1
|
Tants JN, Oberstrass L, Weigand JE, Schlundt A. Structure and RNA-binding of the helically extended Roquin CCCH-type zinc finger. Nucleic Acids Res 2024; 52:9838-9853. [PMID: 38953172 PMCID: PMC11381341 DOI: 10.1093/nar/gkae555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Zinc finger (ZnF) domains appear in a pool of structural contexts and despite their small size achieve varying target specificities, covering single-stranded and double-stranded DNA and RNA as well as proteins. Combined with other RNA-binding domains, ZnFs enhance affinity and specificity of RNA-binding proteins (RBPs). The ZnF-containing immunoregulatory RBP Roquin initiates mRNA decay, thereby controlling the adaptive immune system. Its unique ROQ domain shape-specifically recognizes stem-looped cis-elements in mRNA 3'-untranslated regions (UTR). The N-terminus of Roquin contains a RING domain for protein-protein interactions and a ZnF, which was suggested to play an essential role in RNA decay by Roquin. The ZnF domain boundaries, its RNA motif preference and its interplay with the ROQ domain have remained elusive, also driven by the lack of high-resolution data of the challenging protein. We provide the solution structure of the Roquin-1 ZnF and use an RBNS-NMR pipeline to show that the ZnF recognizes AU-rich RNAs. We systematically refine the contributions of adenines in a poly(U)-background to specific complex formation. With the simultaneous binding of ROQ and ZnF to a natural target transcript of Roquin, our study for the first time suggests how Roquin integrates RNA shape and sequence features through the ROQ-ZnF tandem.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Lasse Oberstrass
- University of Marburg, Department of Pharmacy, Institute of Pharmaceutical Chemistry, Marbacher Weg 6, 35037 Marburg, Germany
| | - Julia E Weigand
- University of Marburg, Department of Pharmacy, Institute of Pharmaceutical Chemistry, Marbacher Weg 6, 35037 Marburg, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
2
|
Fang CS, Kim KS, Yu B, Jon S, Kim MS, Yang H. Ultrasensitive Electrochemical Detection of miRNA-21 Using a Zinc Finger Protein Specific to DNA-RNA Hybrids. Anal Chem 2017; 89:2024-2031. [PMID: 28208259 DOI: 10.1021/acs.analchem.6b04609] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Both high sensitivity and high specificity are crucial for detection of miRNAs that have emerged as important clinical biomarkers. Just Another Zinc finger proteins (JAZ, ZNF346) bind preferably (but nonsequence-specifically) to DNA-RNA hybrids over single-stranded RNAs, single-stranded DNAs, and double-stranded DNAs. We present an ultrasensitive and highly specific electrochemical method for miRNA-21 detection based on the selective binding of JAZ to the DNA-RNA hybrid formed between a DNA capture probe and a target miRNA-21. This enables us to use chemically stable DNA as a capture probe instead of RNA as well as to apply a standard sandwich-type assay format to miRNA detection. High signal amplification is obtained by (i) enzymatic amplification by alkaline phosphatase (ALP) coupled with (ii) electrochemical-chemical-chemical (ECC) redox cycling involving an ALP product (hydroquinone). Low nonspecific adsorption of ALP-conjugated JAZ is obtained using a polymeric self-assembled-monolayer-modified and casein-treated indium-tin oxide electrode. The detection method can discriminate between target miRNA-21 and nontarget nucleic acids (DNA-DNA hybrid, single-stranded DNA, miRNA-125b, miRNA-155, single-base mismatched miRNA, and three-base mismatched miRNA). The detection limits for miRNA-21 in buffer and 10-fold diluted serum are approximately 2 and 30 fM, respectively, indicating that the detection method is ultrasensitive. This detection method can be readily extended to multiplex detection of miRNAs with only one ALP-conjugated JAZ probe due to its nonsequence-specific binding character. We also believe that the method could offer a promising solution for point-of-care testing of miRNAs in body fluids.
Collapse
Affiliation(s)
- Chiew San Fang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University , Busan 46241, Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University , Busan 46241, Korea
| | - Byeongjun Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Korea
| | - Moon-Soo Kim
- Department of Chemistry, Western Kentucky University , Bowling Green, Kentucky 42101, United States
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University , Busan 46241, Korea
| |
Collapse
|
3
|
Duplications in the 3' termini of three segments of Fusarium graminearum virus China 9. Arch Virol 2016; 162:897-900. [PMID: 27888409 DOI: 10.1007/s00705-016-3174-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
The hypovirulence-inducing Fusarium graminearum virus China 9 (FgV-ch9) was described recently and is closely related to the Fusarium graminearum mycovirus-2 (FgV2). Both viruses share common properties of viruses belonging to the family Chrysoviridae. Re-sequencing of FgV-ch9 revealed duplications of the 3' non-coding regions of segments 2 and 3. Both duplications are arranged in a head-to-tail array, are attached to the complete terminus, and do not affect the encoded gene. An internal duplication was found in segment 5. This duplication resulted in an increase in the size of the encoded protein. In silico analysis showed similar duplications in segments 2 and 3 of FgV2.
