1
|
Berner F, Kovermann M. Including the Ensemble of Unstructured Conformations in the Analysis of Protein's Native State by High-Pressure NMR Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202401343. [PMID: 38656763 DOI: 10.1002/anie.202401343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
The analysis of pressure induced changes in the chemical shift of proteins allows statements on structural fluctuations proteins exhibit at ambient pressure. The inherent issue of separating general pressure effects from structural related effects on the pressure dependence of chemical shifts has so far been addressed by considering the characteristics of random coil peptides on increasing pressure. In this work, chemically and pressure denatured states of the cold shock protein B from Bacillus subtilis (BsCspB) have been assigned in 2D 1H-15N HSQC NMR spectra and their dependence on increasing hydrostatic pressure has been evaluated. The pressure denatured polypeptide chain has been used to separate general from structural related effects on 1H and 15N chemical shifts of native BsCspB and the implications on the interpretation of pressure induced changes in the chemical shift regarding the structure of BsCspB are discussed. It has been found that the ensemble of unstructured conformations of BsCspB shows different responses to increasing pressure than random coil peptides do. Thus, the approach used for considering the general effects that arise when hydrostatic pressure increases changes the structural conclusions that are drawn from high pressure NMR spectroscopic experiments that rely on the analysis of chemical shifts.
Collapse
Affiliation(s)
- Frederic Berner
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| |
Collapse
|
2
|
Biomolecules under Pressure: Phase Diagrams, Volume Changes, and High Pressure Spectroscopic Techniques. Int J Mol Sci 2022; 23:ijms23105761. [PMID: 35628571 PMCID: PMC9144967 DOI: 10.3390/ijms23105761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pressure is an equally important thermodynamical parameter as temperature. However, its importance is often overlooked in the biophysical and biochemical investigations of biomolecules and biological systems. This review focuses on the application of high pressure (>100 MPa = 1 kbar) in biology. Studies of high pressure can give insight into the volumetric aspects of various biological systems; this information cannot be obtained otherwise. High-pressure treatment is a potentially useful alternative method to heat-treatment in food science. Elevated pressure (up to 120 MPa) is present in the deep sea, which is a considerable part of the biosphere. From a basic scientific point of view, the application of the gamut of modern spectroscopic techniques provides information about the conformational changes of biomolecules, fluctuations, and flexibility. This paper reviews first the thermodynamic aspects of pressure science, the important parameters affecting the volume of a molecule. The technical aspects of high pressure production are briefly mentioned, and the most common high-pressure-compatible spectroscopic techniques are also discussed. The last part of this paper deals with the main biomolecules, lipids, proteins, and nucleic acids: how they are affected by pressure and what information can be gained about them using pressure. I I also briefly mention a few supramolecular structures such as viruses and bacteria. Finally, a subjective view of the most promising directions of high pressure bioscience is outlined.
Collapse
|
3
|
Dreydoppel M, Dorn B, Modig K, Akke M, Weininger U. Transition-State Compressibility and Activation Volume of Transient Protein Conformational Fluctuations. JACS AU 2021; 1:833-842. [PMID: 34467336 PMCID: PMC8395657 DOI: 10.1021/jacsau.1c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/13/2023]
Abstract
Proteins are dynamic entities that intermittently depart from their ground-state structures and undergo conformational transitions as a critical part of their functions. Central to understanding such transitions are the structural rearrangements along the connecting pathway, where the transition state plays a special role. Using NMR relaxation at variable temperature and pressure to measure aromatic ring flips inside a protein core, we obtain information on the structure and thermodynamics of the transition state. We show that the isothermal compressibility coefficient of the transition state is similar to that of short-chain hydrocarbon liquids, implying extensive local unfolding of the protein. Our results further indicate that the required local volume expansions of the protein can occur not only with a net positive activation volume of the protein, as expected from previous studies, but also with zero activation volume by compaction of remote void volume, when averaged over the ensemble of states.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Britta Dorn
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Kristofer Modig
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Mikael Akke
- Division
of Biophysical Chemistry, Center for Molecular Protein Science, Department
of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Ulrich Weininger
- Institute
of Physics, Biophysics, Martin-Luther-University
Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
4
|
Levin A, Cinar S, Paulus M, Nase J, Winter R, Czeslik C. Analyzing protein-ligand and protein-interface interactions using high pressure. Biophys Chem 2019; 252:106194. [PMID: 31177023 DOI: 10.1016/j.bpc.2019.106194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/06/2023]
Abstract
All protein function is based on interactions with the environment. Proteins can bind molecules for their transport, their catalytic conversion, or for signal transduction. They can bind to each other, and they adsorb at interfaces, such as lipid membranes or material surfaces. An experimental characterization is needed to understand the underlying mechanisms, but also to make use of proteins in biotechnology or biomedicine. When protein interactions are studied under high pressure, volume changes are revealed that directly describe spatial contributions to these interactions. Moreover, the strength of protein interactions with ligands or interfaces can be tuned in a smooth way by pressure modulation, which can be utilized in the design of drugs and bio-responsive interfaces. In this short review, selected studies of protein-ligand and protein-interface interactions are presented that were carried out under high pressure. Furthermore, a perspective on bio-responsive interfaces is given where protein-ligand binding is applied to create functional interfacial structures.
Collapse
Affiliation(s)
- Artem Levin
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Süleyman Cinar
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Michael Paulus
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Julia Nase
- Technische Universität Dortmund, Fakultät Physik/Delta, D-44221 Dortmund, Germany
| | - Roland Winter
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Claus Czeslik
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany.
