1
|
Wickersham CE, Lipman EA. Tracking DNA Synthesis with Single-Molecule Strand Displacement. J Phys Chem B 2018; 122:11546-11553. [PMID: 30284831 DOI: 10.1021/acs.jpcb.8b07440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that double-stranded DNA labeled with a periodic series of fluorescent dyes can be used to track a single helicase. Here we demonstrate how this technique can be adapted to follow processive DNA synthesis. By monitoring strand displacement, we track the motion of a single ϕ29 DNA polymerase without labeling or altering the enzyme or the template strand, and without applying any force. We observe a wide range of speeds, with the highest exceeding by several times those observed in earlier in vitro single-molecule experiments. Because this method enables repeated observations of the same polymerase traversing identical segments of DNA, it should prove useful for determining the effects of sequence on DNA replication and transcription. In addition, future measurements of this type may allow us to examine in detail the interactions of individual DNA polymerases with other components of the replisome.
Collapse
|
2
|
Holguera I, Muñoz-Espín D, Salas M. Dissecting the role of the ϕ29 terminal protein DNA binding residues in viral DNA replication. Nucleic Acids Res 2015; 43:2790-801. [PMID: 25722367 PMCID: PMC4357725 DOI: 10.1093/nar/gkv127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Phage ϕ29 DNA replication takes place by a protein-priming mechanism in which the viral DNA polymerase catalyses the covalent linkage of the initiating nucleotide to a specific serine residue of the terminal protein (TP). The N-terminal domain of the ϕ29 TP has been shown to bind to the host DNA in a sequence-independent manner and this binding is essential for the TP nucleoid localisation and for an efficient viral DNA replication in vivo. In the present work we have studied the involvement of the TP N-terminal domain residues responsible for DNA binding in the different stages of viral DNA replication by assaying the in vitro activity of purified TP N-terminal mutant proteins. The results show that mutation of TP residues involved in DNA binding affects the catalytic activity of the DNA polymerase in initiation, as the Km for the initiating nucleotide is increased when these mutant proteins are used as primers. Importantly, this initiation defect was relieved by using the ϕ29 double-stranded DNA binding protein p6 in the reaction, which decreased the Km of the DNA polymerase for dATP about 130–190 fold. Furthermore, the TP N-terminal domain was shown to be required both for a proper interaction with the DNA polymerase and for an efficient viral DNA amplification.
Collapse
Affiliation(s)
- Isabel Holguera
- Instituto de Biología Molecular 'Eladio Viñuela' (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Muñoz-Espín
- Instituto de Biología Molecular 'Eladio Viñuela' (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular 'Eladio Viñuela' (Consejo Superior de Investigaciones Científicas), Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Comparative modeling of DNA and RNA polymerases from Moniliophthora perniciosa mitochondrial plasmid. Theor Biol Med Model 2009; 6:22. [PMID: 19744344 PMCID: PMC2746187 DOI: 10.1186/1742-4682-6-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 09/10/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The filamentous fungus Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora is a hemibiotrophic Basidiomycota that causes witches' broom disease of cocoa (Theobroma cacao L.). This disease has resulted in a severe decrease in Brazilian cocoa production, which changed the position of Brazil in the market from the second largest cocoa exporter to a cocoa importer. Fungal mitochondrial plasmids are usually invertrons encoding DNA and RNA polymerases. Plasmid insertions into host mitochondrial genomes are probably associated with modifications in host generation time, which can be involved in fungal aging. This association suggests activity of polymerases, and these can be used as new targets for drugs against mitochondrial activity of fungi, more specifically against witches' broom disease. Sequencing and modeling: DNA and RNA polymerases of M. perniciosa mitochondrial plasmid were completely sequenced and their models were carried out by Comparative Homology approach. The sequences of DNA and RNA polymerase showed 25% of identity to 1XHX and 1ARO (pdb code) using BLASTp, which were used as templates. The models were constructed using Swiss PDB-Viewer and refined with a set of Molecular Mechanics (MM) and Molecular Dynamics (MD) in water carried out with AMBER 8.0, both working under the ff99 force fields, respectively. Ramachandran plots were generated by Procheck 3.0 and exhibited models with 97% and 98% for DNA and RNA polymerases, respectively. MD simulations in water showed models with thermodynamic stability after 2000 ps and 300 K of simulation. CONCLUSION This work contributes to the development of new alternatives for controlling the fungal agent of witches' broom disease.