Collapse
|
4
|
Mallick S, D'Mello SR. JAZ (Znf346), a SIRT1-interacting protein, protects neurons by stimulating p21 (WAF/CIP1) protein expression. J Biol Chem 2014; 289:35409-20. [PMID: 25331946 DOI: 10.1074/jbc.m114.597575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SIRT1, a class III histone deacetylase, protects neurons in various models of neurodegenerative diseases. We previously described that neuroprotection by SIRT1 is independent of its catalytic activity. To elucidate how SIRT1 protects neurons, we performed a mass spectrometric screen to find SIRT1-interacting proteins. One of the proteins identified was JAZ (Znf346), a member of a new class of Cys-2-His-2 zinc finger proteins. To investigate the significance of JAZ in the regulation of neuronal survival, we overexpressed it in neurons. We found that JAZ protects cerebellar granule neurons against potassium deprivation-induced death and cortical neurons from death resulting from oxidative stress. JAZ also protects neurons against toxicity induced by mutant huntingtin and mutant ataxin-1 expression. Although expression of endogenous JAZ does not change in neurons primed to die, knockdown of its expression promotes death of otherwise healthy neurons. In contrast to its protective effect in neurons, overexpression of JAZ in different cell lines promotes death. We find that JAZ suppresses cell cycle progression, thereby explaining its contrasting effect in postmitotic neurons versus proliferating cell lines. Although not affecting the expression of several cyclins, overexpression of JAZ stimulates expression of p21 (WAF1/CIP1), a cell cycle inhibitor known to have neuroprotective effects. Results of chromatin immunoprecipitation and transcriptional assays indicate that the stimulatory effect of JAZ on p21 expression is mediated at the transcriptional level. Furthermore, knockdown of p21 expression inhibits the neuroprotective effect of JAZ. Together, our results suggest that JAZ protects neurons by inhibiting cell cycle re-entry through the transcriptional stimulation of p21 expression.
Collapse
Affiliation(s)
- Sathi Mallick
- From the Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75080 and the Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275
| | - Santosh R D'Mello
- the Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275
| |
Collapse
|
5
|
Burge RG, Martinez-Yamout MA, Dyson HJ, Wright PE. Structural characterization of interactions between the double-stranded RNA-binding zinc finger protein JAZ and nucleic acids. Biochemistry 2014; 53:1495-510. [PMID: 24521053 PMCID: PMC3985865 DOI: 10.1021/bi401675h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The interactions of the human double-stranded
RNA-binding zinc
finger protein JAZ with RNA or DNA were investigated using electrophoretic
mobility-shift assays, isothermal calorimetry, and nuclear magnetic
resonance spectroscopy. Consistent with previous reports, JAZ has
very low affinity for duplex DNA or single-stranded RNA, but it binds
preferentially to double-stranded RNA (dsRNA) with no detectable sequence
specificity. The affinity of JAZ for dsRNA is unaffected by local
structural features such as loops, overhangs, and bulges, provided
a sufficient length of reasonably well-structured A-form RNA (about
18 bp for a single zinc finger) is present. Full-length JAZ contains
four Cys2His2 zinc fingers (ZF1–4) and
has the highest apparent affinity for dsRNA; two-finger constructs
ZF12 and ZF23 have lower affinity, and ZF34 binds even more weakly.
The fourth zinc finger, ZF4, has no measurable RNA-binding affinity.
Single zinc finger constructs ZF1, ZF2, and ZF3 show evidence for
multiple-site binding on the minimal RNA. Fitting of quantitative
NMR titration and isothermal calorimetry data to a two-site binding
model gave Kd1 ∼ 10 μM and Kd2 ∼ 100 μM. Models of JAZ–RNA
complexes were generated using the high-ambiguity-driven biomolecular
docking (HADDOCK) program. Single zinc fingers bind to the RNA backbone
without sequence specificity, forming complexes with contacts between
the RNA minor groove and residues in the N-terminal β strands
and between the major groove and residues in the helix–kink–helix
motif. We propose that the non-sequence-specific interaction between
the zinc fingers of JAZ with dsRNA is dependent only on the overall
shape of the A-form RNA.
Collapse
Affiliation(s)
- Russell G Burge
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
6
|
Yang M, Wu S, Jia J, May WS. JAZ mediates G1 cell cycle arrest by interacting with and inhibiting E2F1. Cell Cycle 2011; 10:2390-9. [PMID: 21715977 PMCID: PMC3322471 DOI: 10.4161/cc.10.14.16587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 05/23/2011] [Indexed: 12/26/2022] Open
Abstract
We discovered and reported JAZ as a unique dsRNA binding zinc finger protein that functions as a direct, positive regulator of p53 transcriptional activity to mediate G1 cell cycle arrest in a mechanism involving upregulation of the p53 target gene, p21. We now find that JAZ can also negatively regulate the cell cycle in a novel, p53-independent mechanism resulting from the direct interaction with E2F1, a key intermediate in regulating cell proliferation and tumor suppression. JAZ associates with E2F1's central DNA binding/dimerization region and its C-terminal transactivation domain. Functionally, JAZ represses E2F1 transcriptional activity in association with repression of cyclin A expression and inhibition of G1/S transition. This mechanism involves JAZ-mediated inhibition of E2F1's specific DNA binding activity. JAZ directly binds E2F1 in vitro in a dsRNA-independent manner, and JAZ's dsRNA binding ZF domains, which are necessary for localizing JAZ to the nucleus, are required for repression of transcriptional activity in vivo. Importantly for specificity, siRNA-mediated "knockdown" of endogenous JAZ increases E2F transcriptional activity and releases cells from G1 arrest, indicating a necessary role for JAZ in this transition. Although JAZ can directly inhibit E2F1 activity independently of p53, if functional p53 is expressed, JAZ may exert a more potent inhibition of cell cycle following growth factor withdrawal. Therefore, JAZ plays a dual role in cell cycle regulation by both repressing E2F1 transcriptional activity and activating p53 to facilitate efficient growth arrest in response to cellular stress, which may potentially be exploited therapeutically for tumor growth inhibition.