| |
Collapse
|
5
|
Dreydoppel M, Becker P, Raum HN, Gröger S, Balbach J, Weininger U. Equilibrium and Kinetic Unfolding of GB1: Stabilization of the Native State by Pressure. J Phys Chem B 2018; 122:8846-8852. [PMID: 30185038 DOI: 10.1021/acs.jpcb.8b06888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
NMR spectroscopy allows an all-atom view on pressure-induced protein folding, separate detection of different folding states, determination of their population, and the measurement of the folding kinetics at equilibrium. Here, we studied the folding of protein GB1 at pH 2 in a temperature and pressure dependent way. We find that the midpoints of temperature-induced unfolding increase with higher pressure. NMR relaxation dispersion experiments disclosed that the unfolding kinetics slow down at elevated pressure while the folding kinetics stay virtually the same. Therefore, pressure is stabilizing the native state of GB1. These findings extend the knowledge of the influence of pressure on protein folding kinetics, where so far typically a destabilization by increased activation volumes of folding was observed. Our findings thus point toward an exceptional section in the pressure-temperature phase diagram of protein unfolding. The stabilization of the native state could potentially be caused by a shift of p Ka values of glutamates and aspartates in favor of the negatively charged state as judged from pH sensitive chemical shifts.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Paul Becker
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Heiner N Raum
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Stefan Gröger
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| | - Ulrich Weininger
- Institute of Physics, Biophysics , Martin-Luther-University Halle-Wittenberg , D-06120 Halle (Saale) , Germany
| |
Collapse
|
6
|
Abstract
The combination of high-resolution NMR spectroscopy with pressure perturbation, known as variable-pressure NMR spectroscopy or simply high pressure NMR spectroscopy, is a relatively recent accomplishment, but is a technique expanding rapidly with high promise in future. The importance of the method is that it allows, for the first time in history, a systematic means of detecting and analyzing the structures and thermodynamic stability of high-energy sub-states in proteins. High-energy sub-states have been only vaguely known so far, as normally their populations are too low to be detected by conventional spectroscopic techniques including NMR spectroscopy. By now, however, high pressure NMR spectroscopy has established unequivocally that high-energy conformers are universally present in proteins in equilibrium with their stable folded counterparts. This chapter describes briefly the techniques of high pressure NMR spectroscopy and its unique and novel aspects as a method to explore protein structure in its high-energy paradigm with illustrative examples. It is now well established that high pressure NMR spectroscopy is a method to study intrinsic fluctuations of proteins, rather than those forced by pressure, by detecting structural changes amplified by pressure. Extension of the method to other bio-macromolecular systems is considered fairly straightforward.
Collapse
Affiliation(s)
- Kazuyuki Akasaka
- High Pressure Protein Research Center, Institute of Advanced Technology, Kinki University, 930 Nishimitani, Kinokawa, 649-6493, Japan,
| |
Collapse
|
7
|
Abstract
The molecular mechanisms underlying pressure-induced protein denaturation can be analyzed based on the pressure-dependent differences in the apparent volume occupied by amino acids inside the protein and when exposed to water in an unfolded conformation. This chapter presents a volumetric analysis of the peptide group and the 20 naturally occurring amino acid side chains in the interior of the native state, the micelle-like interior of the pressure-induced denatured state, and in the unfolded conformation modeled by low-molecular analogs of proteins. The transfer of a peptide group from the protein interior to water becomes increasingly favorable as pressure increases. This observation classifies solvation of peptide groups as a major driving force in pressure-induced protein denaturation. Polar side chains do not appear to exhibit significant pressure-dependent changes in their preference for the protein interior or solvent. The transfer of nonpolar side chains from the protein interior to water becomes more unfavorable as pressure increases. An inference can be drawn that a sizeable population of nonpolar side chains remains buried inside a solvent-inaccessible core of the pressure-induced denatured state. At elevated pressures this core, owing to the absence of structural constraints, may become packed almost as tightly as the interior of the native state. The presence and partial disappearance of large intraglobular voids is another driving force facilitating pressure-induced protein denaturation. Volumetric data presented here have implications for the kinetics of protein folding and shed light on the nature of the folding transition state ensembles.
Collapse
|
8
|
Lerbret A, Hédoux A, Annighöfer B, Bellissent-Funel MC. Influence of pressure on the low-frequency vibrational modes of lysozyme and water: A complementary inelastic neutron scattering and molecular dynamics simulation study. Proteins 2012; 81:326-40. [DOI: 10.1002/prot.24189] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 07/27/2012] [Accepted: 09/19/2012] [Indexed: 11/06/2022]
|
9
|
Effect of pressure on the solution structure and hydrogen bond properties of aqueous N-methylacetamide. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Sarma R, Paul S. Effect of trimethylamine-N-oxide on pressure-induced dissolution of hydrophobic solute. J Chem Phys 2012; 137:114503. [DOI: 10.1063/1.4752104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Sarma R, Paul S. The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions. J Chem Phys 2012; 137:094502. [DOI: 10.1063/1.4748101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Koo J, Czeslik C. High pressure sample cell for total internal reflection fluorescence spectroscopy at pressures up to 2500 bar. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:085109. [PMID: 22938334 DOI: 10.1063/1.4746385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Total internal reflection fluorescence (TIRF) spectroscopy is a surface sensitive technique that is widely used to characterize the structure and dynamics of molecules at planar liquid-solid interfaces. In particular, biomolecular systems, such as protein adsorbates and lipid membranes can easily be studied by TIRF spectroscopy. Applying pressure to molecular systems offers access to all kinds of volume changes occurring during assembly of molecules, phase transitions, and chemical reactions. So far, most of these volume changes have been characterized in bulk solution, only. Here, we describe the design and performance of a high pressure sample cell that allows for TIRF spectroscopy under high pressures up to 2500 bar (2.5 × 10(8) Pa), in order to expand the understanding of volume effects from the bulk phase to liquid-solid interfaces. The new sample cell is based on a cylindrical body made of Nimonic 90 alloy and incorporates a pressure transmitting sample cuvette. This cuvette is composed of a fused silica prism and a flexible rubber gasket. It contains the sample solution and ensures a complete separation of the sample from the liquid pressure medium. The sample solution is in contact with the inner wall of the prism forming the interface under study, where fluorescent molecules are immobilized. In this way, the new high pressure TIRF sample cell is very useful for studying any biomolecular layer that can be deposited at a planar water-silica interface. As examples, high pressure TIRF data of adsorbed lysozyme and two phospholipid membranes are presented.
Collapse
Affiliation(s)
- Juny Koo
- Technische Universität Dortmund, Fakultät Chemie, D-44221 Dortmund, Germany
| | | |
Collapse
|
13
|
Sarma R, Paul S. The effect of pressure on the hydration structure around hydrophobic solute: A molecular dynamics simulation study. J Chem Phys 2012; 136:114510. [DOI: 10.1063/1.3694834] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Qu C, Yu S, Bai A, Wang J. Study on the interactions between ginsenosides and lysozyme under acidic condition by ESI-MS and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 78:676-680. [PMID: 21183401 DOI: 10.1016/j.saa.2010.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/28/2010] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
In order to study the different effects of ginsenosides with similar structures, research on interactions between ginsenoside Rg1, Re and lysozyme was carried out by electrospray ionization mass spectrometry (ESI-MS) and molecular docking. The 1:1 and 2:1 noncovalent complexes of ginsenosides and lysozyme were observed in the mass spectra and the dissociation constants for them were directly calculated based on peak intensities of lysozyme and its noncovalent complexes with ginsenosides. The results showed that the 1:1 complex of ginsenoside Rg1 and lysozyme was more stable than that of ginsenoside Re and lysozyme. As the acidity increased, the stabilities of the 1:1 complexes of Rg1, Re and lysozyme both decreased. Interestingly, as the acidity increased, the stability of the 2:1 complex of Rg1 and lysozyme increased while that of Re decreased. From the result of molecular docking, ginsenosides interacted with the active sites of lysozyme. And the stability of the complexes could be affected by the conformation changes of lysozyme as acidity increased.