Collapse
|
4
|
Shao Z, Graf S, Chaga OY, Lavrov DV. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): A linear DNA molecule encoding a putative DNA-dependent DNA polymerase. Gene 2006; 381:92-101. [PMID: 16945488 DOI: 10.1016/j.gene.2006.06.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/20/2006] [Accepted: 06/23/2006] [Indexed: 11/17/2022]
Abstract
The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.
Collapse
Affiliation(s)
- Zhiyong Shao
- Interdepartmental Genetics Graduate Program, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
5
|
Brukner I, Paquin B, Belouchi M, Labuda D, Krajinovic M. Self-priming arrest by modified random oligonucleotides facilitates the quality control of whole genome amplification. Anal Biochem 2005; 339:345-7. [PMID: 15797576 DOI: 10.1016/j.ab.2005.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Indexed: 12/27/2022]
Affiliation(s)
- Ivan Brukner
- Centre de Recherche, Hôpital Sainte-Justine, 3175 Cote Sainte-Catherine, Montréal, Que., Canada H3T 1C5.
| | | | | | | | | |
Collapse
|
6
|
Truniger V, Bonnin A, Lázaro JM, de Vega M, Salas M. Involvement of the "linker" region between the exonuclease and polymerization domains of phi29 DNA polymerase in DNA and TP binding. Gene 2005; 348:89-99. [PMID: 15777661 DOI: 10.1016/j.gene.2004.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 12/13/2004] [Accepted: 12/22/2004] [Indexed: 01/25/2023]
Abstract
For several DNA-dependent DNA polymerases it has been shown that their synthetic and degradative activities are organized in two separated modules. The functional coordination required between them to accomplish successfully the replication process is provided by important contacts with the substrate contributed by residues coming from both modules. These domains are connected by a central "linker" region adjacent to the "YxGG/A" motif, the putative limit of the polymerization domain. We describe here the mutational analysis of phi29 DNA polymerase in several residues of this region, connecting the N- and C-terminal domains and conserved in DNA polymerases able to start replication by protein-priming. The mutant polymerases with the less conservative changes showed reduced DNA binding activity. Additionally, their TP binding capacity was reduced, affecting the TP-deoxynucleotidylation in the absence of template. Interestingly, the role of the residues studied here in DNA binding seems to be especially important to start replication, when the polymerase enters from the closed binary into the ternary complex. These results allow us to propose that this interdomain region of phi29 DNA polymerase is playing an important role for substrate binding including both DNA and TP.
Collapse
Affiliation(s)
- Verónica Truniger
- Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
7
|
Rodríguez I, Lázaro JM, Salas M, De Vega M. phi29 DNA polymerase-terminal protein interaction. Involvement of residues specifically conserved among protein-primed DNA polymerases. J Mol Biol 2004; 337:829-41. [PMID: 15033354 DOI: 10.1016/j.jmb.2004.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 02/04/2004] [Accepted: 02/06/2004] [Indexed: 10/26/2022]
Abstract
By multiple sequence alignments of DNA polymerases from the eukaryotic-type (family B) subgroup of protein-primed DNA polymerases we have identified five positively charged amino acids, specifically conserved, located N-terminally to the (S/T)Lx(2)h motif. Here, we have studied, by site-directed mutagenesis, the functional role of phi29 DNA polymerase residues Arg96, Lys110, Lys112, Arg113 and Lys114 in specific reactions dependent on a protein-priming event. Mutations introduced at residues Arg96, Arg113 and Lys114 and to a lower extent Lys110 and Lys112, showed a defective protein-primed initiation step. Analysis of the interaction with double-stranded DNA and terminal protein (TP) displayed by mutant derivatives R96A, K110A, K112A, R113A and K114A allows us to conclude that phi29 DNA polymerase residue Arg96 is an important DNA/TP-ligand residue, essential to form stable DNA polymerase/DNA(TP) complexes, while residues Lys110, Lys112 and Arg113 could be playing a role in establishing contacts with the TP-DNA template during the first step of DNA replication. The importance of residue Lys114 to make a functionally active DNA polymerase/TP complex is also discussed. These results, together with the high degree of conservation of those residues among protein-primed DNA polymerases, strongly suggest a functional role of those amino acids in establishing the appropriate interactions with DNA polymerase substrates, DNA and TP, to successfully accomplish the first steps of TP-DNA replication.