Collapse
Affiliation(s)
- Mingli Yang
- Department of Medicine, Division of Hematology/Oncology, Shands Cancer Center, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
7
|
A novel double-stranded RNA mycovirus from Fusarium graminearum: nucleic acid sequence and genomic structure. Arch Virol 2011; 156:647-58. [DOI: 10.1007/s00705-010-0904-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
|
8
|
Weiss TC, Zhai GG, Bhatia SS, Romaniuk PJ. An RNA aptamer with high affinity and broad specificity for zinc finger proteins. Biochemistry 2010; 49:2732-40. [PMID: 20175561 DOI: 10.1021/bi9016654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A class of RNA aptamers that demonstrates a high affinity for a large variety of C(2)H(2) zinc finger proteins was isolated from a library of random RNA sequences by the zinc finger protein TFIIIA. These aptamers have one or more copies of the consensus sequence GGGUGGG, which is part of a putative hairpin loop in the proposed structure of the most abundant aptamer, RNA1. Binding of zinc finger proteins to RNA1 relies upon zinc-dependent folding of the protein, the affinity of an individual protein for RNA1 being determined by the number of tandem zinc finger motifs. The properties of RNA1 were compared to the properties of two other aptamers from the same selection experiment: RNA21, which binds to some but not all zinc finger proteins tested, and RNA22, which binds only to the 5S rRNA binding zinc finger proteins TFIIIA and p43. The binding of three different zinc finger proteins to RNA1 was compared, and the results indicate that the RNA1-protein interaction occurs by several distinct mechanisms. Mutagenesis of RNA1 confirmed that the GGGUGGG consensus sequence presented in a hairpin conformation is required for high-affinity binding of zinc finger proteins.
Collapse
Affiliation(s)
- Tristen C Weiss
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Victoria, BC V8W 3P6, Canada
| | | | | | | |
Collapse
|
9
|
Nurmemmedov E, Yengo RK, Ladomery MR, Thunnissen MMGM. Kinetic behaviour of WT 1's zinc finger domain in binding to the alpha-actinin-1 mRNA. Arch Biochem Biophys 2010; 497:21-7. [PMID: 20193655 DOI: 10.1016/j.abb.2010.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 12/13/2022]
Abstract
The zinc finger transcription factor Wilms tumour protein (WT 1) is known for its essential involvement in the development of the genitourinary system as well as of other organs and tissues. WT 1 is capable of selectively binding either DNA or mRNA targets. A KTS insertion due to alternative splicing between the zinc fingers 3 and 4 and an unconventional zinc finger 1 are the unique features that distinguish WT 1 from classical DNA-binding C(2)H(2)-type zinc finger proteins. The DNA binding characteristics of WT 1 are well studied. Due to lack of information about its native RNA targets, no extensive research has been directed at how WT 1 binds RNA. Using surface plasmon resonance, this study attempts to understand the binding behaviour of WT 1 zinc fingers with its recently reported and first putative mRNA target, ACT 34, whose stem-loop structure is believed to be critical for the interactions with WT 1. We have analysed the interactions of five WT 1 zinc finger truncations with wild-type ACT 34 and four variants. Our results indicate that WT 1 zinc fingers bind ACT 34 in a specific manner, and that this occurs as interplay of all four zinc fingers. We also report that a sensitive kinetic balance, which is equilibrated by both zinc finger 1 and KTS, regulates the interaction with ACT 34. The stem-loop and the flanking nucleotides are important elements for specific recognition by WT 1 zinc fingers.
Collapse
Affiliation(s)
- Elmar Nurmemmedov
- Molecular Biophysics, Chemical Center, Lund University, 221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
10
|
Abstract
Over the last 25 years, we have learned that many structural classes of zinc-binding domains (zinc fingers, ZFs) exist and it has become clear that the molecular functions of these domains are by no means limited to the sequence-specific recognition of double-stranded DNA. For example, ZFs can act as protein recognition or RNA-binding modules, and some domains can exhibit more than one function. In this chapter we describe the progress that has been made in understanding the role of ZF domains as RNA-recognition modules, and we speculate about both the prevalence of such functions and the prospects for creating designer ZFs that target RNA.
Collapse
Affiliation(s)
- Josep Font
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
11
|
Identification of the DNA binding element of the human ZNF300 protein. Cell Mol Biol Lett 2008; 13:391-403. [PMID: 18350257 PMCID: PMC6275660 DOI: 10.2478/s11658-008-0005-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 12/04/2007] [Indexed: 11/20/2022] Open
Abstract
The human ZNF300 gene is a member of the KRAB/C2H2 zinc finger gene family, the members of which are known to be involved in various developmental and pathological processes. Here, we show that the ZNF300 gene encodes a 68-kDa nuclear protein that binds DNA in a sequence-specific manner. The ZNF300 DNA binding site, C(t/a)GGGGG(c/g)G, was defined via a random oligonucleotide selection assay, and the DNA binding site was further confirmed by electrophoretic mobility shift assays. A potential ZNF300 binding site was found in the promoter region of the human IL-2Rβ gene. The results of electrophoretic mobility shift assays indicated that ZNF300 bound to the ZNF300 binding site in the IL-2Rβ promoter in vitro. Transient co-transfection assays showed that ZNF300 could activate the IL-2Rβ promoter, and that the activation was abrogated by the mutation of residues in the ZNF300 binding site. Identifying the DNA binding site and characterizing the transcriptional regulation property of ZNF300 would provide critical insights into its potential as a transcriptional regulator.
Collapse
|
12
|
Yang M, Wu S, Su X, May WS. JAZ mediates G1 cell-cycle arrest and apoptosis by positively regulating p53 transcriptional activity. Blood 2006; 108:4136-45. [PMID: 16931621 PMCID: PMC1895452 DOI: 10.1182/blood-2006-06-029645] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Accepted: 08/01/2006] [Indexed: 12/19/2022] Open
Abstract
We previously identified JAZ as a novel zinc finger (ZF) protein by screening a murine interleukin-3 (IL-3)-dependent NFS/N1.H7 myeloid cell cDNA library. JAZ is a member of a new class of ZFPs that is evolutionarily conserved and preferentially binds to dsRNA, but its function was unknown. Now, we report that the stress of IL-3 growth factor withdrawal up-regulates JAZ expression in hematopoietic cells in association with p53 activation and induction of cell death. Biochemical analysis reveals that JAZ associates with p53 to stimulate its transcriptional activity in p53-expressing cells, but not in p53-null cells unless complemented with p53. JAZ functions to mediate G1 cell-cycle arrest followed by apoptosis in a p53-dependent mechanism that is associated with up-regulation of p21 and BAX, dephosphorylation of Rb, and repression of cyclin A. Of importance, siRNA "knockdown" of endogenous JAZ inhibits p53 transcriptional activity, decreases the G1/G0 population, and attenuates stress-induced cell death. While JAZ directly binds p53 in vitro in a mechanism requiring p53's C-terminal regulatory domain but independent of dsRNA, the dsRNA-binding ZF domains are required for JAZ's stimulatory role of p53 in vivo by dictating its nuclear localization. Thus, JAZ is a novel negative regulator of cell growth by positively regulating p53.
