1
|
Yang JF, You J. Regulation of Polyomavirus Transcription by Viral and Cellular Factors. Viruses 2020; 12:E1072. [PMID: 32987952 PMCID: PMC7601649 DOI: 10.3390/v12101072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Polyomavirus infection is widespread in the human population. This family of viruses normally maintains latent infection within the host cell but can cause a range of human pathologies, especially in immunocompromised individuals. Among several known pathogenic human polyomaviruses, JC polyomavirus (JCPyV) has the potential to cause the demyelinating disease progressive multifocal leukoencephalopathy (PML); BK polyomavirus (BKPyV) can cause nephropathy in kidney transplant recipients, and Merkel cell polyomavirus (MCPyV) is associated with a highly aggressive form of skin cancer, Merkel cell carcinoma (MCC). While the mechanisms by which these viruses give rise to the relevant diseases are not well understood, it is clear that the control of gene expression in each polyomavirus plays an important role in determining the infectious tropism of the virus as well as their potential to promote disease progression. In this review, we discuss the mechanisms governing the transcriptional regulation of these pathogenic human polyomaviruses in addition to the best-studied simian vacuolating virus 40 (SV40). We highlight the roles of viral cis-acting DNA elements, encoded proteins and miRNAs that control the viral gene expression. We will also underline the cellular transcription factors and epigenetic modifications that regulate the gene expression of these viruses.
Collapse
Affiliation(s)
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
2
|
Spanielová H, Fraiberk M, Suchanová J, Soukup J, Forstová J. The encapsidation of polyomavirus is not defined by a sequence-specific encapsidation signal. Virology 2014; 450-451:122-31. [PMID: 24503074 DOI: 10.1016/j.virol.2013.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/25/2013] [Accepted: 12/10/2013] [Indexed: 11/17/2022]
Abstract
Mouse polyomavirus (MPyV) is considered a potential tool for the application of gene therapy; however, the current knowledge of the encapsulation of DNA into virions is vague. We used a series of assays based on the encapsidation of a reporter vector into MPyV pseudovirions to identify putative cis-acting elements that are involved in DNA encapsidation. None of the sequences that were derived from MPyV have been shown to solely enhance the encapsidation of a reporter vector in the assay. The frequency of encapsidation strongly correlated with the total intracellular amount of the vector after transfection. The encapsidation of target DNA into the pseudovirions was shown to be non-specific, and the packaging of non-replicated DNA was observed. We propose that the actual concentration of target DNA at the sites of virion formation is the primary factor that determines its selection for encapsidation.
Collapse
Affiliation(s)
- Hana Spanielová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic.
| | - Martin Fraiberk
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jiřina Suchanová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jakub Soukup
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44 Prague 2, Czech Republic
| |
Collapse
|
3
|
Mukherjee S, Kler S, Oppenheim A, Zlotnick A. Uncatalyzed assembly of spherical particles from SV40 VP1 pentamers and linear dsDNA incorporates both low and high cooperativity elements. Virology 2009; 397:199-204. [PMID: 19942248 DOI: 10.1016/j.virol.2009.10.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/18/2009] [Accepted: 10/31/2009] [Indexed: 11/24/2022]
Abstract
The capsid of SV40 virion is comprised of 72 pentamers of the major capsid protein, VP1. We examined the synergism between pentamer-pentamer interaction and pentamer-DNA interaction using a minimal system of purified VP1 and a linear dsDNA 600-mer, comparing electrophoresis with electron microscopy and size exclusion chromatography. At low VP1/DNA ratios, large tubes were observed that apparently did not survive native agarose gel electrophoresis. As the VP1 concentration increased, electrophoretic migration was slower and tubes were replaced by 200 A diameter particles and excess free pentamer. At high VP1/DNA ratios, a progressively larger fraction of particles was similar to 450 A diameter virions. VP1 association with DNA is very strong compared to the concentrations in these experiments yet, paradoxically, stable complexes appear only at high ratios of VP1 to DNA. These data suggest a DNA saturation-dependent nucleation event based on non-specific pentamer-DNA interaction that controls assembly and the ultimate capsid geometry.
