1
|
Hashem Y, Frank J. The Jigsaw Puzzle of mRNA Translation Initiation in Eukaryotes: A Decade of Structures Unraveling the Mechanics of the Process. Annu Rev Biophys 2018; 47:125-151. [PMID: 29494255 DOI: 10.1146/annurev-biophys-070816-034034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Translation initiation in eukaryotes is a highly regulated and rate-limiting process. It results in the assembly and disassembly of numerous transient and intermediate complexes involving over a dozen eukaryotic initiation factors (eIFs). This process culminates in the accommodation of a start codon marking the beginning of an open reading frame at the appropriate ribosomal site. Although this process has been extensively studied by hundreds of groups for nearly half a century, it has been only recently, especially during the last decade, that we have gained deeper insight into the mechanics of the eukaryotic translation initiation process. This advance in knowledge is due in part to the contributions of structural biology, which have shed light on the molecular mechanics underlying the different functions of various eukaryotic initiation factors. In this review, we focus exclusively on the contribution of structural biology to the understanding of the eukaryotic initiation process, a long-standing jigsaw puzzle that is just starting to yield the bigger picture.
Collapse
Affiliation(s)
- Yaser Hashem
- INSERM U1212, Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France;
| | - Joachim Frank
- Department of Biological Sciences, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
2
|
Khatter H, Myasnikov AG, Mastio L, Billas IML, Birck C, Stella S, Klaholz BP. Purification, characterization and crystallization of the human 80S ribosome. Nucleic Acids Res 2014; 42:e49. [PMID: 24452798 PMCID: PMC3973290 DOI: 10.1093/nar/gkt1404] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ribosomes are key macromolecular protein synthesis machineries in the cell. Human ribosomes have so far not been studied to atomic resolution because of their particularly complex structure as compared with other eukaryotic or prokaryotic ribosomes, and they are difficult to prepare to high homogeneity, which is a key requisite for high-resolution structural work. We established a purification protocol for human 80S ribosomes isolated from HeLa cells that allows obtaining large quantities of homogenous samples as characterized by biophysical methods using analytical ultracentrifugation and multiangle laser light scattering. Samples prepared under different conditions were characterized by direct single particle imaging using cryo electron microscopy, which helped optimizing the preparation protocol. From a small data set, a 3D reconstruction at subnanometric resolution was obtained showing all prominent structural features of the human ribosome, and revealing a salt concentration dependence of the presence of the exit site tRNA, which we show is critical for obtaining crystals. With these well-characterized samples first human 80S ribosome crystals were obtained from several crystallization conditions in capillaries and sitting drops, which diffract to 26 Å resolution at cryo temperatures and for which the crystallographic parameters were determined, paving the way for future high-resolution work.
Collapse
Affiliation(s)
- Heena Khatter
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104/Institut National de la Santé de la Recherche Médicale (INSERM) U964/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
3
|
Structures of the human and Drosophila 80S ribosome. Nature 2013; 497:80-5. [DOI: 10.1038/nature12104] [Citation(s) in RCA: 410] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/19/2013] [Indexed: 12/19/2022]
|
4
|
Abstract
Ribosomes are universally conserved enzymes that carry out protein biosynthesis. Bacterial and eukaryotic ribosomes, which share an evolutionarily conserved core, are thought to have evolved from a common ancestor by addition of proteins and RNA that bestow different functionalities to ribosomes from different domains of life. Recently, structures of the eukaryotic ribosome, determined by X-ray crystallography, have allowed us to compare these structures to previously determined structures of bacterial ribosomes. Here we describe selected bacteria- or eukaryote-specific structural features of the ribosome and discuss the functional implications of some of them.