Collapse
Affiliation(s)
- Irene Rodríguez
- Instituto de Biología Molecular "Eladio Viñuela", Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Truniger V, Lázaro JM, Salas M. Function of the C-terminus of phi29 DNA polymerase in DNA and terminal protein binding. Nucleic Acids Res 2004; 32:361-70. [PMID: 14729920 PMCID: PMC373294 DOI: 10.1093/nar/gkh184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The thumb subdomain, located in various family B DNA polymerases in the C-terminal region, has been shown in their crystal structures to move upon binding of DNA, changing its conformation to nearly completely wrap around the DNA. It has therefore been involved in DNA binding. In agreement with this, partial proteolysis studies of phi29 DNA polymerase have shown that the accessibility of the cleavage sites located in their C-terminal region is reduced in the presence of DNA or terminal protein (TP), indicating that a conformational change occurs in this region upon substrate binding and suggesting that this region might be involved in DNA and TP binding. Therefore, we have studied the role of the C-terminus of phi29 DNA polymerase by deletion of the last 13 residues of this enzyme. This fragment includes a previously defined region conserved in family B DNA polymerases. The resulting DNA polymerase Delta13 was strongly affected in DNA binding, resulting in a distributive replication activity. Additionally, the capacity of the truncated polymerase to interact with TP was strongly reduced and its initiation activity was very low. On the other hand, its nucleotide binding affinity and its fidelity were not affected. We propose that the C-terminal 13 amino acids of phi29 DNA polymerase are involved in DNA binding and in a stable interaction with the initiator protein TP, playing an important role in the intrinsic processivity of this enzyme during polymerization.
Collapse
Affiliation(s)
- Verónica Truniger
- Instituto de Biología Molecular Eladio Viñuela, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
9
|
Dufour E, Rodríguez I, Lázaro JM, de Vega M, Salas M. A conserved insertion in protein-primed DNA polymerases is involved in primer terminus stabilisation. J Mol Biol 2003; 331:781-94. [PMID: 12909010 DOI: 10.1016/s0022-2836(03)00788-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-primed DNA polymerases form a subgroup of the eukaryotic-type DNA polymerases family, also called family B or alpha-like. A multiple amino acid sequence alignment of this subgroup of DNA polymerases led to the identification of two insertions, TPR-1 and TPR-2, in the polymerisation domain. We showed previously that Asp332 of the TPR-1 insertion of phi29 DNA polymerase is involved in the correct orientation of the terminal protein (TP) for the initiation of replication. In this work, the functional role of two other conserved residues from TPR-1, Lys305 and Tyr315, has been analysed. The four mutant derivatives constructed, K305I, K305R, Y315A and Y315F, displayed a wild-type 3'-5' exonuclease activity on single-stranded DNA. However, when assayed on double-stranded DNA such activity was higher than that of the wild-type enzyme. This activity led to a reduced pol/exo ratio, suggesting a defect in stabilising the primer terminus at the polymerase active site. On the other hand, although mutant polymerases K305I and Y315A were able to couple processive DNA polymerisation to strand displacement, they were severely impaired in phi29 TP-DNA replication. The possible role of the TPR-1 insertion in the set of interactions with the nascent chain during the first steps of TP-DNA replication is discussed.