Collapse
Affiliation(s)
- Chenling Qu
- College of Grain Oil and Food Science, Henan University of Technology, 140 Songshan South Road, Zhengzhou 450052, China.
| | | | | | | |
Collapse
|
15
|
Danielewicz-Ferchmin I, Banachowicz EM, Ferchmin AR. Role of electromechanical and mechanoelectric effects in protein hydration under hydrostatic pressure. Phys Chem Chem Phys 2011; 13:17722-8. [DOI: 10.1039/c1cp21819k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Schuh S, Schwarzenbolz U, Henle T. Cross-linking of hen egg white lysozyme by microbial transglutaminase under high hydrostatic pressure: localization of reactive amino acid side chains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12749-12752. [PMID: 21087031 DOI: 10.1021/jf103490w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
After incubation of hen egg white lysozyme (HEWL) with microbial transglutaminase (mTG) under high pressure (400-600 MPa for 30 min at 40 °C), the formation of HEWL oligomers was observed via SDS electrophoresis. At atmospheric pressure, HEWL represents no substrate for mTG. Likewise, enzymatic treatment following a pretreatment with high pressure did not lead to oligomerization. Reactive amino acid side chains were identified by peptide mapping after tryptic digestion using RP-HPLC with ESI-TOF-MS. Isopeptide-containing peptide fragments were found only in HEWL samples simultaneously treated with enzyme and pressure. It was found that mTG exclusively cross-links HEWL under high pressure by formation of an isopeptide between lysine at position 1 and glutamine at position 121 in the peptide chain. Therefore, a pressure-induced partial and reversible unfolding of the protein with exposure of lysine and glutamine side chains has to occur, resulting in a site-directed oligomerization of HEWL by mTG. The enzymatic modification of HEWL by mTG under high pressure offers interesting perspectives for further functionalization reactions.
Collapse
Affiliation(s)
- Susanne Schuh
- Institute of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | | | | |
Collapse
|
17
|
Simmons DS, Sanchez IC. Pressure Effects on Polymer Coil−Globule Transitions near an LCST. Macromolecules 2010. [DOI: 10.1021/ma901485y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David S. Simmons
- Department of Chemical Engineering, The University of Texas at Austin, 1 University Station C0400, Austin, Texas 78712-0231
| | - Isaac C. Sanchez
- Department of Chemical Engineering, The University of Texas at Austin, 1 University Station C0400, Austin, Texas 78712-0231
| |
Collapse
|
18
|
Chalikian TV, Macgregor RB. Origins of Pressure-Induced Protein Transitions. J Mol Biol 2009; 394:834-42. [DOI: 10.1016/j.jmb.2009.10.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/29/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
|
19
|
Filabozzi A, Deriu A, Di Bari MT, Russo D, Croci S, Di Venere A. Elastic incoherent neutron scattering as a probe of high pressure induced changes in protein flexibility. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:63-7. [PMID: 19735743 DOI: 10.1016/j.bbapap.2009.08.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 08/26/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
Abstract
We report here the results of elastic incoherent neutron scattering experiments on three globular proteins (trypsin, lysozyme and beta-lactoglobulin) in different pressure intervals ranging from 1 bar to 5.5 kbar. A decrease of the mean square hydrogen fluctuations, u(2), has been observed upon increasing pressure. Trypsin and beta-lactoglobulin behave similarly while lysozyme shows much larger changes in u(2). This can be related to different steps in the denaturing processes and to the high propensity of lysozyme to form amyloids. Elastic incoherent neutron scattering has proven to be an effective microscopic technique for the investigation of pressure induced changes in protein flexibility.
Collapse
Affiliation(s)
- A Filabozzi
- Università di Roma Tor Vergata, Dipartimento di Fisica and CNISM, Roma, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Machuqueiro M, Baptista AM. Acidic range titration of HEWL using a constant-pH molecular dynamics method. Proteins 2008; 72:289-98. [DOI: 10.1002/prot.21923] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Bispo JAC, Santos JLR, Landini GF, Goncalves JM, Bonafe CFS. pH dependence of the dissociation of multimeric hemoglobin probed by high hydrostatic pressure. Biophys Chem 2007; 125:341-9. [PMID: 17046147 DOI: 10.1016/j.bpc.2006.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/21/2006] [Accepted: 09/21/2006] [Indexed: 11/19/2022]
Abstract
We investigated the thermodynamic features of the classic alkaline dissociation of multimeric hemoglobin (3.1 MDa) from Glossoscolex paulistus (Annelidea) using high hydrostatic pressure. Light scattering measurements up to microscopic thermodynamic equilibrium indicated a high pH dependency of dissociation and association. Electron microscopy and gel filtration corroborated these findings. The volume change of dissociation decreased in absolute values from -48.0 mL/mol of subunit at pH 6.0 to -19.2 mL/mol at pH 9.0, suggesting a lack of protein interactions under alkaline conditions. Concomitantly, an increase in pH reduced the Gibbs free energy of dissociation from 37.7 to 27.5 kJ/mol of subunit. The stoichiometry of proton release calculated from the pressure-induced dissociation curves was +0.602 mol of H(+)/mol of subunit. These results provide a direct quantification of proton participation in stabilizing the aggregated state of the hemoglobin, and contribute to our understanding of protein-protein interactions and of the surrounding conditions that modulate the process of aggregation.
Collapse
Affiliation(s)
- Jose A C Bispo
- Laboratório de Termodinâmica de Proteínas, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, SP, CEP 13083-970, Brazil
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Kazuyuki Akasaka
- School of biology-Oriented Science and Technology, Kinki University, 930 Nishimitani, Kinokawa-shi, Wakayama 649-6493, Japan.
| |
Collapse
|
23
|
Li H, Akasaka K. Conformational fluctuations of proteins revealed by variable pressure NMR. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:331-45. [PMID: 16448868 DOI: 10.1016/j.bbapap.2005.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 12/12/2005] [Accepted: 12/13/2005] [Indexed: 11/19/2022]
Abstract
With the high-resolution variable-pressure NMR spectroscopy, one can study conformational fluctuations of proteins in a much wider conformational space than hitherto explored by NMR and other spectroscopic techniques. This is because a protein in solution generally exists as a dynamic mixture of conformers mutually differing in partial molar volume, and pressure can select the population of a conformer according to its relative volume. In this review, we describe how variable-pressure NMR can be used to probe conformational fluctuations of proteins in a wide conformational space from the folded to the fully unfolded structures, with actual examples. Furthermore, the newly emerging technique "NMR snapshots" expresses amply fluctuating protein structures as changes in atomic coordinates. Finally, the concept of conformational fluctuation is extended to include intermolecular association leading to amyloidosis.