Collapse
|
5
|
Jarasch A, Dziuk P, Becker T, Armache JP, Hauser A, Wilson DN, Beckmann R. The DARC site: a database of aligned ribosomal complexes. Nucleic Acids Res 2011; 40:D495-500. [PMID: 22009674 PMCID: PMC3245104 DOI: 10.1093/nar/gkr824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The ribosome is a highly dynamic machine responsible for protein synthesis within the cell. Cryo-electron microscopy (cryo-EM) and X-ray crystallography structures of ribosomal particles, alone and in complex with diverse ligands (protein factors, RNAs and small molecules), have revealed the dynamic nature of the ribosome and provided much needed insight into translation and its regulation. In the past years, there has been exponential growth in the deposition of cryo-EM maps into the Electron Microscopy Data Bank (EMDB) as well as atomic structures into the Protein Data Bank (PDB). Unfortunately, the deposited ribosomal particles usually have distinct orientations with respect to one another, which complicate the comparison of the available structures. To simplify this, we have developed a Database of Aligned Ribosomal Complexes, the DARC site (http://darcsite.genzentrum.lmu.de/darc/), which houses the available cryo-EM maps and atomic coordinates of ribosomal particles from the EMDB and PDB aligned within a common coordinate system. An easy-to-use, searchable interface allows users to access and download >130 cryo-EM maps and >300 atomic models in the format of brix and pdb files, respectively. The aligned coordinate system substantially simplifies direct visualization of conformational changes in the ribosome, such as subunit rotation and head-swiveling, as well as direct comparison of bound ligands, such as antibiotics or translation factors.
Collapse
Affiliation(s)
- Alexander Jarasch
- Gene Center and Department for Biochemistry and Center for integrated Protein Science Munich, University of Munich, Feodor-Lynenstr 25, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Lustig Y, Wachtel C, Safro M, Liu L, Michaeli S. 'RNA walk' a novel approach to study RNA-RNA interactions between a small RNA and its target. Nucleic Acids Res 2009; 38:e5. [PMID: 19854950 PMCID: PMC2800229 DOI: 10.1093/nar/gkp872] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this study we describe a novel method to investigate the RNA–RNA interactions between a small RNA and its target that we termed ‘RNA walk’. The method is based on UV-induced AMT cross-linking in vivo followed by affinity selection of the hybrid molecules and mapping the intermolecular adducts by RT–PCR or real-time PCR. Domains carrying the cross-linked adducts fail to efficiently amplify by PCR compared with non-cross-linked domains. This method was calibrated and used to study the interaction between a special tRNA-like molecule (sRNA-85) that is part of the trypanosome signal recognition particle (SRP) complex and the ribosome. Four contact sites between sRNA-85 and rRNA were identified by ‘RNA walk’ and were further fine-mapped by primer extension. Two of the contact sites are expected; one contact site mimics the interaction of the mammalian Alu domain of SRP with the ribosome and the other contact sites include a canonical tRNA interaction. The two other cross-linked sites could not be predicted. We propose that ‘RNA walk, is a generic method to map target RNA small RNAs interactions in vivo.
Collapse
Affiliation(s)
- Yaniv Lustig
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
7
|
Chen IJ, Wang IA, Tai LR, Lin A. The role of expansion segment of human ribosomal protein L35 in nuclear entry, translation activity, and endoplasmic reticulum docking. Biochem Cell Biol 2008; 86:271-7. [PMID: 18523488 DOI: 10.1139/o08-032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phylogenic alignment of homologous L35 protein suggests that human large subunit ribosomal protein L35 carries a 54 aa eukaryotic expansion segment (ES) at the C-terminal end. Within this ES, the first 25 amino acid residues were found to be essential for the nuclear import of the protein. The last 29 residues of the ES were shown to be uninvolved in the ribosome's structural and translational functions, although this region proved to be one of the contact sites for ribosomal docking to endoplasmic reticulum, as evident from the results of an in vivo recombinant ribosome analysis.