Collapse
Affiliation(s)
- Emmanuelle Dufour
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Instituto de Biología Molecular Eladio Viñuela (CSIC), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
10
|
Rodríguez I, Lázaro JM, Salas M, de Vega M. phi29 DNA polymerase residue Phe128 of the highly conserved (S/T)Lx(2)h motif is required for a stable and functional interaction with the terminal protein. J Mol Biol 2003; 325:85-97. [PMID: 12473453 DOI: 10.1016/s0022-2836(02)01130-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteriophage phi29 encodes a DNA-dependent DNA polymerase belonging to the eukaryotic-type (family B) subgroup of DNA polymerases that use a protein as primer for initiation of DNA replication. By multiple sequence alignments of DNA polymerases from such a family, we have been able to identify two amino acid residues specifically conserved in the protein-priming subgroup of DNA polymerases, a phenylalanine contained in the (S/T)Lx(2)h motif, and a glutamate belonging to the Exo III motif. Here, we have studied the functional role of these residues in reactions that are specific for DNA polymerases that use a protein-primed DNA replication mechanism, by site-directed mutagenesis in the corresponding amino acid residues, Phe128 and Glu161 of phi29 DNA polymerase. Mutations introduced at residue Phe128 severely impaired the protein-primed replication capacity of the polymerase, being the interaction with the terminal protein (TP) moderately (mutant F128A) or severely (mutant F128Y) diminished. As a consequence, very few initiation products were obtained, and essentially no transition products were detected. Interestingly, phi29 DNA polymerase mutant F128Y showed a decreased binding affinity for short template DNA molecules. These results, together with the high degree of conservation of Phe128 residue among protein-primed DNA polymerases, suggest a functional role for this amino acid residue in making contacts with the TP during the first steps of genome replication and with DNA in the further replication steps.
Collapse
Affiliation(s)
- Irene Rodríguez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Truniger V, Lázaro JM, Blanco L, Salas M. A highly conserved lysine residue in phi29 DNA polymerase is important for correct binding of the templating nucleotide during initiation of phi29 DNA replication. J Mol Biol 2002; 318:83-96. [PMID: 12054770 DOI: 10.1016/s0022-2836(02)00022-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA polymerases that initiate replication by protein-priming are able to catalyze terminal protein (TP)-primed initiation, the following transition steps and finally DNA-primed elongation. Therefore, their structures must be able to position sequentially both primers, TP and DNA, at a common binding site. For DNA-templated initiation, these DNA polymerases have to bind the origin of replication as template and TP as primer. It is likely that very precise interactions are required to position both TP and templating nucleotide at the polymerization active site. Such a specificity during TP-priming must rely on specific amino acids that must be evolutionarily conserved in this subfamily of DNA polymerases. By site-directed mutagenesis, we have analyzed the functional significance of Lys392 of phi29 DNA polymerase, immediately adjacent to the Kx3NSxYG motif, and specifically conserved among protein-primed DNA polymerases. During TP-primed initiation, mutations in this residue did not affect untemplated TP-dAMP formation, indicating that the interaction with the initiating nucleotide and TP were not affected, whereas the template-directed initiation activity was severely inhibited. Both mutant DNA polymerases had a wild-type-like (overall) DNA binding activity. We thus infer that residue Lys392 of phi29 DNA polymerase is important for the correct positioning of the templating nucleotide at the polymerization active site, a critical requirement during template-directed TP-priming at phi29 DNA origins. Consequently, mutation of this residue compromised the fidelity of the initiation reaction, not controlled by the 3'-5' exonuclease activity. During DNA-primed polymerization, the mutant polymerases showed a defect in translocation of the template strand. This translocation problem could be the consequence of a more general defect in the stabilization and positioning of a next templating nucleotide at the polymerization active site, during DNA-primed DNA synthesis.
