielded a family of B-DNA structures whose r.m.s.d. was 0.66 A (all atoms) for the internal 15 bp. The helical twist was 38.5 degrees per step. The base pairs were situated directly on the helix axis (X-displacement = -0.2 A). All sugars exhibited C2'-endo puckering with P = 167.3 degrees and upsilon(max)= 38.2 degrees. The OH groups of all hmU bases resided on the 3' side of the base plane and may affect the base orientation relative to the sugar plane as the average chi value for all hmU was 4 degrees more positive than that of other nucleosides (258 degrees versus 254 degrees ). Positive roll angles (rho) and small flanking twists (omega) at hmU suggested that the two hmU-A base pair steps open toward the minor grooves.
Collapse
Affiliation(s)
- H M Vu
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
40
|
Chou SH, Tseng YY, Chu BY. Stable formation of a pyrimidine-rich loop hairpin in a cruciform promoter. J Mol Biol 1999; 292:309-20. [PMID: 10493877 DOI: 10.1006/jmbi.1999.3066] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have determined the solution structure of a TCC-loop hairpin in the cruciform promoter for the bacteriophage N4 virion RNA polymerase (N4 vRNAP). This hairpin and its complementary GGA-loop hairpin are extruded at physiological superhelical density and are required for vRNAP recognition. Contrary to its complementary GGA-loop, the three pyrimidines in the TCC-loop are all unpaired. However, with the help of two juxtaposed stem Watson-Crick G.C base-pairs, each nucleotide in the loop employs a special method to stabilize the hairpin structure. The resulting structures display extensive loop base-stacking rearrangement yet minor backbone distortion, which is largely accomplished through some loop zeta and alpha torsional angle changes. Consistent with the structural studies, UV melting of the GAAGCTCCGCTTC hairpin revealed a higher melting temperature (66 degrees C) than that of the GAACGTCCCGTTC hairpin (58 degrees C) with reversed stem G.C base-pairs, indicating significant contribution from the extra three loop-stem H-bonds. Thermodynamic parameters DeltaG degrees 25of the GAAGCTCCGCTTC hairpin and its complementary GAAGCGGAGCTTC hairpin are -4.1 and -4. 3 kcal/mol respectively, indicating approximately equal contribution of each hairpin to the cruciform formation of the N4 virion RNA polymerase promoter. No significant loop dynamics in the microsecond to millisecond NMR time-scale was observed, and the abundant well-defined exchangeable and non-exchangeable proton NOEs allowed us to efficiently determine a well-converged family for the final structures of the TCC-loop hairpin.
Collapse
Affiliation(s)
- S H Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung, 40227, Taiwan.
| | | | | |
Collapse
|
41
|
Tzou WS, Hwang MJ. Modeling helix-turn-helix protein-induced DNA bending with knowledge-based distance restraints. Biophys J 1999; 77:1191-205. [PMID: 10465734 PMCID: PMC1300411 DOI: 10.1016/s0006-3495(99)76971-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A crucial element of many gene functions is protein-induced DNA bending. Computer-generated models of such bending have generally been derived by using a presumed bending angle for DNA. Here we describe a knowledge-based docking strategy for modeling the structure of bent DNA recognized by a major groove-inserting alpha-helix of proteins with a helix-turn-helix (HTH) motif. The method encompasses a series of molecular mechanics and dynamics simulations and incorporates two experimentally derived distance restraints: one between the recognition helix and DNA, the other between respective sites of protein and DNA involved in chemical modification-enabled nuclease scissions. During simulation, a DNA initially placed at a distance was "steered" by these restraints to dock with the binding protein and bends. Three prototype systems of dimerized HTH DNA binding were examined: the catabolite gene activator protein (CAP), the phage 434 repressor (Rep), and the factor for inversion stimulation (Fis). For CAP-DNA and Rep-DNA, the root mean square differences between model and x-ray structures in nonhydrogen atoms of the DNA core domain were 2.5 A and 1.6 A, respectively. An experimental structure of Fis-DNA is not yet available, but the predicted asymmetrical bending and the bending angle agree with results from a recent biochemical analysis.
Collapse
Affiliation(s)
- W S Tzou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | | |
Collapse
|
42
|
Abstract
Single-residue d(Pu1NPu2) (Pu1.Pu2=G.A, G.G or A.A) hairpin loops can be stably closed by sheared purine.purine pairs. These special motifs have been found in several important biological systems. We now extend these loop-closing base-pairs to a sheared purine. pyrimidine (A.C) pair at a neutral pH condition. High-resolution NMR spectroscopy, distance geometry, and molecular dynamics methods were used to study d(GTACANCGTAC) oligomers. Numerous idiosyncratic nuclear Overhauser enhancements, especially those across the A.C base-pair between C4NH2left and right arrow AH1', C4NH2left and right arrow AH2, and CH5left and right arrow AH2 proton pairs, clearly define the novel sheared nature of the closing A.C base-pair. This novel base-pair is possibly present in several biological systems and in two single-stranded DNA aptamers selected from oligonucleotide libraries.