Collapse
Affiliation(s)
- In-Jay Chen
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei 112, Taiwan, ROC
| | | | | | | |
Collapse
|
8
|
Chandramouli P, Topf M, Ménétret JF, Eswar N, Gutell RR, Sali A, Akey CW. Structure of the mammalian 80S ribosome at 8.7 A resolution. Structure 2008; 16:535-48. [PMID: 18400176 PMCID: PMC2775484 DOI: 10.1016/j.str.2008.01.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 01/03/2008] [Accepted: 01/26/2008] [Indexed: 01/12/2023]
Abstract
In this paper, we present a structure of the mammalian ribosome determined at approximately 8.7 A resolution by electron cryomicroscopy and single-particle methods. A model of the ribosome was created by docking homology models of subunit rRNAs and conserved proteins into the density map. We then modeled expansion segments in the subunit rRNAs and found unclaimed density for approximately 20 proteins. In general, many conserved proteins and novel proteins interact with expansion segments to form an integrated framework that may stabilize the mature ribosome. Our structure provides a snapshot of the mammalian ribosome at the beginning of translation and lends support to current models in which large movements of the small subunit and L1 stalk occur during tRNA translocation. Finally, details are presented for intersubunit bridges that are specific to the eukaryotic ribosome. We suggest that these bridges may help reset the conformation of the ribosome to prepare for the next cycle of chain elongation.
Collapse
Affiliation(s)
- Preethi Chandramouli
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, Massachusetts 02118, USA
| | - Maya Topf
- School of Crystallography, Birkbeck, University of London, Malet Street, London WC1E 7HX
| | - Jean-François Ménétret
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, Massachusetts 02118, USA
| | - Narayanan Eswar
- Department of Biopharmaceutical Sciences, California Institute for Quantitative Biomedical Research, QB3 at Mission Bay, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | - Robin R. Gutell
- The Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX 78712, USA
| | - Andrej Sali
- Department of Biopharmaceutical Sciences, California Institute for Quantitative Biomedical Research, QB3 at Mission Bay, University of California at San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | - Christopher W. Akey
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, Massachusetts 02118, USA
| |
Collapse
|
9
|
Tetrahymena ORC contains a ribosomal RNA fragment that participates in rDNA origin recognition. EMBO J 2007; 26:5048-60. [PMID: 18007594 DOI: 10.1038/sj.emboj.7601919] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 10/18/2007] [Indexed: 11/08/2022] Open
Abstract
The Tetrahymena thermophila ribosomal DNA (rDNA) replicon contains dispersed cis-acting replication determinants, including reiterated type I elements that associate with sequence-specific, single-stranded binding factors, TIF1 through TIF4. Here, we show that TIF4, previously implicated in cell cycle-controlled DNA replication and rDNA gene amplification, is the T. thermophila origin recognition complex (TtORC). We further demonstrate that TtORC contains an integral RNA subunit that participates in rDNA origin recognition. Remarkably, this RNA, designated 26T, spans the terminal 282 nts of 26S ribosomal RNA. 26T RNA exhibits extensive complementarity to the type I element T-rich strand and binds the rDNA origin in vivo. Mutations that disrupt predicted interactions between 26T RNA and its complementary rDNA target change the in vitro binding specificity of ORC and diminish in vivo rDNA origin utilization. These findings reveal a role for ribosomal RNA in chromosome biology and define a new mechanism for targeting ORC to replication initiation sites.
Collapse
|
10
|
Gilbert RJC, Gordiyenko Y, von der Haar T, Sonnen AFP, Hofmann G, Nardelli M, Stuart DI, McCarthy JEG. Reconfiguration of yeast 40S ribosomal subunit domains by the translation initiation multifactor complex. Proc Natl Acad Sci U S A 2007; 104:5788-93. [PMID: 17389391 PMCID: PMC1832216 DOI: 10.1073/pnas.0606880104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the process of protein synthesis, the small (40S) subunit of the eukaryotic ribosome is recruited to the capped 5' end of the mRNA, from which point it scans along the 5' untranslated region in search of a start codon. However, the 40S subunit alone is not capable of functional association with cellular mRNA species; it has to be prepared for the recruitment and scanning steps by interactions with a group of eukaryotic initiation factors (eIFs). In budding yeast, an important subset of these factors (1, 2, 3, and 5) can form a multifactor complex (MFC). Here, we describe cryo-EM reconstructions of the 40S subunit, of the MFC, and of 40S complexes with MFC factors plus eIF1A. These studies reveal the positioning of the core MFC on the 40S subunit, and show how eIF-binding induces mobility in the head and platform and reconfigures the head-platform-body relationship. This is expected to increase the accessibility of the mRNA channel, thus enabling the 40S subunit to convert to a recruitment-competent state.