Collapse
Affiliation(s)
- Verónica Truniger
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Truniger V, Lázaro JM, Esteban FJ, Blanco L, Salas M. A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide. Nucleic Acids Res 2002; 30:1483-92. [PMID: 11917008 PMCID: PMC101840 DOI: 10.1093/nar/30.7.1483] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alignment of the protein sequence of DNA-dependent DNA polymerases has allowed the definition of a new motif, lying adjacent to motif B in the direction of the N-terminus and therefore named pre-motif B. Both motifs are located in the fingers subdomain, shown to rotate towards the active site to form a dNTP-binding pocket in several DNA polymerases in which a closed ternary complex pol:DNA:dNTP has been solved. The functional significance of pre-motif B has been studied by site-directed mutagenesis of phi29 DNA polymerase. The affinity for nucleotides of phi29 DNA polymerase mutant residues Ile364 and Lys371 was strongly affected in DNA- and terminal protein-primed reactions. Additionally, mutations in Ile364 affected the DNA-binding capacity of phi29 DNA polymerase. The results suggest that Lys371 of phi29 DNA polymerase, highly conserved among families A and B, interacts with the phosphate groups of the incoming nucleotide. On the other hand, the role of residue Ile364 seems to be structural, being important for both DNA and dNTP binding. Pre-motif B must therefore play an important role in binding the incoming nucleotide. Interestingly, the roles of Lys371 and Ile364 were also shown to be important in reactions without template, suggesting that phi29 DNA polymerase can achieve the closed conformation in the absence of a DNA template.
Collapse
Affiliation(s)
- Verónica Truniger
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Eisenbrandt R, Lázaro JM, Salas M, de Vega M. Phi29 DNA polymerase residues Tyr59, His61 and Phe69 of the highly conserved ExoII motif are essential for interaction with the terminal protein. Nucleic Acids Res 2002; 30:1379-86. [PMID: 11884636 PMCID: PMC101362 DOI: 10.1093/nar/30.6.1379] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Revised: 01/25/2002] [Accepted: 01/25/2002] [Indexed: 11/13/2022] Open
Abstract
Phage Phi29 encodes a DNA-dependent DNA polymerase belonging to the eukaryotic-type (family B) subgroup of DNA polymerases that use a protein as the primer for initiation of DNA synthesis. In one of the most important motifs present in the 3'-->5' exonucleolytic domain of proofreading DNA polymerases, the ExoII motif, Phi29 DNA polymerase contains three amino acid residues, Y59, H61 and F69, which are highly conserved among most proofreading DNA polymerases. These residues have recently been shown to be involved in proper stabilization of the primer terminus at the 3'-->5' exonuclease active site. Here we investigate by means of site-directed mutagenesis the role of these three residues in reactions that are specific for DNA polymerases utilizing a protein-primed DNA replication mechanism. Mutations introduced at residues Y59, H61 and F69 severely affected the protein-primed replication capacity of Phi29 DNA polymerase. For four of the mutants, namely Y59L, H61L, H61R and F69S, interaction with the terminal protein was affected, leading to few initiation and transition products. These findings, together with the specific conservation of Y59, H61 and F69 among DNA polymerases belonging to the protein-primed subgroup, strongly suggest a functional role of these amino acid residues in the DNA polymerase-terminal protein interaction.
Collapse
Affiliation(s)
- Ralf Eisenbrandt
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Facultad de Ciencias, Universidad Autónoma, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Abstract
Continuous research spanning more than three decades has made the Bacillus bacteriophage phi29 a paradigm for several molecular mechanisms of general biological processes, such as DNA replication, regulation of transcription, phage morphogenesis, and phage DNA packaging. The genome of bacteriophage phi29 consists of a linear double-stranded DNA (dsDNA), which has a terminal protein (TP) covalently linked to its 5' ends. Initiation of DNA replication, carried out by a protein-primed mechanism, has been studied in detail and is considered to be a model system for the protein-primed DNA replication that is also used by most other linear genomes with a TP linked to their DNA ends, such as other phages, linear plasmids, and adenoviruses. In addition to a continuing progress in unraveling the initiation of DNA replication mechanism and the role of various proteins involved in this process, major advances have been made during the last few years, especially in our understanding of transcription regulation, the head-tail connector protein, and DNA packaging. Recent progress in all these topics is reviewed. In addition to phi29, the genomes of several other Bacillus phages consist of a linear dsDNA with a TP molecule attached to their 5' ends. These phi29-like phages can be divided into three groups. The first group includes, in addition to phi29, phages PZA, phi15, and BS32. The second group comprises B103, Nf, and M2Y, and the third group contains GA-1 as its sole member. Whereas the DNA sequences of the complete genomes of phi29 (group I) and B103 (group II) are known, only parts of the genome of GA-1 (group III) were sequenced. We have determined the complete DNA sequence of the GA-1 genome, which allowed analysis of differences and homologies between the three groups of phi29-like phages, which is included in this review.