Collapse
Affiliation(s)
- Mingli Yang
- University of Florida Shands Cancer Center, Department of Medicine, University of Florida, 1376 Mowry Rd, Gainesville, FL 32610-3633, USA
| | | | | | | |
Collapse
|
13
|
Méndez Vidal C, Prahl M, Wiman KG. The p53-induced Wig-1 protein binds double-stranded RNAs with structural characteristics of siRNAs and miRNAs. FEBS Lett 2006; 580:4401-8. [PMID: 16844115 DOI: 10.1016/j.febslet.2006.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 06/26/2006] [Accepted: 07/04/2006] [Indexed: 10/24/2022]
Abstract
Wig-1 is a p53-induced zinc finger protein. Here we show that human Wig-1 binds long (>or=23 bp) dsRNAs with 5'-overhangs. The first zinc finger domain is necessary but not sufficient for this dsRNA-binding in vitro. Wig-1 also binds dsRNA in living cells via zinc fingers 1 and 2. Both zinc fingers 1 and 2 are important for Wig-1-mediated growth suppression. Moreover, Wig-1 binds 21 bp dsRNAs with 3'-protruding ends. These findings demonstrate that human Wig-1 can bind different types of dsRNAs, including dsRNAs resembling small interfering RNAs (siRNAs) and microRNAs (miRNAs), and indicate that dsRNA binding has a role in Wig-1-mediated regulation of cell growth.
Collapse
Affiliation(s)
- Cristina Méndez Vidal
- Department of Oncology-Pathology, Karolinska Institute, Cancer Center Karolinska, CCK, SE-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Elvira G, Massie B, DesGroseillers L. The zinc-finger protein ZFR is critical for Staufen 2 isoform specific nucleocytoplasmic shuttling in neurons. J Neurochem 2005; 96:105-17. [PMID: 16277607 DOI: 10.1111/j.1471-4159.2005.03523.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In mammalian neurons, transport and translation of mRNA to individual potentiated synapses is believed to occur via a heterogeneous population of RNA granules. To identify components of Staufen2-containing granules, we used the yeast two-hybrid system. A mouse fetal cDNA library was screened with the N-terminal fragment of Staufen2 as bait. ZFR, a three zinc finger protein, was identified as an interacting protein. Confocal microscopy showed that ZFR, although mainly nuclear, was also found in the somatodendritic compartment of primary hippocampal neurons where it localized as granule-like structures. Co-localization with Staufen2 was observed in several granules. Biochemical analyses (immunoprecipitation, cell fractionation) further confirmed the ZFR/Staufen2 association. ZFR was shown to interact with at least the Staufen2(62) isoform, but not with Staufen1. ZFR also co-fractionated with ribosomes and Staufen2(59) and Staufen2(52) in a sucrose gradient. Interestingly, knockdown expression of ZFR through RNA interference in neurons relocated specifically the Staufen2(62), but not the Staufen2(59), isoform to the nucleus. Our results demonstrate that ZFR is a native component of Staufen2-containing granules and likely plays its role during early steps of RNA transport and localization. They also suggest that one of these roles may be linked to Staufen2(62)-containing RNA granule formation in the nucleus and/or to their nucleo-cytoplasmic shuttling.
Collapse
Affiliation(s)
- George Elvira
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
15
|
Sumanas S, Zhang B, Dai R, Lin S. 15-zinc finger protein Bloody Fingers is required for zebrafish morphogenetic movements during neurulation. Dev Biol 2005; 283:85-96. [PMID: 15890328 DOI: 10.1016/j.ydbio.2005.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 03/17/2005] [Accepted: 04/05/2005] [Indexed: 11/20/2022]
Abstract
A novel zebrafish gene bloody fingers (blf) encoding a 478 amino acid protein containing fifteen C(2)H(2) type zinc fingers was identified by expression screening. As determined by in situ hybridization, blf RNA displays strong ubiquitous early zygotic expression, while during late gastrulation and early somitogenesis, blf expression becomes transiently restricted to the posterior dorsal and lateral mesoderm. During later somitogenesis, blf expression appears only in hematopoietic cells. It is completely eliminated in cloche, moonshine but not in vlad tepes (gata1) mutant embryos. Morpholino (MO) knockdown of the Blf protein results in the defects of morphogenetic movements. Blf-MO-injected embryos (morphants) display shortened and widened axial tissues due to defective convergent extension. Unlike other convergent extension mutants, blf morphants display a split neural tube, resulting in a phenotype similar to the human open neural tube defect spina bifida. In addition, dorsal ectodermal cells delaminate in blf morphants during late somitogenesis. We propose a model explaining the role of blf in convergent extension and neurulation. We conclude that blf plays an important role in regulating morphogenetic movements during gastrulation and neurulation while its role in hematopoiesis may be redundant.