Collapse
Affiliation(s)
- Hua Li
- RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan
| | | |
Collapse
|
24
|
Banachowicz E. Light scattering studies of proteins under compression. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:405-13. [PMID: 16510323 DOI: 10.1016/j.bbapap.2006.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 12/23/2005] [Accepted: 01/17/2006] [Indexed: 11/21/2022]
Abstract
The scattering techniques are very convenient and effective in investigation of the shape, size and interactions of biological molecules close to their natural states in solution. However, it seems that from among a wide spectrum of scattering techniques, the light scattering ones have been relatively rarely used for the study of proteins under elevated hydrostatic pressure. This paper gives a brief description of the well developed possibilities of this technique for potential applications in the study of dissociation, aggregation and structural changes in proteins under compression. A short review of the already known applications is also given. Finally, the high-pressure dynamic light scattering results obtained by author on the lysozyme solution are shown and discussed.
Collapse
Affiliation(s)
- Ewa Banachowicz
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, PL-61-614 Poznañ, Poland.
| |
Collapse
|
25
|
Meinhold L, Smith JC. Pressure-dependent transition in protein dynamics at about revealed by molecular dynamics simulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:061908. [PMID: 16485975 DOI: 10.1103/physreve.72.061908] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Indexed: 05/06/2023]
Abstract
Molecular dynamics simulations of a crystalline protein, Staphylococcal nuclease, over the pressure range 1 bar to 15 kbar reveal a qualitative change in the internal protein motions at approximately 4 kbar. This change involves the existence of two linear regimes in the mean-square displacement for internal protein motion, <mu2>(P) with a twofold decrease in the slope for P>4 kbar. The major effect of pressure on the dynamics is a loss, with increasing pressure of large amplitude, collective protein modes below 2 THz effective frequency, accompanied by restriction of large-scale solvent translational motion.
Collapse
Affiliation(s)
- Lars Meinhold
- Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
| | | |
Collapse
|
26
|
Cordeiro Y, Kraineva J, Winter R, Silva JL. Volume and energy folding landscape of prion protein revealed by pressure. Braz J Med Biol Res 2005; 38:1195-201. [PMID: 16082459 DOI: 10.1590/s0100-879x2005000800006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The main hypothesis for prion diseases proposes that the cellular protein (PrP C) can be altered into a misfolded, ss-sheet-rich isoform, the PrP Sc (from scrapie). The formation of this abnormal isoform then triggers the transmissible spongiform encephalopathies. Here, we discuss the use of high pressure as a tool to investigate this structural transition and to populate possible intermediates in the folding/unfolding pathway of the prion protein. The latest findings on the application of high pressure to the cellular prion protein and to the scrapie PrP forms will be summarized in this review, which focuses on the energetic and volumetric properties of prion folding and conversion.
Collapse
Affiliation(s)
- Y Cordeiro
- Instituto de Bioquímica Médica, Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
27
|
Petersen SB, Jonson V, Fojan P, Wimmer R, Pedersen S. Sorbitol prevents the self-aggregation of unfolded lysozyme leading to and up to 13 degrees C stabilisation of the folded form. J Biotechnol 2005; 114:269-78. [PMID: 15522436 DOI: 10.1016/j.jbiotec.2004.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 07/12/2004] [Accepted: 07/15/2004] [Indexed: 10/26/2022]
Abstract
We present a calorimetric investigation of stabilisation of hen egg-white lysozyme with sorbitol in the pH range 3.8-10.5. Differential scanning calorimetry and steady-state fluorescence were used to determine the denaturation temperatures of lysozyme as a function of sorbitol concentration. The fluorescence data were collected in the presence of 2M urea to lower the melting point of the protein to an observable range of the instrument. The effect of sorbitol on the activation energy of unfolding was investigated by scanrate studies. The effect of sorbitol lysozyme interaction was investigated using isothermal titration calorimetry. The titration experiments were performed with folded as well as unfolded lysozyme to investigate in more detail the nature of the interaction. The data obtained in those experiments show a remarkable stabilisation effect of sorbitol. We observed a 4.0 degrees C increase in the Tm for 1 M sorbitol in the pH range 3.8-8.5 by scanning calorimetry. The effect increases dramatically at pH 9.5 where we observe a 9.5 degrees C stabilisation. An increase in the sorbitol concentration to 2 M stabilises lysozyme by 11.3-13.4 degrees C in the pH range 9.5-10.5. In the absence of urea, no significant effects of sorbitol were observed on the activation energy for unfolding for lysozyme at pH 4.5. This indicates together with the results from the titration experiments that sorbitol may stabilise the folded form of lysozyme by destabilising the unfolded form of lysozyme. At pH values at and above lysozyme's pI (approximately 9.3), the unfolding of the protein is accompanied with a substantial amount of self-aggregation seen in the calorimetry experiments in the ratio of DeltaH(cal)/DeltaH(vH). In the presence of sorbitol, the self-aggregation was counterbalanced by higher sorbitol concentrations. These results strongly suggest a negative influence of sorbitol on the unfolded form of lysozyme and thereby stabilising the native form.
Collapse
Affiliation(s)
- Steffen B Petersen
- The Biostructure and Protein Engineering Group, Department of Life Science, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark.
| | | | | | | | | |
Collapse
|
28
|
Watanabe M, Aizawa T, Demura M, Nitta K. Effect of hydrostatic pressure on conformational changes of canine milk lysozyme between the native, molten globule, and unfolded states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1702:129-36. [PMID: 15488764 DOI: 10.1016/j.bbapap.2004.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 06/18/2004] [Accepted: 06/18/2004] [Indexed: 10/26/2022]
Abstract
The effect of pressure on the unfolding of the native (N) and molten globule (MG) state of canine milk lysozyme (CML) was examined using ultraviolet (UV) spectroscopy at pH 4.5 and 2.0, respectively. It appeared that the thermally induced unfolding was promoted by the increase of pressure from atmospheric to 100 MPa, which indicates that both the N and MG states of CML unfolded with the decrease of the partial molar volume change (DeltaV). The volume changes needed for unfolding were estimated from the free energy change vs. pressure plots, and these volume changes became less negative from 20 to 60 degrees C. The DeltaV values at 25 degrees C were obtained for the N-MG (-46 cm3/mol) and MG-unfolded-state (U) transition (-40 cm3/mol). With regards to the MG-U transition, this value is contrastive to that of bovine alpha-lactalbumin (BLA) (0.9 cm3/mol), which is homologous to CML. Previous studies revealed that the MG state of CML was significantly more stable, and closer to the N state in structure, than that of BLA. In contrast to the swollen hydrophobic core of the MG state of BLA, our results suggest that the MG state of CML possesses a tightly packed hydrophobic core into which water molecules cannot penetrate.