Collapse
Affiliation(s)
- S H Chou
- Institute of Biochemistry, Department of National Chung-Hsing University, Taichung 40227, Taiwan.
| | | | | |
Collapse
|
43
|
Dolinnaya N, Metelev V, Oretskaya T, Tabatadze D, Shabarova Z. Hairpin-shaped DNA duplexes with disulfide bonds in sugar-phosphate backbone as potential DNA reagents for crosslinking with proteins. FEBS Lett 1999; 444:285-90. [PMID: 10050776 DOI: 10.1016/s0014-5793(99)00059-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Convenient approaches were described to incorporate -OP(=O)O(-)-SS-O(-)(O=)PO- bridges in hairpin-shaped DNA duplexes instead of regular phosphodiester linkages: (i) H2O2- or 2,2'-dipyridyldisulfide-mediated coupling of 3'- and 5'-thiophosphorylated oligonucleotides on complementary template and (ii) more selective template-guided autoligation of a preactivated oligonucleotide derivative with an oligomer carrying a terminal thiophosphoryl group. Dithiothreitol was found to cleave completely modified internucleotide linkage releasing starting oligonucleotides. The presence of complementary template as an intrinsic element of the molecule protects the hairpin DNA analog from spontaneous exchange of disulfide-linked oligomer fragments and makes it a good candidate for auto-crosslinking with cysteine-containing proteins.
Collapse
Affiliation(s)
- N Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, Russia.
| | | | | | | | | |
Collapse
|
44
|
Chou SH, Tseng YY. Cross-strand purine-pyrimidine stack and sheared purine.pyrimidine pairing in the human HIV-1 reverse transcriptase inhibitors. J Mol Biol 1999; 285:41-8. [PMID: 9878385 DOI: 10.1006/jmbi.1998.2318] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cross-strand homo purine-purine (G-G or A-A) stacks and sheared purine.purine pairing have been found to be important motifs in nucleic acid duplex structures. We now report novel cross-strand purine-pyrimidine (A-C) and hetero purine-purine (G-A) stacks that are established from a sheared purine.pyrimidine (A.C) pair adjacent to a sheared G.A pair in the 5'-AA/GC-3' sequence. This "internal loop" sequence is conserved in two families of single-stranded DNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. The distorted backbone of these inhibitors, resulting from the unique helical twists and kinks in the 5'-AA/GC-3' sequence, may be responsible for the increased affinities of these single-stranded DNA inhibitors as compared with other regular B-form duplex substrates. Two simple rules have been generalized to account for all reported cross-strand stacks.
Collapse
Affiliation(s)
- S H Chou
- Institute of Biochemistry, National Chung-Hsing Univesity, Taichung 40227 Taiwan.
| | | |
Collapse
|
45
|
Dornberger U, Flemming J, Fritzsche H. Structure determination and analysis of helix parameters in the DNA decamer d(CATGGCCATG)2 comparison of results from NMR and crystallography. J Mol Biol 1998; 284:1453-63. [PMID: 9878363 DOI: 10.1006/jmbi.1998.2261] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solution structure of the DNA decamer (CATGGCCATG)2 has been determined by NMR spectroscopy and restrained molecular dynamic and distance geometry calculations. The restrainted data set includes interproton distances and torsion angles for the deoxyribose sugar ring which were obtained by nuclear Overhauser enhancement intensities and quantitative simulation of cross-peaks from double quantum filtered correlation spectroscopy. The backbone torsion angles were constrained using experimental data from NOE cross-peaks, 1H-1H and 1H-31P-coupling constants. The NMR structure and the crystal structure of the DNA decamer deviates from the structure of the canonical form of B-DNA in a number of observable characteristics. Particularly, both structures display a specific pattern of stacking interaction in the central GGC base triplet. Furthermore, a specific local conformation of the TG/CA base-pair step is present in NMR and crystal structure, highlighting the unusually high flexibility of this DNA duplex part. The solution structure of the TG/CA base-pair step obtained by our high resolution NMR study is characterized by a positive roll angle, whereas in crystal this base-pair step tends to adopt remarkably high twist angles.