Collapse
Affiliation(s)
- Robert J. C. Gilbert
- *Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QH, United Kingdom; and
| | - Yulya Gordiyenko
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Tobias von der Haar
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Andreas F.-P. Sonnen
- *Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Gregor Hofmann
- *Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Maria Nardelli
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David I. Stuart
- *Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QH, United Kingdom; and
| | - John E. G. McCarthy
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Nilsson J, Sengupta J, Gursky R, Nissen P, Frank J. Comparison of fungal 80 S ribosomes by cryo-EM reveals diversity in structure and conformation of rRNA expansion segments. J Mol Biol 2007; 369:429-38. [PMID: 17434183 PMCID: PMC1976601 DOI: 10.1016/j.jmb.2007.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 02/28/2007] [Accepted: 03/10/2007] [Indexed: 10/23/2022]
Abstract
Compared to the prokaryotic 70 S ribosome, the eukaryotic 80 S ribosome contains additional ribosomal proteins and extra segments of rRNA, referred to as rRNA expansion segments (ES). These eukaryotic-specific rRNA ES are mainly on the periphery of the 80 S ribosome, as revealed by cryo-electron microscopy (cryo-EM) studies, but their precise function is not known. To address the question of whether the rRNA ES are structurally conserved among 80 S ribosomes of different fungi we performed cryo-electron microscopy on 80 S ribosomes from the thermophilic fungus Thermomyces lanuginosus and compared it to the Saccharomyces cerevisiae 80 S ribosome. Our analysis reveals general structural conservation of the rRNA expansion segments but also changes in ES27 and ES7/39, as well as the absence of a tertiary interaction between ES3 and ES6 in T. lanuginosus. The differences provide a hint on the role of rRNA ES in regulating translation. Furthermore, we show that the stalk region and interactions with elongation factor 2 (eEF2) are different in T. lanuginosus, exhibiting a more extensive contact with domain I of eEF2.
Collapse
Affiliation(s)
- Jakob Nilsson
- Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark
| | - Jayati Sengupta
- Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | - Richard Gursky
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | - Poul Nissen
- Department of Molecular Biology, University of Aarhus, Gustav Wieds vej 10C, DK-8000 Aarhus C, Denmark
- ¶For correspondence: P.N. (), J.F. ()
| | - Joachim Frank
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
- Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, New York 12201-0509, USA
- ¶For correspondence: P.N. (), J.F. ()
| |
Collapse
|
12
|
Ko JR, Wu JY, Kirby R, Li IF, Lin A. Mapping the essential structures of human ribosomal protein L7 for nuclear entry, ribosome assembly and function. FEBS Lett 2006; 580:3804-10. [PMID: 16797011 DOI: 10.1016/j.febslet.2006.05.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/23/2006] [Accepted: 05/23/2006] [Indexed: 12/01/2022]
Abstract
Human large subunit protein L7 carries multiple nuclear localization signals (NLS) in its structure: there are three monobasic partite NLSs at the NH2-region of the first 54 amino acid residues and a bipartite in the middle section at position of 156-167. The C-region of the last 50 amino acid residues displays membrane binding nature, and might involve in forming a nuclear microbody for pre-nucleolar ribosome assembly. The middle section covers 144 amino acid residues which are essential for the structure and function of ribosome. This is evident from findings that truncated L7 without the NH2-region or the C-region, or missing both regions, is capable of reaching nucleolus and incorporating in ribosome, however, only ribosomes bearing truncated L7 without the NH2-region is capable of engaging in polysome formation. Combining with the phylogenic findings from homologous sequence alignment, the NH2-region of L7, besides being as a eukaryotic expansion segment, can be excluded from building a functional eukaryotic ribosome.