Collapse
Affiliation(s)
- Masahiro Watanabe
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo Hokkaido 060-0810, Japan
| | | | | | | |
Collapse
|
29
|
Santos JLR, Bispo JAC, Landini GF, Bonafe CFS. Proton dependence of tobacco mosaic virus dissociation by pressure. Biophys Chem 2004; 111:53-61. [PMID: 15450375 DOI: 10.1016/j.bpc.2004.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/15/2004] [Accepted: 04/16/2004] [Indexed: 10/26/2022]
Abstract
Tobacco mosaic virus (TMV) is an intensely studied model of viruses. This paper reports an investigation into the dissociation of TMV by pH and pressure up to 220 MPa. The viral solution (0.25 mg/ml) incubated at 277 K showed a significant decrease in light scattering with increasing pH, suggesting dissociation. This observation was confirmed by HPLC gel filtration and electron microscopy. The calculated volume change of dissociation (DeltaV) decreased (absolute value) from -49.7 ml/mol of subunit at pH 3.8 to -21.7 ml/mol of subunit at pH 9.0. The decrease from pH 9.0 to 3.8 caused a stabilization of 14.1 kJ/mol of TMV subunit. The estimated proton release calculated from pressure-induced dissociation curves was 0.584 mol H(+)/mol of TMV subunit. These results suggest that the degree of virus inactivation by pressure and the immunogenicity of the inactivated structures can be optimized by modulating the surrounding pH.
Collapse
Affiliation(s)
- Jose L R Santos
- Laboratório de Termodinâmica de Proteínas, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, Campinas, SP, CEP 13083-970, Brazil
| | | | | | | |
Collapse
|
30
|
Niraula TN, Konno T, Li H, Yamada H, Akasaka K, Tachibana H. Pressure-dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils. Proc Natl Acad Sci U S A 2004; 101:4089-93. [PMID: 15016916 PMCID: PMC394761 DOI: 10.1073/pnas.0305798101] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although a diversity of proteins is known to form amyloid fibers, their common mechanisms are not clear. Here, we show that an intrinsically unfolded protein (U), represented by a disulfide-deficient variant of hen lysozyme with no tertiary structure, forms an amyloid-like fibril after prolonged incubation. Using variable pressure NMR along with sedimentation velocity, circular dichroism, and fluorescence measurements, we show that, before the fibril formation, the protein forms a pressure-dissociable, soluble assemblage (U'(n)) with a sedimentation coefficient of 17 S and a rich intermolecular beta-sheet structure. The reversible assemblage is characterized with a Gibbs energy for association of -23.3 +/- 0.8 kJ.mol(-1) and a volume increase of 52.7 +/- 11.3 ml.mol(-1) per monomer unit, and involves preferential interaction of hydrophobic residues in the initial association step. These results indicate that amyloid fibril formation can proceed from an intrinsically denatured protein and suggest a scheme N <==>U <==>U'(n)-->fibril as a common mechanism of fibril formation in amyloidogenic proteins, where two-way arrows represent reversible processes, one-way arrow represents an irreversible process, and N, U, and U'(n)represent, respectively, the native conformer, the unfolded monomeric conformer, and the soluble assemblage of unfolded conformers.
Collapse
Affiliation(s)
- Tara N Niraula
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Fernández García A, Heindl P, Voigt H, Büttner M, Wienhold D, Butz P, Stärke J, Tauscher B, Pfaff E. Reduced proteinase K resistance and infectivity of prions after pressure treatment at 60 °C. J Gen Virol 2004; 85:261-264. [PMID: 14718641 DOI: 10.1099/vir.0.19410-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
High hydrostatic pressure is a mild technology compared with high temperatures and is commonly used for food pasteurization. Crude brain homogenates of terminally diseased hamsters infected with scrapie 263K strain were heated at 60 degrees C and/or pressurized up to 1000 MPa for 2 h. Prion proteins were analysed for their proteinase K sensitivity using a Western blot technique. PrP(Sc) pressurized with 500 MPa or above proved to be proteinase K sensitive. To test the remaining infectivity of the pressurized material, hamsters were infected intracerebrally. Results showed a greatly delayed onset of disease (from 80 up to 153 days) when samples had been pressurized at 500 MPa and above. An increase in the survival rate was also observed: 47 % survival over 180 days was seen following infection with homogenates pressurized at 700-1000 MPa.
Collapse
Affiliation(s)
| | - Philipp Heindl
- Federal Research Centre for Nutrition, Haid-und-Neustr. 9, 76131 Karlsruhe, Germany
| | - Heiner Voigt
- Federal Research Centre for Virus Diseases of Animals, Paul-Ehrlich-Str. 28, 72076 Tübingen, Germany
| | - Matthias Büttner
- Federal Research Centre for Virus Diseases of Animals, Paul-Ehrlich-Str. 28, 72076 Tübingen, Germany
| | - Daniel Wienhold
- Federal Research Centre for Virus Diseases of Animals, Paul-Ehrlich-Str. 28, 72076 Tübingen, Germany
| | - Peter Butz
- Federal Research Centre for Nutrition, Haid-und-Neustr. 9, 76131 Karlsruhe, Germany
| | - Joachim Stärke
- Federal Research Centre for Nutrition, Haid-und-Neustr. 9, 76131 Karlsruhe, Germany
| | - Bernhard Tauscher
- Federal Research Centre for Nutrition, Haid-und-Neustr. 9, 76131 Karlsruhe, Germany
| | - Eberhard Pfaff
- Federal Research Centre for Virus Diseases of Animals, Paul-Ehrlich-Str. 28, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Kamatari YO, Yamada H, Akasaka K, Jones JA, Dobson CM, Smith LJ. Response of native and denatured hen lysozyme to high pressure studied by 15
N/1
H NMR spectroscopy. ACTA ACUST UNITED AC 2003. [DOI: 10.1046/j.1432-1327.2001.02050.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Akasaka K. Highly fluctuating protein structures revealed by variable-pressure nuclear magnetic resonance. Biochemistry 2003; 42:10875-85. [PMID: 12974621 DOI: 10.1021/bi034722p] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although our knowledge of basic folded structures of proteins has dramatically improved, the extent of our corresponding knowledge of higher-energy conformers remains extremely slim. The latter information is crucial for advancing our understanding of mechanisms of protein function, folding, and conformational diseases. Direct spectroscopic detection and analysis of structures of higher-energy conformers are limited, particularly under physiological conditions, either because their equilibrium populations are small or because they exist only transiently in the folding process. A new experimental strategy using pressure perturbation in conjunction with multidimensional NMR spectroscopy is being used to overcome this difficulty. A number of rare conformers are detected under pressure for a variety of proteins such as the Ras-binding domain of RalGDS, beta-lactoglobulin, dihydrofolate reductase, ubiquitin, apomyoglobin, p13(MTCP1), and prion, which disclose a rich world of protein structure between basically folded and globally unfolded states. Specific structures suggest that these conformers are designed for function and are closely identical to kinetic intermediates. Detailed structural determination of higher-energy conformers with variable-pressure NMR will extend our knowledge of protein structure and conformational fluctuation over most of the biologically relevant conformational space.