Collapse
Affiliation(s)
- Saulius Sumanas
- University of California, Los Angeles, Department of Molecular, Cell and Developmental Biology, CA 90095, USA
| | | | | | | |
Collapse
|
16
|
Möller HM, Martinez-Yamout MA, Dyson HJ, Wright PE. Solution Structure of the N-terminal Zinc Fingers of the Xenopus laevis double-stranded RNA-binding Protein ZFa. J Mol Biol 2005; 351:718-30. [PMID: 16051273 DOI: 10.1016/j.jmb.2005.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/03/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
Several zinc finger proteins have been discovered recently that bind specifically to double-stranded RNA. These include the mammalian JAZ and wig proteins, and the seven-zinc finger protein ZFa from Xenopus laevis. We have determined the solution structure of a 127 residue fragment of ZFa, which consists of two zinc finger domains connected by a linker that remains unstructured in the free protein in solution. The first zinc finger consists of a three-stranded beta-sheet and three helices, while the second finger contains only a two-stranded sheet and two helices. The common structures of the core regions of the two fingers are superimposable. Each finger has a highly electropositive surface that maps to a helix-kink-helix motif. There is no evidence for interactions between the two fingers, consistent with the length (24 residues) and unstructured nature of the intervening linker. Comparison with a number of other proteins shows similarities in the topology and arrangement of secondary structure elements with canonical DNA-binding zinc fingers, with protein interaction motifs such as FOG zinc fingers, and with other DNA-binding and RNA-binding proteins that do not contain zinc. However, in none of these cases does the alignment of these structures with the ZFa zinc fingers produce a consistent picture of a plausible RNA-binding interface. We conclude that the ZFa zinc fingers represent a new motif for the binding of double-stranded RNA.
Collapse
Affiliation(s)
- Heiko M Möller
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
17
|
Stefl R, Skrisovska L, Allain FHT. RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep 2005; 6:33-8. [PMID: 15643449 PMCID: PMC1299235 DOI: 10.1038/sj.embor.7400325] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 11/26/2004] [Indexed: 11/09/2022] Open
Abstract
At all stages of its life (from transcription to translation), an RNA transcript interacts with many different RNA-binding proteins. The composition of this supramolecular assembly, known as a ribonucleoprotein particle, is diverse and highly dynamic. RNA-binding proteins control the generation, maturation and lifespan of the RNA transcript and thus regulate and influence the cellular function of the encoded gene. Here, we review our current understanding of protein-RNA recognition mediated by the two most abundant RNA-binding domains (the RNA-recognition motif and the double-stranded RNA-binding motif) plus the zinc-finger motif, the most abundant nucleic-acid-binding domain. In addition, we discuss how not only the sequence but also the shape of the RNA are recognized by these three classes of RNA-binding protein.
Collapse
Affiliation(s)
- Richard Stefl
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zürich, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Lenka Skrisovska
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zürich, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Frédéric H.-T. Allain
- Institute for Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zürich, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
- Tel: +41 (0)1 63 33940; Fax: +41 (0)1 63 31294;
| |
Collapse
|
18
|
Sharma S, Dimasi D, Higginson K, Della NG. RZF, a zinc-finger protein in the photoreceptors of human retina. Gene 2004; 342:219-29. [PMID: 15527981 DOI: 10.1016/j.gene.2004.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 07/19/2004] [Accepted: 08/12/2004] [Indexed: 12/21/2022]
Abstract
Photoreceptors are organized at the outer aspect of retina and host the process of phototransduction, central to the visual system. We have isolated a novel human gene, RZF, which is predominantly expressed in the photoreceptors of human retina. RZF encodes a 40-kDa protein that has three widely spaced C(2)H(2)-type zinc finger motifs. There are three potential nuclear localisation signals and clusters of charged amino acids in the protein. Expression analysis revealed that orthologues of the RZF gene are also expressed in photoreceptors of mouse and bovine retina. The RZF-GFP fusion protein localises to nucleoli and cytoplasm when expressed in HEK-293 cells. Mobility shift assay suggests that RZF may not be a nucleic acid binding protein, unlike most other zinc-finger proteins. Taken together, these observations suggest that RZF is a shuttling regulatory protein expressed in photoreceptors of the human retina that may be involved in mRNA or protein regulation of photoreceptor-specific genes and therefore have role in retinal disease mechanisms.
Collapse
Affiliation(s)
- Shiwani Sharma
- Department of Ophthalmology, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia.
| | | | | | | |
Collapse
|
19
|
Lu D, Searles MA, Klug A. Crystal structure of a zinc-finger–RNA complex reveals two modes of molecular recognition. Nature 2003; 426:96-100. [PMID: 14603324 DOI: 10.1038/nature02088] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 09/22/2003] [Indexed: 11/09/2022]
Abstract
Zinc-finger proteins of the classical Cys2His2 type are the most frequently used class of transcription factor and account for about 3% of genes in the human genome. The zinc-finger motif was discovered during biochemical studies on the transcription factor TFIIIA, which regulates the 5S ribosomal RNA genes of Xenopus laevis. Zinc-fingers mostly interact with DNA, but TFIIIA binds not only specifically to the promoter DNA, but also to 5S RNA itself. Increasing evidence indicates that zinc-fingers are more widely used to recognize RNA. There have been numerous structural studies on DNA binding, but none on RNA binding by zinc-finger proteins. Here we report the crystal structure of a three-finger complex with 61 bases of RNA, derived from the central regions of the complete nine-finger TFIIIA-5S RNA complex. The structure reveals two modes of zinc-finger binding, both of which differ from that in common use for DNA: first, the zinc-fingers interact with the backbone of a double helix; and second, the zinc-fingers specifically recognize individual bases positioned for access in otherwise intricately folded 'loop' regions of the RNA.
Collapse
Affiliation(s)
- Duo Lu
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | | | | |
Collapse
|
20
|
Abstract
The dsRNA binding proteins (DRBPs) comprise a growing family of eukaryotic, prokaryotic, and viral-encoded products that share a common evolutionarily conserved motif specifically facilitating interaction with dsRNA. Proteins harboring dsRNA binding domains (DRBDs) have been reported to interact with as little as 11 bp of dsRNA, an event that is independent of nucleotide sequence arrangement. More than 20 DRBPs have been identified and reportedly function in a diverse range of critically important roles in the cell. Examples include the dsRNA-dependent protein kinase PKR that functions in dsRNA signaling and host defense against virus infection and DICER, which is implicated in RNA interference (RNAi) -mediated gene silencing. Other DRBPs such as Staufen, adenosine deaminase acting on RNA (ADAR), and spermatid perinuclear RNA binding protein (SPNR) are known to play essential roles in development, translation, RNA editing, and stability. In many cases, homozygous and even heterozygous disruption of DRBPs in animal models results in embryonic lethality. These results implicate the recognition of dsRNA as an evolutionarily conserved mechanism important in the regulation of gene expression and in host defense and underscore the diversity of essential biological tasks performed by dsRNA-related processes in the cell.