Collapse
Affiliation(s)
- U Dornberger
- Institut für Molekularbiologie, Friedrich-Schiller-Universität, Winzerlaer Str. 10, Jena, D-07745, Germany
| | | | | |
Collapse
|
46
|
Ippel HH, van den Elst H, van der Marel GA, van Boom JH, Altona C. Structural similarities and differences between H1- and H2-family DNA minihairpin loops: NMR studies of octameric minihairpins. Biopolymers 1998. [DOI: 10.1002/(sici)1097-0282(199811)46:6<375::aid-bip3>3.0.co;2-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
47
|
Mauffret O, Amir-Aslani A, Maroun RG, Monnot M, Lescot E, Fermandjian S. Comparative structural analysis by [1H,31P]-NMR and restrained molecular dynamics of two DNA hairpins from a strong DNA topoisomerase II cleavage site. J Mol Biol 1998; 283:643-55. [PMID: 9784373 DOI: 10.1006/jmbi.1998.2095] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural analysis of two single-stranded DNAs d(AGCTTATCATCGATAAGCT) (ATC-19) and d(AGCTTATCGATGATAAGCT) (GAT-19) was performed by NMR and restrained molecular dynamics. These oligonucleotides reproduce the 15-33 segment of phage pBR322 DNA, which contains a strong cleavage site for topoisomerase II coupled to the antitumor drugs VP-16 and ellipticine. Because of their partial palindromic nature, the two oligonucleotides ATC-19 and GAT-19 may fold back into stable hairpin structures, consisting of a stem of eight base-pairs and a loop of three residues. NMR assignments and conformational parameters were determined from combined 2D NOESY, COSY and 1H-31P spectra. Conformations of ATC-19 and GAT-19 hairpins were calculated using the X-PLOR 3.1 program. Structures were generated through simulated annealing procedures starting from 50 structures with randomized torsion angles. A good convergence was observed for ATC-19 molecules, while no consensus was found for GAT-19. Within the GAT-19 loop, the base stacking was poor and no hydrogen bond could be detected. In contrast, ATC-19 displayed a well-defined three residue loop stabilized by both extensive base stackings and hydrogen bonding between the N3 atom of the adenine ring and the amino group of the cytosine ring. The results confirm our earlier ATC-19 structure obtained by a completely different calculation procedure (JUMNA) and the higher thermal stability of ATC-19 compared to GAT-19. Moreover, due to its mismatched base-pair, the ATC-19 loop may be better described as a single residue loop rather than a three residue loop. Comparison of this loop to those containing sheared purine.purine base-pairs revealed striking resemblances, particularly on the backbone angle combination. Finally, the differences observed between the ATC-19 and GAT-19 structures could help toward understanding the sequential cleavage of DNA strands by topoisomerase II.
Collapse
Affiliation(s)
- O Mauffret
- Départment de Biologie Structurale et de Pharmacologie Moléculaire (CNRS UMR 1772), PR2, Institut Gustave Roussy, Villejuif Cedex, 94805, France
| | | | | | | | | | | |
Collapse
|
48
|
Gallego J, Chou SH, Reid BR. Centromeric pyrimidine strands fold into an intercalated motif by forming a double hairpin with a novel T:G:G:T tetrad: solution structure of the d(TCCCGTTTCCA) dimer. J Mol Biol 1997; 273:840-56. [PMID: 9367776 DOI: 10.1006/jmbi.1997.1361] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The solution structures of the oligodeoxynucleotides d(CCCGTTTCC) and d(TCCCGTTTCCA) have been determined by two-dimensional NMR spectroscopy. These oligomers are part of a DNA box in human centromeric alpha satellite targeted by the centromere protein B (CENP-B). Both CENP-B and its recognition box in alphoid DNA are conserved in mammals, suggesting an important biological role. At acidic pH, d(CCCGTTTCC), d(TCCCGTTTCCA) and the full d(TCCCGTTTCCAACGAAG) CENP-B box strand all fold and dimerize in solution forming a stable bimolecular structure containing two GTTT hairpin loops that interact through a novel T : G : G : T tetrad. The stem region of the dimer is a four-stranded intercalated motif in which the hairpin monomers are parallel and held together by C : C+ hydrogen-bonding and intercalation. The loops are at the same end of the dimer and lie across the narrow grooves of the tetraplex. They are remarkably structured and stabilized by base-base cross-stacking, sugar-base stacking, and parallel G:G and antiparallel G:T pairing. In the d(TCCCGTTTCCA)2 structure, the intercalated motif is continued at the other end of the dimer with unpaired but stacked adenine and thymine bases. The possible biological implications of these structures are discussed.
Collapse
Affiliation(s)
- J Gallego
- Chemistry Department, University of Washington Seattle, WA 98195, USA
| | | | | |
Collapse
|
49
|
Abstract
DNA is on the move across conformational space. Duplexes diversity and, joined by triplexes, quadruplexes, loops, bulges and multiarmed junctions, open the route to a bewildering array of increasingly complex conformations. In addition to this structural growth, DNA has come under increasing scrutiny thanks to the development of chemical and physical techniques for deforming its conformation and probing its properties. These investigations help us to learn more about the mechanics and the activity of this remarkably versatile macromolecule.
Collapse
Affiliation(s)
- A Lebrun
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
50
|
Abstract
The Watson-Crick G x C and A x T base-paired DNA duplex has been the single most important milestone in modem molecular biology. However, it is possible that other types of stable DNA structures besides the double helix might exist, since only about 5% of the human chromosome is transcribed and expressed. Stable, four-stranded G-tetraplex DNA structures occur in the extensive tandem repeated sequences at the telomeres of chromosome. Formation of stable triplexes of the Py x Pu x Py or Pu x Pu x Py type have been implicated at the control regions of certain human genes. We review and discuss the various types of DNA duplex structures containing stable sheared base-pairs and compare their structural characteristics with that of B-DNA. Pu x Pu structural motifs are found in the highly conserved sequences at the replication origins of several single-stranded DNA viruses and in the peri-centromeric regions of human chromosomes, and may be involved in important biological functions, such as viral DNA replication and centromere formation.
Collapse
Affiliation(s)
- S H Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, ROC
| | | | | |
Collapse
|