Collapse
Affiliation(s)
- W J Meijer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
15
|
Dufour E, Méndez J, Lázaro JM, de Vega M, Blanco L, Salas M. An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein. J Mol Biol 2000; 304:289-300. [PMID: 11090274 DOI: 10.1006/jmbi.2000.4216] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A multiple sequence alignment of eukaryotic-type DNA polymerases led to the identification of two regions of amino acid residues that are only present in the group of DNA polymerases that make use of terminal proteins. (TPs) as primers to initiate DNA replication of linear genomes. These amino acid regions (named terminal region (TPR protein-1 and TPR-2) are inserted between the generally conserved motifs Dx(2)SLYP and Kx(3)NSxYG (TPR-1) and motifs Kx(3)NSxYG and YxDTDS (TPR-2) of the eukaryotic-type family of DNA polymerases. We carried out site-directed mutagenesis in two of the most conserved residues of phi29 DNA polymerase TPR-1 to study the possible role of this specific region. Two mutant DNA polymerases, in conserved residues AsP332 and Leu342, were purified and subjected to a detailed biochemical analysis of their enzymatic activities. Both mutant DNA polymerases were essentially normal when assayed for synthetic activities in DNA-primed reactions. However, mutant D332Y was drastically affected in phi29 TP-DNA replication as a consequence of a large reduction in the catalytic efficiency of the protein-primed reactions. The molecular basis of this defect is a non-functional interaction with TP that strongly reduces the activity of the DNA polymerase/TP heterodimer.
Collapse
Affiliation(s)
- E Dufour
- Centro de Biologia Molecular "Severo Ochoa", Universidad Autonoma, Cantoblanco, Madrid, 28049, Spain
| | | | | | | | | | | |
Collapse
|
16
|
de Vega M, Lázaro JM, Salas M. Phage phi 29 DNA polymerase residues involved in the proper stabilisation of the primer-terminus at the 3'-5' exonuclease active site. J Mol Biol 2000; 304:1-9. [PMID: 11071805 DOI: 10.1006/jmbi.2000.4178] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three highly conserved amino acid residues have been characterised here as ssDNA ligands at the 3'-5' exonuclease active site of o29 DNA polymerase. The functional role of Tyr59, His61 and Phe69 residues of o29 DNA polymerase (belonging to Exo II motif, previously described as containing an invariant catalytic aspartate residue and two highly conserved ssDNA ligands) was assayed by biochemical analysis of six site-directed mutants at those residues. These studies revealed that the mutations introduced severely affected their ssDNA binding capacity and, as a consequence, the 3'-5' exonuclease activity on ssDNA substrates was also severely impaired, producing drastic defects in the maintenance of replication fidelity. Crystal structures of Klenow fragment of Pol Ik and Thermococcus gorgonarius DNA polymerase complexed with ssDNA at their 3'-5' exonuclease active sites revealed that residues Gln419 of the former, and Tyr209 of the latter, the counterparts of His61 of o29 DNA polymerase, are making contacts with the penultimate phosphodiester bond of ssDNA substrate. Here, the functional role of this residue is described.