Collapse
Affiliation(s)
- Laura R Saunders
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
21
|
Méndez-Vidal C, Wilhelm MT, Hellborg F, Qian W, Wiman KG. The p53-induced mouse zinc finger protein wig-1 binds double-stranded RNA with high affinity. Nucleic Acids Res 2002; 30:1991-6. [PMID: 11972337 PMCID: PMC113850 DOI: 10.1093/nar/30.9.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The p53-induced mouse wig-1 gene encodes a Cys2His2-type zinc finger protein of unknown function. The zinc fingers in wig-1 are connected by long (56-75) amino acid linkers. This distribution of zinc finger domains resembles that of the previously described double-stranded (ds)RNA-binding proteins dsRBP-ZFa and JAZ. Ectopically expressed FLAG-tagged mouse wig-1 protein localized to nuclei and in some cells to nucleoli, whereas GFP-tagged mouse wig-1 localized primarily to nucleoli. Electrophoretic mobility shift assay using a recombinant GST-wig-1 fusion protein showed that wig-1 preferentially binds dsRNA rather than single-stranded RNA or dsDNA. A set of deletion/truncation mutants of wig-1 was tested to determine the dsRNA-binding domain(s) or region(s) in wig-1 that is involved in the stabilization of wig-1-dsRNA complexes in vitro. This revealed that the first zinc finger in wig-1 is essential for binding to dsRNA, whereas zinc fingers 2 and 3 are dispensable. wig-1 protein expressed in mammalian cells also showed a high affinity for dsRNA. wig-1 represents the first confirmed p53-induced gene that encodes a dsRNA-binding protein. This suggests that dsRNA binding plays a role in the p53-dependent stress response.
Collapse
Affiliation(s)
- Cristina Méndez-Vidal
- Karolinska Institute, Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
22
|
Anantharaman V, Koonin EV, Aravind L. Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 2002; 30:1427-64. [PMID: 11917006 PMCID: PMC101826 DOI: 10.1093/nar/30.7.1427] [Citation(s) in RCA: 381] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA metabolism, broadly defined as the compendium of all processes that involve RNA, including transcription, processing and modification of transcripts, translation, RNA degradation and its regulation, is the central and most evolutionarily conserved part of cell physiology. A comprehensive, genome-wide census of all enzymatic and non-enzymatic protein domains involved in RNA metabolism was conducted by using sequence profile analysis and structural comparisons. Proteins related to RNA metabolism comprise from 3 to 11% of the complete protein repertoire in bacteria, archaea and eukaryotes, with the greatest fraction seen in parasitic bacteria with small genomes. Approximately one-half of protein domains involved in RNA metabolism are present in most, if not all, species from all three primary kingdoms and are traceable to the last universal common ancestor (LUCA). The principal features of LUCA's RNA metabolism system were reconstructed by parsimony-based evolutionary analysis of all relevant groups of orthologous proteins. This reconstruction shows that LUCA possessed not only the basal translation system, but also the principal forms of RNA modification, such as methylation, pseudouridylation and thiouridylation, as well as simple mechanisms for polyadenylation and RNA degradation. Some of these ancient domains form paralogous groups whose evolution can be traced back in time beyond LUCA, towards low-specificity proteins, which probably functioned as cofactors for ribozymes within the RNA world framework. The main lineage-specific innovations of RNA metabolism systems were identified. The most notable phase of innovation in RNA metabolism coincides with the advent of eukaryotes and was brought about by the merge of the archaeal and bacterial systems via mitochondrial endosymbiosis, but also involved emergence of several new, eukaryote-specific RNA-binding domains. Subsequent, vast expansions of these domains mark the origin of alternative splicing in animals and probably in plants. In addition to the reconstruction of the evolutionary history of RNA metabolism, this analysis produced numerous functional predictions, e.g. of previously undetected enzymes of RNA modification.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Building 389, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
23
|
Dominski Z, Erkmann JA, Yang X, Sànchez R, Marzluff WF. A novel zinc finger protein is associated with U7 snRNP and interacts with the stem-loop binding protein in the histone pre-mRNP to stimulate 3'-end processing. Genes Dev 2002; 16:58-71. [PMID: 11782445 PMCID: PMC155312 DOI: 10.1101/gad.932302] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The stem-loop binding protein (SLBP) is the posttranscriptional regulator of histone mRNA in metazoan cells. SLBP binds histone pre-mRNAs and facilitates 3'-end processing by promoting stable association of U7 snRNP with the pre-mRNA. To identify other factors involved in histone pre-mRNA processing, we used a modified yeast two-hybrid assay in which SLBP and its RNA target were coexpressed as bait. A novel zinc finger protein, hZFP100, which interacts with the SLBP/RNA complex but not with free SLBP, was cloned. The interaction requires regions of SLBP that are important for histone pre-mRNA processing. Antibodies to hZFP100 precipitate U7 snRNA, and expression of hZFP100 in Xenopus oocytes stimulates processing of histone pre-mRNA, showing that hZFP100 is a component of the processing machinery.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
24
|
Hellborg F, Qian W, Mendez-Vidal C, Asker C, Kost-Alimova M, Wilhelm M, Imreh S, Wiman KG. Human wig-1, a p53 target gene that encodes a growth inhibitory zinc finger protein. Oncogene 2001; 20:5466-74. [PMID: 11571644 DOI: 10.1038/sj.onc.1204722] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2001] [Revised: 06/11/2001] [Accepted: 06/14/2001] [Indexed: 11/08/2022]
Abstract
We previously identified a novel p53-induced mouse gene, wig-1, that encodes a 290 amino acid zinc finger protein (Varmeh-Ziaie et al., 1997). Here we have identified and characterized the human homolog of mouse wig-1. The human wig-1 protein is 87% identical to the mouse protein and contains three zinc finger domains and a putative nuclear localization signal. Human wig-1 mRNA and protein is induced following activation of wild type p53 expression in our BL41-ts p53 Burkitt lymphoma cells. Wig-1 is also induced in MCF7 cells following treatment with the DNA-damaging agent mitomycin C. Northern blotting detected low levels of wig-1 mRNA in normal human tissues. Fluorescence in situ hybridization mapped wig-1 to human chromosome 3q26.3-27. FLAG-tagged human wig-1 localizes to the nucleus. Ectopic overexpression of human wig-1 inhibits tumor cell growth in a colony formation assay. These results suggest that human wig-1 has a role in the p53-dependent growth regulatory pathway.