Collapse
Affiliation(s)
- Kazuyuki Akasaka
- Department of Biotechnological Science, School of Biology-Oriented Science and Technology, Kinki University, Wakayama 649-6493, Japan.
| |
Collapse
|
34
|
Refaee M, Tezuka T, Akasaka K, Williamson MP. Pressure-dependent changes in the solution structure of hen egg-white lysozyme. J Mol Biol 2003; 327:857-65. [PMID: 12654268 DOI: 10.1016/s0022-2836(03)00209-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The "rules" governing protein structure and stability are still poorly understood. Important clues have come from proteins that operate under extreme conditions, because these clarify the physical constraints on proteins. One obvious extreme is pressure, but so far little is known of the behavior of proteins under pressure, largely for technical reasons. We have therefore developed new methodology for calculating structure change in solution with pressure, using NMR chemical shift changes, and we report the change in structure of lysozyme on going from 30 bar to 2000 bar, this being the first solution structure of a globular protein under pressure. The alpha-helical domain is compressed by approximately 1%, due to tighter packing between helices. The interdomain region is also compressed. By contrast, the beta-sheet domain displays very little overall compression, but undergoes more structural distortion than the alpha-domain. The largest volume changes tend to occur close to hydrated cavities. Because isothermal compressibility is related to volume fluctuation, this suggests that buried water molecules play an important role in conformational fluctuation at normal pressures, and are implicated as the nucleation sites for structural changes leading to pressure denaturation or channel opening.
Collapse
Affiliation(s)
- Mohamed Refaee
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, PO Box 594, Sheffiled S10 2UH, UK
| | | | | | | |
Collapse
|
35
|
Kitahara R, Kato M, Taniguchi Y. High-pressure 1H NMR study of pressure-induced structural changes in the heme environments of metcyanomyoglobins. Protein Sci 2003; 12:207-17. [PMID: 12538884 PMCID: PMC2312426 DOI: 10.1110/ps.4620103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2001] [Revised: 08/27/2002] [Accepted: 07/29/2002] [Indexed: 10/27/2022]
Abstract
The effect of pressure on the heme environment structure of sperm whale and horse heart metcyanomyoglobins was investigated up to 300 MPa by high-pressure (1)H NMR spectroscopy. Pressure-induced changes in the distances between the observed protons and the heme iron atom were estimated from changes in the dipolar shift due to the paramagnetic effect on the protons. The changes showed that the heme peripheral structure as a whole was compressed by pressure; the movements of the protons in the heme peripheral residues were in the range of +0.16 to -0.54 A/300 MPa. One-dimensional compressibilities for the protons, excluding the protons of the distal His residue, were in the range of 1.0 x 10(-4) to 6.1 x 10(-4)/MPa. The movements of the protons induced by pressure correlated well with the distance between the protons and cavities in the protein. The distal His residue (His 64) moved toward the outside of the heme pocket, but remained in the pocket even at 300 MPa. This movement was driven dominantly by a change in the dihedral angle around the C(alpha)-C(beta) rotational bond of the residue. Comparative work on horse heart metcyanomyoglobin implied that the conformational change of the His 64 imidazole ring was larger in the horse heart metcyanomyoglobin than in the sperm whale metcyanomyoglobin.
Collapse
Affiliation(s)
- Ryo Kitahara
- Department of Applied Chemistry, College of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | | |
Collapse
|
36
|
Kitahara R, Royer C, Yamada H, Boyer M, Saldana JL, Akasaka K, Roumestand C. Equilibrium and pressure-jump relaxation studies of the conformational transitions of P13MTCP1. J Mol Biol 2002; 320:609-28. [PMID: 12096913 DOI: 10.1016/s0022-2836(02)00516-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conformational transitions of a small oncogene product, p13(MTCP1), have been studied by high-pressure fluorescence of the intrinsic tryptophan emission and high-pressure 1D and 2D 1H-15N NMR. While the unfolding transition monitored by fluorescence is cooperative, two kinds of NMR spectral changes were observed, depending on the pressure range. Below approximately 200 MPa, pressure caused continuous, non-linear shifts of many of the 15N and 1H signals, suggesting the presence of an alternate folded conformer(s) in rapid equilibrium (tau<<ms) with the basic native structure. Above approximately 200 MPa, pressure caused a sharp decrease in the intensity of the folded proteins signals, while the peaks corresponding to disordered structures increased, yielding a free energy of unfolding change of 6.0 kcal/mol and associated volume change of -100 ml/mol, in agreement with the fluorescence result. Differential scanning calorimetry also reveals two transitions between 21 and 65 degrees C, confirming the existence of an additional species under mildly denaturing conditions. We report here a real-time observation of pressure-jump unfolding kinetics by 2D NMR spectroscopy on P13MTCP1 made possible due to its very long relaxation times at high pressure revealed by fluorescence studies. Within the dead-time after the pressure-jump, the NMR spectra of the native conformer changed to those of the transient conformational species, identified in the equilibrium studies, demonstrating the equivalence between a transient species and an equilibrium excited state. After these rapid spectral changes, the intensities of all of the individual 15N-1H cross-peaks decreased gradually, and those of the disordered structure increased, consistent with the slow relaxation to the unfolded form at this pressure. Rate constants of unfolding monitored at individual amide sites within the beta-barrel were similar to those obtained from fluorescence and from side-chain protons in the hydrophobic core region, consistent with nearly cooperative unfolding. However, some heterogeneity in the apparent unfolding rate constants is apparent across the sequence and can be understood as non-uniform effects of pressure on the unfolding rate constant due to non-uniform hydration.
Collapse
Affiliation(s)
- Ryo Kitahara
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Niraula TN, Haraoka K, Ando Y, Li H, Yamada H, Akasaka K. Decreased thermodynamic stability as a crucial factor for familial amyloidotic polyneuropathy. J Mol Biol 2002; 320:333-42. [PMID: 12079390 DOI: 10.1016/s0022-2836(02)00425-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A single mutation in the wild-type transthyretin (WT TTR) such as V30M causes a familial amyloidotic polyneuropathy disease. Comparison of the three-dimensional crystal structures of WT and V30M does not tell much about the reason. High-pressure NMR revealed that at neutral pH both WT and V30M exist as equilibrium between the native tetramer and the dissociated/unfolded monomer. The native tetramer is highly stable in WT (deltaG(0)=104 kJ/mol at 37 degrees C, pH 7.1), but the stability is significantly reduced in V30M (deltadeltaG(0)=-18 kJ/mol), increasing the fraction of the unfolded monomer by a 1000-fold. Significant reduction of thermodynamic stability of WT TTR by mutation could be a crucial factor for familial amyloidotic polyneuropathy.