Collapse
Affiliation(s)
- Santanu Mukherjee
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
4
|
Li B, Wang X, Zhou F, Saunders NA, Frazer IH, Zhao KN. Up-regulated expression of Sp1 protein coincident with a viral protein in human and mouse differentiating keratinocytes may act as a cell differentiation marker. Differentiation 2008; 76:1068-80. [DOI: 10.1111/j.1432-0436.2008.00300.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
5
|
Mukherjee S, Abd-El-Latif M, Bronstein M, Ben-nun-Shaul O, Kler S, Oppenheim A. High cooperativity of the SV40 major capsid protein VP1 in virus assembly. PLoS One 2007; 2:e765. [PMID: 17712413 PMCID: PMC1942081 DOI: 10.1371/journal.pone.0000765] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 07/16/2007] [Indexed: 11/19/2022] Open
Abstract
SV40 is a small, non enveloped DNA virus with an icosahedral capsid of 45 nm. The outer shell is composed of pentamers of the major capsid protein, VP1, linked via their flexible carboxy-terminal arms. Its morphogenesis occurs by assembly of capsomers around the viral minichromosome. However the steps leading to the formation of mature virus are poorly understood. Intermediates of the assembly reaction could not be isolated from cells infected with wt SV40. Here we have used recombinant VP1 produced in insect cells for in vitro assembly studies around supercoiled heterologous plasmid DNA carrying a reporter gene. This strategy yields infective nanoparticles, affording a simple quantitative transduction assay. We show that VP1 assembles under physiological conditions into uniform nanoparticles of the same shape, size and CsCl density as the wild type virus. The stoichiometry is one DNA molecule per capsid. VP1 deleted in the C-arm, which is unable to assemble but can bind DNA, was inactive indicating genuine assembly rather than non-specific DNA-binding. The reaction requires host enzymatic activities, consistent with the participation of chaperones, as recently shown. Our results demonstrate dramatic cooperativity of VP1, with a Hill coefficient of ∼6. These findings suggest that assembly may be a concerted reaction. We propose that concerted assembly is facilitated by simultaneous binding of multiple capsomers to a single DNA molecule, as we have recently reported, thus increasing their local concentration. Emerging principles of SV40 assembly may help understanding assembly of other complex systems. In addition, the SV40-based nanoparticles described here are potential gene therapy vectors that combine efficient gene delivery with safety and flexibility.
Collapse
Affiliation(s)
- Santanu Mukherjee
- Department of Hematology, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Mahmoud Abd-El-Latif
- Department of Hematology, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Michal Bronstein
- Department of Hematology, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Orly Ben-nun-Shaul
- Department of Hematology, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Stanislav Kler
- Department of Hematology, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Ariella Oppenheim
- Department of Hematology, Hadassah Medical School, Hebrew University, Jerusalem, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
6
|
Roitman-Shemer V, Stokrova J, Forstova J, Oppenheim A. Assemblages of simian virus 40 capsid proteins and viral DNA visualized by electron microscopy. Biochem Biophys Res Commun 2006; 353:424-30. [PMID: 17189615 DOI: 10.1016/j.bbrc.2006.12.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 12/07/2006] [Indexed: 11/17/2022]
Abstract
SV40 assembles in the nucleus by addition of capsid proteins to the minichromosome. The VP15VP2/3 capsomer is composed of a pentamer of the major protein VP1 complexed with a monomer of a minor protein, VP2 or VP3. In the capsid, the capsomers are bound together via their flexible carboxy-terminal arms. Our previous studies suggested that the capsomers are recruited to the packaging signal ses via avid interaction with Sp1. During assembly Sp1 is displaced, allowing chromatin compaction. Here we investigated the interactions in vitro of VP1(5)VP2/3 capsomers with the entire SV40 genome, using mutant VP1 deleted in the carboxy-arm that cannot assemble, but retains DNA-binding capacity. EM revealed that VP1(5)VP2/3 complexes bind non-specifically at random locations around the DNA. Sp1 was absent from mature virions. The findings suggest that multiple capsomers attach simultaneously to the viral genome, increasing their local concentration, facilitating rapid, concerted assembly reaction and removal of Sp1.
Collapse
Affiliation(s)
- Vered Roitman-Shemer
- Department of Hematology, Hebrew University-Hadassah Medical School, 91120 Jerusalem, Israel
| | | | | | | |
Collapse
|
7
|
Abstract
Simian virus-40 (SV40), an icosahedral papovavirus, has recently been modified to serve as a gene delivery vector. Recombinant SV40 vectors (rSV40) are good candidates for gene transfer, as they display some unique features: SV40 is a well-known virus, nonreplicative vectors are easy-to-make, and can be produced in titers of 10(12) IU/ml. They also efficiently transduce both resting and dividing cells, deliver persistent transgene expression to a wide range of cell types, and are nonimmunogenic. Present disadvantages of rSV40 vectors for gene therapy are a small cloning capacity and the possible risks related to random integration of the viral genome into the host genome. Considerable efforts have been devoted to modifing this virus and setting up protocols for viral production. Preliminary therapeutic results obtained both in tissue culture cells and in animal models for heritable and acquired diseases indicate that rSV40 vectors are promising gene transfer vehicles. This article reviews the work performed with SV40 viruses as recombinant vectors for gene transfer. A summary of the structure, genomic organization, and life cycle of wild-type SV40 viruses is presented. Furthermore, the strategies utilized for the development, production, and titering of rSV40 vectors are discussed. Last, the therapeutic applications developed to date are highlighted.