Collapse
Affiliation(s)
- F Hellborg
- Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institute, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kleines M, Gärtner A, Ritter K, Schaade L. Cloning and expression of the human single copy homologue of the mouse zinc finger protein zfr. Gene 2001; 275:157-62. [PMID: 11574164 DOI: 10.1016/s0378-1119(01)00620-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A human homologue of the murine zinc finger protein zfr is transcriptionally induced in the Epstein-Barr virus-positive Burkitt lymphoma cell line Raji upon treatment with the granulocyte/macrophage lineage ganglioside IV(3)NeuAc-nLcOse(4)Cer. The gene was cloned by a rapid amplification of cDNA ends approach based on a cDNA clone. The resulting hzfr sequence is 3393 base pairs in length coding for a protein of 1057 amino acids. Sequence alignments between hzfr and zfr reveal an identity of 92% on the nucleotide level and an identity of 96.4% on the amino acid level, respectively. Based on Southern blot data hzfr can be addressed as a single copy gene. Tissue-specific expression was determined by semi-quantitative PCR of normalized cDNA populations from various human tissues with glyceraldehyde-3-phosphate dehydrogenase as an internal control. Highest levels of transcripts were found in brain. hzfr transcripts could not be detected in skeletal muscle.
Collapse
Affiliation(s)
- M Kleines
- Division of Virology, Department of Medical Microbiology, University Hospital, RWTH Aachen, Germany
| | | | | | | |
Collapse
|
26
|
Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:183-212. [PMID: 10940247 DOI: 10.1146/annurev.biophys.29.1.183] [Citation(s) in RCA: 761] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cys2His2 zinc fingers are one of the most common DNA-binding motifs found in eukaryotic transcription factors. These proteins typically contain several fingers that make tandem contacts along the DNA. Each finger has a conserved beta beta alpha structure, and amino acids on the surface of the alpha-helix contact bases in the major groove. This simple, modular structure of zinc finger proteins, and the wide variety of DNA sequences they can recognize, make them an attractive framework for attempts to design novel DNA-binding proteins. Several studies have selected fingers with new specificities, and there clearly are recurring patterns in the observed side chain-base interactions. However, the structural details of recognition are intricate enough that there are no general rules (a "recognition code") that would allow the design of an optimal protein for any desired target site. Construction of multifinger proteins is also complicated by interactions between neighboring fingers and the effect of the intervening linker. This review analyzes DNA recognition by Cys2His2 zinc fingers and summarizes progress in generating proteins with novel specificities from fingers selected by phage display.
Collapse
Affiliation(s)
- S A Wolfe
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
27
|
Abstract
A cDNA of human origin is shown to encode a tRNA isopentenyl transferase (E.C. 2.5.1.8). Expression of the gene in a Saccharomyces cerevisiae mutant lacking the endogenous tRNA isopentenyl transferase MOD5 resulted in functional complementation and reintroduction of isopentenyladenosine into tRNA. The deduced amino acid sequence contains a number of regions conserved in known tRNA isopentenyl transferases. The similarity to the S. cerevisiae MOD5 protein is 53%, and to the Escherichia coli MiaA protein 47%. The human sequence was found to contain a single C2H2 Zn-finger-like motif, which was detected also in the MOD5 protein, and several putative tRNA transferases located by BLAST searches, but not in prokaryotic homologues.
Collapse
Affiliation(s)
- A Golovko
- Department of Plant Biology, SLU, PO Box 7080, SE-75007, Uppsala, Sweden
| | | | | | | |
Collapse
|
28
|
Hidaka M, Caruana G, Stanford WL, Sam M, Correll PH, Bernstein A. Gene trapping of two novel genes, Hzf and Hhl, expressed in hematopoietic cells. Mech Dev 2000; 90:3-15. [PMID: 10585558 DOI: 10.1016/s0925-4773(99)00234-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using an expression gene trapping strategy, we have identified and characterized two novel hematopoietic genes, Hzf and Hhl. Embryonic stem (ES) cells containing a gene trap vector insertion were cultured on OP9 stromal cells to induce hematopoietic differentiation and screened for lacZ reporter gene expression. Two ES clones displaying lacZ expression within hematopoietic cells in vitro were used to generate mice containing the gene trap integrations. Paralleling this in vitro expression pattern, both Hzf and Hhl were expressed in a tissue-specific manner during hematopoietic development in vivo. Hzf encodes a novel protein containing three C(2)H(2)-type zinc fingers predominantly expressed in megakaryocytes and CFU-GEMM. Hhl encodes a novel protein containing a putative phosphotyrosine binding (PTB) domain expressed in megakaryocytes, CFU-GEMM and BFU-E. These results demonstrate the utility of expression trapping to identify novel hematopoietic genes. Future studies of Hzf and Hhl should provide valuable information on the role these genes play during megakaryocytopoiesis.