Collapse
Affiliation(s)
- J-R Ko
- Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
13
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2006; 155:1-30. [PMID: 15928926 DOI: 10.1007/3-540-28217-3_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During protein translation, a variety of quality control checks ensure that the resulting polypeptides deviate minimally from their genetic encoding template. Translational fidelity is central in order to preserve the function and integrity of each cell. Correct termination is an important aspect of translational fidelity, and a multitude of mechanisms and players participate in this exquisitely regulated process. This review explores our current understanding of eukaryotic termination by highlighting the roles of the different ribosomal components as well as termination factors and ribosome-associated proteins, such as chaperones.
Collapse
Affiliation(s)
- S Rospert
- Universität Freiburg, Institut für Biochemie und Molekularbiologie, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
14
|
Nygård O, Alkemar G, Larsson SL. Analysis of the secondary structure of expansion segment 39 in ribosomes from fungi, plants and mammals. J Mol Biol 2006; 357:904-16. [PMID: 16473366 DOI: 10.1016/j.jmb.2006.01.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Revised: 01/02/2006] [Accepted: 01/09/2006] [Indexed: 11/25/2022]
Abstract
The structure of expansion segment 39, ES39, in eukaryotic 23 S-like ribosomal RNA was analysed using a combination of chemical and enzymic reagents. Ribosomes were isolated from yeast, wheat, mouse, rat and rabbit, five organisms representing three different eukaryotic kingdoms. The isolated ribosomes were treated with structure-sensitive chemical and enzymic reagents and the modification patterns analysed by primer extension and gel electrophoresis on an ABI 377 automated DNA sequencer. The expansion segment was relatively accessible to modification by both enzymic and chemical probes, suggesting that ES39 was exposed on the surface of the ribosomes. The collected modification data were used in secondary structure modelling of the expansion segment. Despite considerable variation in both sequence and length between organisms from different kingdoms, the structure analysis of the expansion segment gave rise to structural fingerprints that allowed identification of homologous structures in ES39 from fungi, plants and mammals. The homologous structures formed an initial helix and an invariant hairpin connected to the initial helix via a long single-stranded loop. The remaining part of the ES39 sequences accounted for most of the length variation seen between the analysed species. This part could form additional, albeit less similar, hairpins. A comparison of ES39 sequences from other fungi, plants and mammals showed that identical structures could be formed in these organisms.
Collapse
Affiliation(s)
- Odd Nygård
- School of Life Sciences, Södertörns högskola, Box 4101, S-141 04 Huddinge, Sweden.
| | | | | |
Collapse
|
15
|
Parakhnevitch NM, Malygin AA, Karpova GG. Recombinant human ribosomal protein S16: expression, purification, refolding, and structural stability. BIOCHEMISTRY (MOSCOW) 2006; 70:777-81. [PMID: 16097941 DOI: 10.1007/s10541-005-0183-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cDNA of human ribosomal protein S16 was cloned into the expression vector pET-15b. Large-scale production of the recombinant protein was carried out in E. coli cells and highly purified protein was isolated. A method for refolding the protein from inclusion bodies was optimized. The secondary structure content of the refolded protein was analyzed by CD spectroscopy. It was found that 21 +/- 4% of the amino acid sequence of the protein forms alpha-helices and 24 +/- 3% is in beta-strands. The protein structure stability was studied at various pH values and urea concentrations. The protein is quickly denatured at pH above 8.0, whereas increasing of urea concentration causes slow unfolding of the protein.
Collapse
Affiliation(s)
- N M Parakhnevitch
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
16
|
Boehringer D, Thermann R, Ostareck-Lederer A, Lewis JD, Stark H. Structure of the Hepatitis C Virus IRES Bound to the Human 80S Ribosome: Remodeling of the HCV IRES. Structure 2005; 13:1695-706. [PMID: 16271893 DOI: 10.1016/j.str.2005.08.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 07/29/2005] [Accepted: 08/09/2005] [Indexed: 02/05/2023]
Abstract
Initiation of translation of the hepatitis C virus (HCV) polyprotein is driven by an internal ribosome entry site (IRES) RNA that bypasses much of the eukaryotic translation initiation machinery. Here, single-particle electron cryomicroscopy has been used to study the mechanism of HCV IRES-mediated initiation. A HeLa in vitro translation system was used to assemble human IRES-80S ribosome complexes under near physiological conditions; these were stalled before elongation. Domain 2 of the HCV IRES is bound to the tRNA exit site, touching the L1 stalk of the 60S subunit, suggesting a mechanism for the removal of the HCV IRES in the progression to elongation. Domain 3 of the HCV IRES positions the initiation codon in the ribosomal mRNA binding cleft by binding helix 28 at the head of the 40S subunit. The comparison with the previously published binary 40S-HCV IRES complex reveals structural rearrangements in the two pseudoknot structures of the HCV IRES in translation initiation.