Collapse
Affiliation(s)
- Tara Nath Niraula
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Kitahara R, Yamada H, Akasaka K, Wright PE. High pressure NMR reveals that apomyoglobin is an equilibrium mixture from the native to the unfolded. J Mol Biol 2002; 320:311-9. [PMID: 12079388 DOI: 10.1016/s0022-2836(02)00449-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pressure-induced reversible conformational changes of sperm whale apomyoglobin have been studied between 30 bar and 3000 bar on individual residue basis by utilizing 1H/15N hetero nuclear single-quantum coherence two-dimensional NMR spectroscopy at pH 6.0 and 35 degrees C. Apomyoglobin showed a series of pressure-dependent NMR spectra as a function of pressure, assignable to the native (N), intermediates (I), molten globule (MG) and unfolded (U) conformers. At 30 bar, the native fold (N) shows disorder only in the F helix. Between 500 bar and 1200 bar, a series of locally disordered conformers I are produced, in which local disorder occurs in the C helix, the CD loop, the G helix and part of the H helix. At 2000 bar, most cross-peaks exhibit severe line-broadening, suggesting the formation of a molten globule, but at 3000 bar all the cross-peaks reappear, showing that the molten globule turns into a well-hydrated, mobile unfolded conformation U. Since all the spectral changes were reversible with pressure, apomyoglobin is considered to exist as an equilibrium mixture of the N, I, MG and U conformers at all pressures. MG is situated at 2.4+/-(0.1) kcal/mol above N at 1 bar and the unfolding transition from the combined N-I state to MG is accompanied by a loss of partial molar volume by 75+/-(3) ml/mol. On the basis of these observations, we postulate a theorem that the partial molar volume of a protein decreases in parallel with the loss of its conformational order.
Collapse
Affiliation(s)
- Ryo Kitahara
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
39
|
Arnold MR, Kremer W, Lüdemann HD, Kalbitzer HR. 1H-NMR parameters of common amino acid residues measured in aqueous solutions of the linear tetrapeptides Gly-Gly-X-Ala at pressures between 0.1 and 200 MPa. Biophys Chem 2002; 96:129-40. [PMID: 12034435 DOI: 10.1016/s0301-4622(02)00018-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For the interpretation of chemical shift changes induced by pressure in proteins, a comparison with random-coil data is important. For providing such a data basis, the pressure dependence of the 1H-NMR chemical shifts of the amino acids X in the random-coil model peptides Gly-Gly-X-Ala were studied for the 20 common amino acids at two pH values (pH 5.0 and 5.4) at 305 K, in the pressure range from 0.1 to 200 MPa. The largest shift changes deltadelta with pressure p can be observed for the backbone amide protons. The average linear pressure coefficient delta(deltap) is 0.38 ppm GPa(-1), with a root mean square deviation of 0.2 ppm GPa(-1). In contrast to the downfield shift typical for amide protons, the H(alpha)-resonances typically shift upfield, with a pressure coefficient of -0.025 ppm GPa(-1) and a root mean square deviation of 0.05 ppm GPa(-1). The side chain resonances are only weakly influenced by pressure, on average they are shifted by 0.014 ppm GPa(-1)) with a root mean square deviation of 0.14 ppm GPa(-1). The exceptions are the side chain amide protons of asparagine and glutamine. Here, values of 0.214 (Asn H(delta21)), 0.417 (Asn H(delta22)), 0.260 (Gln H(varepsilon21)) and 0.395 (Gln H(varepsilon22)) ppm GPa(-1) can be observed. In both cases, the pressure dependent shift is larger for the pro-E proton than for the pro-Z proton. Within the limits of error the equilibrium constant for the trans- and cis-conformers at the proline peptide bond is independent of pressure in the pressure range studied.
Collapse
Affiliation(s)
- Martin Reinhard Arnold
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
40
|
Randolph TW, Seefeldt M, Carpenter JF. High hydrostatic pressure as a tool to study protein aggregation and amyloidosis. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:224-34. [PMID: 11983398 DOI: 10.1016/s0167-4838(01)00346-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aggregation of proteins is a serious problem, affecting both industrial production of proteins and human health. Despite recent advances in the theories and experimental techniques available to address understanding of protein aggregation processes, mechanisms of aggregate formation have proved challenging to study. This is in part because the typical irreversibility of protein aggregation processes at atmospheric conditions complicates analysis of their kinetics and thermodynamics. Because high hydrostatic pressures act to disfavor the hydrophobic and electrostatic interactions that cause protein aggregation, studies conducted under high hydrostatic pressures may allow protein aggregates to be formed reversibly, enabling thermodynamic and kinetic parameters to be measured in greater detail. Although application of high hydrostatic pressures to protein aggregation problems is rather recent, a growing literature, reviewed herein, suggests that high pressure may be a useful tool for both understanding protein aggregation and reversing it in industrial applications.
Collapse
Affiliation(s)
- Theodore W Randolph
- Department of Chemical Engineering, University of Colorado, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
41
|
Jonas J. High-resolution nuclear magnetic resonance studies of proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:145-59. [PMID: 11983393 DOI: 10.1016/s0167-4838(01)00341-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.
Collapse
Affiliation(s)
- Jiri Jonas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Urbana, IL 61801, USA.
| |
Collapse
|
42
|
Abstract
Pressure is a thermodynamic variable which is particularly suitable for exploration of the properties of biological macromolecules. For proteins, in particular, denaturation induced by pressure is different from that induced by temperature or denaturants. The response of proteins to pressure changes can provide information on properties of their native and non-native states. This review focuses on molecular dynamics studies of the effect of pressure on detailed atomic models of proteins. It also reports on other theoretical approaches, such as Monte Carlo simulations, which have been used to study simplified models. Another purpose of this review is to try to point out potential future studies that may be both interesting and feasible, with constantly increasing computing power.
Collapse
Affiliation(s)
- Emanuele Paci
- Laboratoire de Chimie Biophysique, ISIS, Université Louis Pasteur, Strasbourg, France.
| |
Collapse
|
43
|
Abstract
We review the results of compressibility studies on proteins and low molecular weight compounds that model the hydration properties of these biopolymers. In particular, we present an analysis of compressibility changes accompanying conformational transitions of globular proteins. This analysis, in conjunction with experimental compressibility data on protein transitions, were used to define the changes in the hydration properties and intrinsic packing associated with native-to-molten globule, native-to-partially unfolded, and native-to-fully unfolded transitions of globular proteins. In addition, we discuss the molecular origins of predominantly positive changes in compressibility observed for pressure-induced denaturation transitions of globular proteins. Throughout this review, we emphasize the importance of compressibility data for characterizing protein transitions, while also describing how such data can be interpreted to gain insight into role that hydration and intrinsic packing play in modulating the stability of and recognition between proteins and other biologically important compounds.