Collapse
Affiliation(s)
- Maria Vera
- School of Medicine, Foundation for Applied Medical Research, Division of Gene Therapy, Laboratory of Vectors Development, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
8
|
Gordon-Shaag A, Yosef Y, Abd El-Latif M, Oppenheim A. The abundant nuclear enzyme PARP participates in the life cycle of simian virus 40 and is stimulated by minor capsid protein VP3. J Virol 2003; 77:4273-82. [PMID: 12634384 PMCID: PMC150672 DOI: 10.1128/jvi.77.7.4273-4282.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The abundant nuclear enzyme poly(ADP-ribose) polymerase (PARP) functions in DNA damage surveillance and repair and at the decision between apoptosis and necrosis. Here we show that PARP binds to simian virus 40 (SV40) capsid proteins VP1 and VP3. Furthermore, its enzymatic activity is stimulated by VP3 but not by VP1. Experiments with purified mutant proteins demonstrated that the PARP binding domain in VP3 is localized to the 35 carboxy-terminal amino acids, while a larger peptide of 49 amino acids was required for full stimulation of its activity. The addition of 3-aminobenzamide (3-AB), a known competitive inhibitor of PARP, demonstrated that PARP participates in the SV40 life cycle. The titer of SV40 propagated on CV-1 cells was reduced by 3-AB in a dose-dependent manner. Additional experiments showed that 3-AB did not affect viral DNA replication or capsid protein production. PARP did not modify the viral capsid proteins in in vitro poly(ADP-ribosylation) assays, implying that it does not affect SV40 infectivity. On the other hand, it greatly reduced the magnitude of the host cytopathic effects, a hallmark of SV40 infection. Additional experiments suggested that the stimulation of PARP activity by VP3 leads the infected cell to a necrotic pathway, characterized by the loss of membrane integrity, thus facilitating the release of mature SV40 virions from the cells. Our studies identified a novel function of the minor capsid protein VP3 in the recruitment of PARP for the SV40 lytic process.
Collapse
Affiliation(s)
- Ariela Gordon-Shaag
- Department of Hematology, The Hebrew University-Hadassah Medical School and Hadassah University Hospital, Ein Kerem, Jerusalem, Israel 91120
| | | | | | | |
Collapse
|
9
|
Farrell ML, Mertz JE. Hormone response element in SV40 late promoter directly affects synthesis of early as well as late viral RNAs. Virology 2002; 297:307-18. [PMID: 12083829 DOI: 10.1006/viro.2002.1478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that the presence of a hormone response element surrounding the transcription initiation site of the SV40 major late promoter (+1 HRE) confers a replication advantage to the virus in a cell-type-specific manner. We determine here the mechanism by which the +1 HRE confers this advantage by analyzing in detail the various stages of the viral life cycle of wild-type versus a +1 HRE mutant in MA-134 cells. We show that the mutant overexpresses late genes at the expense of early genes at early times after infection. This initial underproduction of early RNA leads, subsequently, to an underproduction of large T-antigen, viral DNA, and infectious virions. We conclude that the +1 HRE is necessary for the proper initial regulation of transcription from the early as well as late promoter so the cascade of subsequent events can be executed for the optimal production of virions.