Collapse
Affiliation(s)
- Daniel Boehringer
- Max Planck Institute for Biophysical Chemistry, 3D Electron Cryomicroscopy, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
17
|
Rospert S, Rakwalska M, Dubaquié Y. Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. Rev Physiol Biochem Pharmacol 2005. [DOI: 10.1007/s10254-005-0039-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Ménétret JF, Hegde RS, Heinrich SU, Chandramouli P, Ludtke SJ, Rapoport TA, Akey CW. Architecture of the ribosome-channel complex derived from native membranes. J Mol Biol 2005; 348:445-57. [PMID: 15811380 DOI: 10.1016/j.jmb.2005.02.053] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/13/2005] [Accepted: 02/21/2005] [Indexed: 11/21/2022]
Abstract
The mammalian Sec61 complex forms a protein translocation channel whose function depends upon its interaction with the ribosome and with membrane proteins of the endoplasmic reticulum (ER). To study these interactions, we determined structures of "native" ribosome-channel complexes derived from ER membranes. We find that the ribosome is linked to the channel by seven connections, but the junction may still provide a path for domains of nascent membrane proteins to move into the cytoplasm. In addition, the native channel is significantly larger than a channel formed by the Sec61 complex, due to the presence of a second membrane protein. We identified this component as TRAP, the translocon-associated protein complex. TRAP interacts with Sec61 through its transmembrane domain and has a prominent lumenal domain. The presence of TRAP in the native channel indicates that it may play a general role in translocation. Crystal structures of two Sec61 homologues were used to model the channel. This analysis indicates that there are four Sec61 complexes and two TRAP molecules in each native channel. Thus, we suggest that a single Sec61 complex may form a conduit for translocating polypeptides, while three copies of Sec61 play a structural role or recruit accessory factors such as TRAP.
Collapse
Affiliation(s)
- Jean-François Ménétret
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118-2526, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Malygin A, Parakhnevitch N, Karpova G. Human ribosomal protein S13: cloning, expression, refolding, and structural stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1747:93-7. [PMID: 15680243 DOI: 10.1016/j.bbapap.2004.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 10/01/2004] [Accepted: 10/08/2004] [Indexed: 11/26/2022]
Abstract
The cDNA of human ribosomal protein S13 was cloned into the expression vector pET-15b. Large-scale production of the recombinant protein was carried out in Escherichia coli cells. Protein accumulated in the form of inclusion bodies was isolated, purified, and refolded by dialysis. The recombinant protein was immunologically reactive, interacting with antiserum against native rpS13. The secondary structure content of the refolded protein was analyzed by means of CD spectroscopy. It was found that 43+/-5% of amino acids sequence of the protein form alpha-helices and 11+/-3% are placed in beta-strands that coincides with theoretical predictions. The beta-strands seem to be located in the extension regions of the rpS13 and do not have homologuous regions in the structure of rpS15 from Thermus thermophilus, which is a prokaryotic homolog of rpS13. The protein structure is stable at a pH range from 4.0 to 8.0 and at low concentrations of urea (up to 3 M).