Collapse
Affiliation(s)
- Nicolas Taulier
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
44
|
Royer CA. Revisiting volume changes in pressure-induced protein unfolding. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:201-9. [PMID: 11983396 DOI: 10.1016/s0167-4838(01)00344-2] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has long been known that the application of hydrostatic pressure generally leads to the unfolding of proteins. Despite a relatively large number of reports in the literature over the past few decades, there has been great confusion over the sign and magnitude as well as the fundamental factors contributing to volume effects in protein conformational transitions. It is the goal of this review to present and discuss the results obtained concerning the sign and magnitude of the volume changes accompanying the unfolding of proteins. The vast majority of cases point to a significant decrease in volume upon unfolding. Nonetheless, there is evidence that, due to differences in the thermal expansivity of the folded and unfolded states of proteins reported in a half dozen manuscripts, that the sign of the volume change may become positive at higher temperatures.
Collapse
Affiliation(s)
- Catherine A Royer
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR 5048, Montpellier, France.
| |
Collapse
|
45
|
Akasaka K, Yamada H. On-line cell high-pressure nuclear magnetic resonance technique: application to protein studies. Methods Enzymol 2002; 338:134-58. [PMID: 11460546 DOI: 10.1016/s0076-6879(02)38218-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- K Akasaka
- Department of Molecular Science, Kobe University, Graduate School of Science and Technology, Kobe 657-8501, Japan
| | | |
Collapse
|
46
|
Inoue K, Maurer T, Yamada H, Herrmann C, Horn G, Kalbitzer HR, Akasaka K. High-pressure NMR study of the complex of a GTPase Rap1A with its effector RalGDS. A conformational switch in RalGDS revealed from non-linear pressure shifts. FEBS Lett 2001; 506:180-4. [PMID: 11602241 DOI: 10.1016/s0014-5793(01)02809-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Unusually large non-linear 1H and 15N nuclear magnetic resonance chemical shifts against pressure have been detected for individual amide groups of the Ras-binding domain of Ral guanine dissociation stimulator (GDS). The non-linear response is largest in the region of the protein remote from the Rap1A-binding site, which increases by about two-fold by the complex formation with its effector protein Rap1A. The unusual non-linearity is explained by the increasing population of another conformer (N'), lying energetically above the basic native conformer (N), at higher pressure. It is considered likely that the conformational change from N to N' in the Ras-binding domain of RalGDS works as a switch to transmit the effector signal further to molecules of different RalGDS-dependent signaling pathways.
Collapse
Affiliation(s)
- K Inoue
- Graduate School of Science and Technology, Kobe University, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Sasahara K, Sakurai M, Nitta K. Pressure effect on denaturant-induced unfolding of hen egg white lysozyme. Proteins 2001; 44:180-7. [PMID: 11455591 DOI: 10.1002/prot.1083] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The influence of hydrostatic pressure (< or =100 MPa) on denaturant-induced unfolding of hen egg white lysozyme was investigated by means of ultraviolet spectroscopy at various temperatures. Assuming a two-state transition model, the dependence of Gibbs free-energy change of unfolding on the denaturant concentration was calculated. Under applied hydrostatic pressure, these data were interpreted as suggesting that a two-state model is not applicable in a restricted temperature range; the dominant effect of hydrostatic pressure is to affect the cooperativity in protein unfolding due to a chemical equilibrium shift in the direction of the reduction in the system volume. The deviation from the two-state transition model appears to be rationalized by assuming that applied pressure induces an intermediate conformation between the native and unfolded states of the protein. The implication of the thermodynamic stability of protein under pressure was discussed.
Collapse
Affiliation(s)
- K Sasahara
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | |
Collapse
|
48
|
Akasaka K, Li H. Low-lying excited states of proteins revealed from nonlinear pressure shifts in 1H and 15N NMR. Biochemistry 2001; 40:8665-71. [PMID: 11467925 DOI: 10.1021/bi010312u] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K Akasaka
- Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | | |
Collapse
|
49
|
Kuwata K, Li H, Yamada H, Batt CA, Goto Y, Akasaka K. High pressure NMR reveals a variety of fluctuating conformers in beta-lactoglobulin. J Mol Biol 2001; 305:1073-83. [PMID: 11162115 DOI: 10.1006/jmbi.2000.4350] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High pressure 1H/15N two-dimensional NMR spectroscopy has been used to study conformational fluctuation in bovine beta-lactoglobulin at pH 2.0 and 36 degrees C. Pressure dependencies of 1H and 15N chemical shifts and cross-peak intensities were analyzed at more than 80 independent atom sites between 30 and 2000 bar. Unusually large and non-linear chemical shift pressure dependencies are found for residues centering in the hydrophobic core region, suggesting the existence of low-lying excited native states (N') of the protein. Measurement of 1H/15N cross-peak intensities at individual amide sites as a function of pressure suggests that unfolding events occur independently in two sides of the beta-barrel, i.e. the hydrophobic core side (betaF-H) (producing I2) and the non-core side (betaB-E) (producing I1). At 1 bar the stability is higher for the core region (DeltaG0 = 6.5(+/-2.0) kcal/mol) than for the non-core region (4.6(+/-1.3) kcal/mol), but at high pressure the stability is reversed due to a larger DeltaV value of unfolding for the core region (90.0(+/-35.2) ml/mol) than that for the non-core region (57.4(+/-14.4) ml/mol), possibly due to an uneven distribution of cavities. The DeltaG0 profile along the amino acid sequence obtained from the pressure experiment is found to coincide well with that estimated from hydrogen exchange experiments. Altogether, the high pressure NMR experiment has revealed a variety of fluctuating conformers of beta-lactoglobulin, notably N, N', I1, I2 and the totally unfolded conformer U. Fluctuation of N to I1 and I2 conformers with open barrel structures could be a common design of lipocalin family proteins which bind various hydrophobic compounds in its barrel structure.
Collapse
Affiliation(s)
- K Kuwata
- Department of Physiology School of Medicine, Gifu University, 40 Tsukasamachi, Gifu, 500-8705, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Marchi M, Akasaka K. Simulation of Hydrated BPTI at High Pressure: Changes in Hydrogen Bonding and Its Relation with NMR Experiments. J Phys Chem B 2000. [DOI: 10.1021/jp002539p] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Massimo Marchi
- Section de Biophysique des Protéines et des Membranes, DBCM, DSV, CEA, Centre d'Études, Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Kazuyuki Akasaka
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|