Collapse
Affiliation(s)
- Michael L Farrell
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706-1599, USA
| | | |
Collapse
|
10
|
Gordon-Shaag A, Ben-Nun-Shaul O, Roitman V, Yosef Y, Oppenheim A. Cellular transcription factor Sp1 recruits simian virus 40 capsid proteins to the viral packaging signal, ses. J Virol 2002; 76:5915-24. [PMID: 12021324 PMCID: PMC136189 DOI: 10.1128/jvi.76.12.5915-5924.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 (SV40) capsid assembly occurs in the nucleus. All three capsid proteins bind DNA nonspecifically, raising the dilemma of how they attain specificity to the SV40 minichromosome in the presence of a large excess of genomic DNA. The SV40 packaging signal, ses, which is required for assembly, is composed of multiple DNA elements that bind transcription factor Sp1. Our previous studies showed that Sp1 participates in SV40 assembly and that it cooperates in DNA binding with VP2/3. We hypothesized that Sp1 recruits the capsid proteins to the viral minichromosome, conferring upon them specific DNA recognition. Here, we have tested the hypothesis. Computer analysis showed that the combination of six tandem GC boxes at ses is not found at cellular promoters and therefore is unique to SV40. Cooperativity in DNA binding between Sp1 and VP2/3 was not abolished at even a 1,000-fold excess of cellular DNA, providing strong support for the recruitment hypothesis. Sp1 also binds VP1 and cooperates with VP1 in DNA binding. VP1 pentamers (VP1(5)) avidly interact with VP2/3, utilizing the same VP2/3 domain as described for polyomavirus. We conclude that VP1(5)-VP2/3 building blocks are recruited by Sp1 to ses, where they form the nucleation center for capsid assembly. By this mechanism the virus ensures that capsid formation is initiated at a single site around its minichromosome. Sp1 enhances the formation of SV40 pseudovirions in vitro, providing additional support for the model. Analyses of Sp1 and VP3 deletion mutants showed that Sp1 and VP2/3 bind one another and cooperate in DNA binding through their DNA-binding domains, with additional contacts outside these domains. VP1 contacts Sp1 at residues outside the Sp1 DNA-binding domain. These and additional data allowed us to propose a molecular model for the VP1(5)-VP2/3-DNA-Sp1 complex.
Collapse
Affiliation(s)
- Ariela Gordon-Shaag
- Department of Hematology, The Hebrew University-Hadassah Medical School and Hadassah University Hospital, Jerusalem 91120, Israel
| | | | | | | | | |
Collapse
|
11
|
Milavetz BI. SP1 and AP-1 elements direct chromatin remodeling in SV40 chromosomes during the first 6 hours of infection. Virology 2002; 294:170-9. [PMID: 11886275 DOI: 10.1006/viro.2001.1308] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To identify the SV40 regulatory sequences responsible for the chromatin remodeling associated with early transcription, SV40 chromosomes containing potential remodeling sequences inserted adjacent to a reporter region were isolated at various times within the first 6 h of infection and analyzed by a combination of restriction endonuclease digestion and competitive PCR amplification. The sequences analyzed included the early domain, the enhancer, the late domain, the early phasing element, the AP-1 element, two tandem copies of the SP1 element, and the AP-4 element. From 30 min to 3 h postinfection only the enhancer, the AP-1 element, and the two tandem copies of the SP1 element caused a change in nuclease sensitivity consistent with chromatin remodeling. These results suggest that the changes in chromatin structure seen in the promoter during activation of early transcription are most likely a result of remodeling by the AP-1 and/or SP1.
Collapse
Affiliation(s)
- Barry I Milavetz
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| |
Collapse
|
12
|
Li PP, Nakanishi A, Shum D, Sun PC, Salazar AM, Fernandez CF, Chan SW, Kasamatsu H. Simian virus 40 Vp1 DNA-binding domain is functionally separable from the overlapping nuclear localization signal and is required for effective virion formation and full viability. J Virol 2001; 75:7321-9. [PMID: 11462004 PMCID: PMC114967 DOI: 10.1128/jvi.75.16.7321-7329.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A DNA-binding domain (DBD) was identified on simian virus 40 (SV40) major capsid protein Vp1, and the domain's function in the SV40 life cycle was examined. The DBD was mapped by assaying various recombinant Vp1 proteins for DNA binding in vitro. The carboxy-terminal 58-residue truncated Vp1DeltaC58 pentamer bound DNA with a K(d) of 1.8 x 10(-9) M in terms of the protein pentamer, while full-length Vp1 and carboxy-terminal-17-truncated Vp1DeltaC17 had comparable apparent K(d)s of 5.3 x 10(-9) to 7.3 x 10(-9) M in terms of the protein monomers. Previously identified on Vp1 was a nuclear localization signal (NLS) consisting of two N-terminal basic clusters, NLS1 (4-KRK-6) and NLS2 (15-KKPK-18). Vp1DeltaC58 pentamers harboring multiple-point mutations in NLS1 (NLSm1), NLS2 (NLSm2), or both basic clusters (NLSm1. 2) had progressively decreased DNA-binding activity, down to 0.7% of the Vp1DeltaC58 level for NLSm1. 2 Vp1. These data, along with those of N-terminally truncated proteins, placed the DBD in overlap with the bipartite NLS. The role of the Vp1 DBD during infection was investigated by taking advantage of NLS phenotypic complementation (N. Ishii, A. Nakanishi, M. Yamada, M. H. Macalalad, and H. Kasamatsu, J. Virol. 68:8209-8216, 1994), in which an NLS-defective Vp1 could localize to the nucleus in the presence of wild-type minor capsid proteins Vp2 and Vp3. This approach made it possible to dissect the role of the bifunctional Vp1 NLS-DBD in virion assembly in the nucleus. Mutants of the viable nonoverlapping SV40 (NO-SV40) DNA NLSm1, NLSm2, and NLSm1. 2 replicated normally following transfection into host cells and produced capsid proteins at normal levels. All mutant Vp1s were able to interact with Vp3 in vitro. The mutants NLSm1 and NLSm1. 2 were nonviable, and the mutant Vp1s unexpectedly failed to localize to the nucleus though Vp2 and Vp3 did, suggesting that the mutated NLS1 acted as a dominant signal for the cytoplasmic localization of Vp1. Mutant NLSm2, for which the mutant Vp1's nuclear localization defect was complemented by Vp2 and Vp3, displayed a 5,000-fold reduced viability. Analysis of NLSm2 DNA-transfected cell lysate revealed a 10-fold reduction in the level of DNase I-protected viral DNA, and yet virion-like particles were found among the DNase I-resistant material. Collective results support a role for Vp1 NLS2-DBD2 in the assembly of virion particles. The results also suggest that this determinant can function in the infection of new cells.