Collapse
Affiliation(s)
- M Hidaka
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Yang M, May WS, Ito T. JAZ requires the double-stranded RNA-binding zinc finger motifs for nuclear localization. J Biol Chem 1999; 274:27399-406. [PMID: 10488071 DOI: 10.1074/jbc.274.39.27399] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned and characterized a novel zinc finger protein, termed JAZ. JAZ contains four C(2)H(2)-type zinc finger motifs that are connected by long (28-38) amino acid linker sequences. JAZ is expressed in all tissues tested and localizes in the nucleus, primarily the nucleolus. JAZ preferentially binds to double-stranded (ds) RNA or RNA/DNA hybrids rather than DNA. Mutation of individual zinc finger motifs reveals that the zinc finger domains are not only essential for dsRNA binding but are also required for its nucleolar localization, which demonstrates a complex trafficking mechanism dependent on the nucleic acid-binding capability of the protein. Furthermore, forced expression of JAZ potently induces apoptosis in murine fibroblast cells. Thus, JAZ may belong to a class of zinc finger proteins that features dsRNA binding and may regulate cell growth via the unique dsRNA binding properties.
Collapse
Affiliation(s)
- M Yang
- Sealy Center for Oncology and Hematology, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas 77555-1048, USA
| | | | | |
Collapse
|
30
|
Blancafort P, Steinberg SV, Paquin B, Klinck R, Scott JK, Cedergren R. The recognition of a noncanonical RNA base pair by a zinc finger protein. CHEMISTRY & BIOLOGY 1999; 6:585-97. [PMID: 10421761 DOI: 10.1016/s1074-5521(99)80091-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The zinc finger (ZF) is the most abundant nucleic-acid-interacting protein motif. Although the interaction of ZFs with DNA is reasonably well understood, little is known about the RNA-binding mechanism. We investigated RNA binding to ZFs using the Zif268-DNA complex as a model system. Zif268 contains three DNA-binding ZFs; each independently binds a 3 base pair (bp) subsite within a 9 bp recognition sequence. RESULTS We constructed a library of phage-displayed ZFs by randomizing the alpha helix of the Zif268 central finger. Successful selection of an RNA binder required a noncanonical base pair in the middle of the RNA triplet. Binding of the Zif268 variant to an RNA duplex containing a G.A mismatch (rG.A) is specific for RNA and is dependent on the conformation of the mismatched middle base pair. Modeling and NMR analyses revealed that the rG.A pair adopts a head-to-head configuration that counterbalances the effect of S-puckered riboses in the backbone. We propose that the structure of the rG.A duplex is similar to the DNA in the original Zif268-DNA complex. CONCLUSIONS It is possible to change the specificity of a ZF from DNA to RNA. The ZF motif can use similar mechanisms in binding both types of nucleic acids. Our strategy allowed us to rationalize the interactions that are possible between a ZF and its RNA substrate. This same strategy can be used to assess the binding specificity of ZFs or other protein motifs for noncanconical RNA base pairs, and should permit the design of proteins that bind specific RNA structures.
Collapse
Affiliation(s)
- P Blancafort
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Gonzalez I, Buonomo SB, Nasmyth K, von Ahsen U. ASH1 mRNA localization in yeast involves multiple secondary structural elements and Ash1 protein translation. Curr Biol 1999; 9:337-40. [PMID: 10209099 DOI: 10.1016/s0960-9822(99)80145-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Localization of ASH1 mRNA to the distal cortex of daughter but not mother cells at the end of anaphase is responsible for the two cells' differential mating-type switching during the subsequent cell cycle. This localization depends on actin filaments and a type V myosin (She1/Myo4). The 3' untranslated region (3' UTR) of ASH1 mRNA is reportedly capable of directing heterologous RNAs to a mother cell's bud [1] [2]. Surprisingly, however, its replacement has little or no effect on the localisation of ASH1 mRNA. We show here that, unlike all other known localization sequences that have been found in 3' UTRs, all the elements involved in ASH1 mRNA localization are located at least partly within its coding region. A 77 nucleotide region stretching from 7 nucleotides 5' to 67 nucleotides 3' of the stop codon of ASH1 mRNA is sufficient to localize mRNAs to buds; the secondary structure of this region, in particular two stems, is important for its localizing activity. Two regions entirely within coding sequences, both sufficient to localize green fluorescent protein (GFP) mRNA to growing buds, are necessary for ASH1 mRNA localization during anaphase. These three regions can anchor GFP mRNA to the distal cortex of daughter cells only inefficiently. The tight anchoring of ASH1 mRNA to the cortex of the daughter cell depends on translation of the carboxy-terminal sequences of Ash1 protein.
Collapse
Affiliation(s)
- I Gonzalez
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, 1030 Vienna, Austria
| | | | | | | |
Collapse
|
32
|
Meagher MJ, Schumacher JM, Lee K, Holdcraft RW, Edelhoff S, Disteche C, Braun RE. Identification of ZFR, an ancient and highly conserved murine chromosome-associated zinc finger protein. Gene 1999; 228:197-211. [PMID: 10072773 DOI: 10.1016/s0378-1119(98)00615-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a screen for RNA binding proteins expressed during murine spermatogenesis, we cloned a novel, ancient zinc finger protein possessing a region common to a small class of RNA binding proteins. Zfr (zinc finger RNA binding) encodes a protein of 1052 amino acids with three widely spaced Cys2His2 zinc fingers. Outside of the zinc fingers, ZFR shares a region that is highly conserved between several RNA binding proteins containing copies of the double-stranded RNA binding motif. By northern blotting, Zfr is expressed at highest levels within the testis, ovary and brain. Immunohistochemistry and confocal microscopy were used to show that ZFR is highly expressed during meiosis I in males and females and is chromosome associated. Zfr is also expressed in Sertoli cells in the testis and granulosa cells in the ovary where it is localized to the nucleus. Using fluorescent in situ hybridization we mapped Zfr to chromosome 15 region A. ZFR appears to be an ancient protein, as apparent homologs exist in invertebrates (D. melanogaster) nematodes (C. elegans) and humans (H. sapiens).
Collapse
Affiliation(s)
- M J Meagher
- Department of Genetics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|