Collapse
Affiliation(s)
- M de Vega
- Centro de Biología Molecular "Severo Ochoa", Cantoblanco, Universidad Autónoma de Madrid, 28049, Spain
| | | | | |
Collapse
|
17
|
Truniger V, Blanco L, Salas M. Analysis of O29 DNA polymerase by partial proteolysis: binding of terminal protein in the double-stranded DNA channel. J Mol Biol 2000; 295:441-53. [PMID: 10623537 DOI: 10.1006/jmbi.1999.3370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ø29 DNA polymerase, which belongs to the family of the eukaryotic type DNA polymerases, is able to use two kinds of primers to initiate DNA replication: DNA and terminal protein (TP). By partial proteolysis we have studied the regions of ø29 DNA polymerase involved in primer binding. With proteinase K, no change in the proteolytic pattern was observed upon DNA binding, suggesting that it does not induce a global conformational change in ø29 DNA polymerase. Conversely, two of the three main cleavage sites obtained by partial digestion of free ø29 DNA polymerase with endoproteinase LysC were protected upon DNA binding, indicating that the DNA could be occluding these cleavage sites to the protease either directly by itself and/or indirectly by induction of local conformational changes affecting their exposure. Partial proteolysis with endoproteinase LysC of ø29 DNA polymerase/TP heterodimer resulted in a protection and digestion pattern similar to that obtained with DNA, suggesting that both primers, DNA and TP, fit in the same double-stranded DNA-binding channel and protect the same regions of ø29 DNA polymerase.
Collapse
Affiliation(s)
- V Truniger
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, 28049, Spain
| | | | | |
Collapse
|
18
|
de Vega M, Blanco L, Salas M. Processive proofreading and the spatial relationship between polymerase and exonuclease active sites of bacteriophage phi29 DNA polymerase. J Mol Biol 1999; 292:39-51. [PMID: 10493855 DOI: 10.1006/jmbi.1999.3052] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
phi29 DNA polymerase is a multifunctional enzyme, able to incorporate and to proofread misinserted nucleotides, maintaining a very high replication fidelity. Since both activities are functionally separated, a mechanism is needed to guarantee proper coordination between synthesis and degradation, implying movement of the DNA primer terminus between polymerization and 3'-5' exonuclease active sites. Using single-turnover conditions, we have demonstrated that phi29 DNA polymerase edits the polymerization errors using an intramolecular pathway; that is, the primer terminus travels from one active site to the other without dissociation from the DNA. On the other hand, by using chemical tags, we could infer a difference in length of only one nucleotide to contact the primer strand when it is in the polymerization mode versus the editing mode. Using the same approach, it was estimated that phi29 DNA polymerase covers a DNA region of ten nucleotides, as has been measured in other polymerases using different techniques.
Collapse
Affiliation(s)
- M de Vega
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, 28049, Spain
| | | | | |
Collapse
|
19
|
de Vega M, Blanco L, Salas M. phi29 DNA polymerase residue Ser122, a single-stranded DNA ligand for 3'-5' exonucleolysis, is required to interact with the terminal protein. J Biol Chem 1998; 273:28966-77. [PMID: 9786901 DOI: 10.1074/jbc.273.44.28966] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three amino acid residues highly conserved in most proofreading DNA polymerases, a phenylalanine contained in the Exo II motif and a serine and a leucine belonging to the S/TLx2h motif, were recently shown to be critical for 3'-5' exonucleolysis by acting as single-stranded DNA ligands (de Vega, M., Lázaro, J.M., Salas, M. and Blanco, L. (1998) J. Mol. Biol. 279, 807-822). In this paper, site-directed mutants at these three residues were used to analyze their functional importance for the synthetic activities of phi29 DNA polymerase, an enzyme able to start linear phi29 DNA replication using a terminal protein (TP) as primer. Mutations introduced at Phe65, Ser122, and Leu123 residues of phi29 DNA polymerase severely affected the replication capacity of the enzyme. Three mutants, F65S, S122T, and S122N, were strongly affected in their capacity to interact with a DNA primer/template structure, suggesting a dual role during both polymerization and proofreading. Interestingly, mutant S122N was not able to maintain a stable interaction with the TP primer, thus impeding the firsts steps (initiation and transition) of phi29 DNA replication. The involvement of Ser122 in the consecutive binding of TP and DNA is compatible with the finding that the TP/DNA polymerase heterodimer was not able to use a DNA primer/template structure. Assuming a structural conservation among the eukaryotic-type DNA polymerases, a model for the interactions of phi29 DNA polymerase with both TP and DNA primers is presented.
Collapse
Affiliation(s)
- M de Vega
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|