Collapse
Affiliation(s)
- Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
20
|
Chaban YL, Coskun U, Keegstra W, Oostergetel GT, Boekema EJ, Grüber G. Structural Characterization of an ATPase Active F1-/V1 -ATPase (α3β3EG) Hybrid Complex. J Biol Chem 2004; 279:47866-70. [PMID: 15355991 DOI: 10.1074/jbc.m408460200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Co-reconstitution of subunits E and G of the yeast V-ATPase and the alpha and beta subunits of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) resulted in an alpha(3)beta(3)EG hybrid complex showing 53% of the ATPase activity of TF(1). The alpha(3)beta(3)EG oligomer was characterized by electron microscopy. By processing 40,000 single particle projections, averaged two-dimensional projections at 1.2-2.4-nm resolution were obtained showing the hybrid complex in various positions. Difference mapping of top and side views of this complex with projections of the atomic model of the alpha(3)beta(3) subcomplex from TF(1) (Shirakihara, Y., Leslie, A. G., Abrahams, J. P., Walker, J. E., Ueda, T., Sekimoto, Y., Kambara, M., Saika, K., Kagawa, Y., and Yoshida, M. (1997) Structure 5, 825-836) demonstrates that a seventh mass is located inside the shaft of the alpha(3)beta(3) barrel and extends out from the hexamer. Furthermore, difference mapping of the alpha(3)beta(3)EG oligomer with projections of the A(3)B(3)E and A(3)B(3)EC subcomplexes of the V(1) from Caloramator fervidus (Chaban, Y., Ubbink-Kok, T., Keegstra, W., Lolkema, J. S., and Boekema, E. J. (2002) EMBO Rep. 3, 982-987) shows that the mass inside the shaft is made up of subunit E, whereby subunit G was assigned to belong at least in part to the density of the protruding stalk. The formation of an active alpha(3)beta(3)EG hybrid complex indicates that the coupling subunit gamma inside the alpha(3)beta(3) oligomer of F(1) can be effectively replaced by subunit E of the V-ATPase. Our results have also demonstrated that the E and gamma subunits are structurally similar, despite the fact that their genes do not show significant homology.
Collapse
Affiliation(s)
- Yuriy L Chaban
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Spahn CMT, Jan E, Mulder A, Grassucci RA, Sarnow P, Frank J. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell 2004; 118:465-75. [PMID: 15315759 DOI: 10.1016/j.cell.2004.08.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 06/22/2004] [Accepted: 06/23/2004] [Indexed: 01/28/2023]
Abstract
Internal initiation of protein synthesis in eukaryotes is accomplished by recruitment of ribosomes to structured internal ribosome entry sites (IRESs), which are located in certain viral and cellular messenger RNAs. An IRES element in cricket paralysis virus (CrPV) can directly assemble 80S ribosomes in the absence of canonical initiation factors and initiator tRNA. Here we present cryo-EM structures of the CrPV IRES bound to the human ribosomal 40S subunit and to the 80S ribosome. The CrPV IRES adopts a defined, elongate structure within the ribosomal intersubunit space and forms specific contacts with components of the ribosomal A, P, and E sites. Conformational changes in the ribosome as well as within the IRES itself show that CrPV IRES actively manipulates the ribosome. CrPV-like IRES elements seem to act as RNA-based translation factors.
Collapse
Affiliation(s)
- Christian M T Spahn
- Howard Hughes Medical Institute, Health Research Inc. at, Albany, NY 10012, USA
| | | | | | | | | | | |
Collapse
|
22
|
Sengupta J, Nilsson J, Gursky R, Spahn CMT, Nissen P, Frank J. Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat Struct Mol Biol 2004; 11:957-62. [PMID: 15334071 DOI: 10.1038/nsmb822] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 06/23/2004] [Indexed: 11/08/2022]
Abstract
RACK1 serves as a scaffold protein for a wide range of kinases and membrane-bound receptors. It is a WD-repeat family protein and is predicted to have a beta-propeller architecture with seven blades like a Gbeta protein. Mass spectrometry studies have identified its association with the small subunit of eukaryotic ribosomes and, most recently, it has been shown to regulate initiation by recruiting protein kinase C to the 40S subunit. Here we present the results of a cryo-EM study of the 80S ribosome that positively locate RACK1 on the head region of the 40S subunit, in the immediate vicinity of the mRNA exit channel. One face of RACK1 exposes the WD-repeats as a platform for interactions with kinases and receptors. Using this platform, RACK1 can recruit other proteins to the ribosome.