Collapse
Affiliation(s)
- P P Li
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Charbonneau S, Gendron D, Samson E, Bourgaux-Ramoisy D, Bourgaux P. Involvement of minor structural proteins in recombination of polyoma virus DNA. Virology 2000; 278:122-32. [PMID: 11112488 DOI: 10.1006/viro.2000.0654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously observed that a polyoma-mouse chimeric DNA molecule (RmI) in which the murine DNA insert is flanked by directly repeated viral sequences is effectively converted into unit-length polyoma DNA upon transfection of permissive mouse cells. This intramolecular recombination event appears to be dependent on VmP1, a protein encoded by RmI which includes the 328 N-terminal amino acids of polyoma VP1, and nine amino acids of murine origin carrying the C-terminus of the protein. We report here that introducing mutations into the VP2/VP3 coding sequence reduces the ability of RmI to generate polyoma DNA, even though the same mutations seem to exert little or no effect on the ability of polyoma DNA to either replicate or accumulate inside transfected cells. A mutation affecting VP2 alone being as effective as one that affects both VP2 and VP3, VP2 appears to be playing a critical role in recombination.
Collapse
Affiliation(s)
- S Charbonneau
- Department of Microbiology and Infectious Diseases, The Medical School, Sherbrooke, Québec, J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
14
|
Palková Z, Adamec T, Liebl D, Stokrová J, Forstová J. Production of polyomavirus structural protein VP1 in yeast cells and its interaction with cell structures. FEBS Lett 2000; 478:281-9. [PMID: 10930583 DOI: 10.1016/s0014-5793(00)01787-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The gene for mouse polyomavirus major structural protein VP1 was expressed in Saccharomyces cerevisiae from the inducible GAL7 promoter. VP1 pseudocapsids were purified from cell lysates. Their subpopulation contained fragments of host DNA, which, in contrast to those of VP1 pseudocapsids produced in insect cells, did not assemble with cellular histones into pseudonucleocores. VP1 pseudocapsids accumulated in the yeast cell nuclei. A strong interaction of VP1 with tubulin fibres of the mitotic spindle was observed. The fibres of spindles were larger in diameter, apparently due to tight VP1 binding. Substantial growth inhibition of yeast cells producing VP1 was observed.
Collapse
Affiliation(s)
- Z Palková
- Department of Genetics and Microbiology, Charles University, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
15
|
Abstract
Genome and pre-genome replication in all animal DNA viruses except poxviruses occurs in the cell nucleus (Table 1). In order to reproduce, an infecting virion enters the cell and traverses through the cytoplasm toward the nucleus. Using the cell's own nuclear import machinery, the viral genome then enters the nucleus through the nuclear pore complex. Targeting of the infecting virion or viral genome to the multiplication site is therefore an essential process in productive viral infection as well as in latent infection and transformation. Yet little is known about how infecting genomes of animal DNA viruses reach the nucleus in order to reproduce. Moreover, this nuclear locus for viral multiplication is remarkable in that the sizes and composition of the infectious particles vary enormously. In this article, we discuss virion structure, life cycle to reproduce infectious particles, viral protein's nuclear import signal, and viral genome nuclear targeting.
Collapse
Affiliation(s)
- H Kasamatsu
- Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California at Los Angeles 90095, USA
| | | |
Collapse
|