Collapse
Affiliation(s)
- Jayati Sengupta
- Health Research, Inc., Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | | | | | |
Collapse
|
23
|
Coskun U, Chaban YL, Lingl A, Müller V, Keegstra W, Boekema EJ, Grüber G. Structure and subunit arrangement of the A-type ATP synthase complex from the archaeon Methanococcus jannaschii visualized by electron microscopy. J Biol Chem 2004; 279:38644-8. [PMID: 15220347 DOI: 10.1074/jbc.m406196200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Archaea, bacteria, and eukarya, ATP provides metabolic energy for energy-dependent processes. It is synthesized by enzymes known as A-type or F-type ATP synthase, which are the smallest rotatory engines in nature (Yoshida, M., Muneyuki, E., and Hisabori, T. (2001) Nat. Rev. Mol. Cell. Biol. 2, 669-677; Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and Yokoyama, K. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 2312-2315). Here, we report the first projected structure of an intact A(1)A(0) ATP synthase from Methanococcus jannaschii as determined by electron microscopy and single particle analysis at a resolution of 1.8 nm. The enzyme with an overall length of 25.9 nm is organized in an A(1) headpiece (9.4 x 11.5 nm) and a membrane domain, A(0) (6.4 x 10.6 nm), which are linked by a central stalk with a length of approximately 8 nm. A part of the central stalk is surrounded by a horizontal-situated rodlike structure ("collar"), which interacts with a peripheral stalk extending from the A(0) domain up to the top of the A(1) portion, and a second structure connecting the collar structure with A(1). Superposition of the three-dimensional reconstruction and the solution structure of the A(1) complex from Methanosarcina mazei Gö1 have allowed the projections to be interpreted as the A(1) headpiece, a central and the peripheral stalk, and the integral A(0) domain. Finally, the structural organization of the A(1)A(0) complex is discussed in terms of the structural relationship to the related motors, F(1)F(0) ATP synthase and V(1)V(0) ATPases.
Collapse
Affiliation(s)
- Unal Coskun
- Universität des Saarlandes, Fachrichtung 2.5-Biophysik, D-66421 Homburg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Alkemar G, Nygård O. Secondary structure of two regions in expansion segments ES3 and ES6 with the potential of forming a tertiary interaction in eukaryotic 40S ribosomal subunits. RNA (NEW YORK, N.Y.) 2004; 10:403-11. [PMID: 14970386 PMCID: PMC1370936 DOI: 10.1261/rna.5135204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 11/10/2003] [Indexed: 05/13/2023]
Abstract
The 18S rRNA of the small eukaryotic ribosomal subunit contains several expansion segments. Electron microscopy data indicate that two of the largest expansion segments are juxtaposed in intact 40S subunits, and data from phylogenetic sequence comparisons indicate that these two expansion segments contain complementary sequences that could form a direct tertiary interaction on the ribosome. We have investigated the secondary structure of the two expansion segments in the region around the putative tertiary interaction. Ribosomes from yeast, wheat, and mouse-three organisms representing separate eukaryotic kingdoms-were isolated, and the structure of ES3 and part of the ES6 region were analyzed using the single-strand-specific chemical reagents CMCT and DMS and the double-strand-specific ribonuclease V1. The modification patterns were analyzed by primer extension and gel electrophoresis on an ABI 377 automated DNA sequencer. The investigated sequences were relatively exposed to chemical and enzymatic modification. This is in line with their indicated location on the surface at the solvent side of the subunit. The complementary ES3 and ES6 sequences were clearly inaccessible to single-strand modification, but available for cleavage by double-strand-specific RNase V1. The results are compatible with a direct helical interaction between bases in ES3 and ES6. Almost identical results were obtained with ribosomes from the three organisms investigated.
Collapse
Affiliation(s)
- Gunnar Alkemar
- Cell Biology Unit, Natural Science Section, Södertörns högskola, S-141 89 Huddinge, Sweden
| | | |
Collapse
|
25
|
Politz JCR, Tuft RA, Pederson T. Diffusion-based transport of nascent ribosomes in the nucleus. Mol Biol Cell 2003; 14:4805-12. [PMID: 12960421 PMCID: PMC284785 DOI: 10.1091/mbc.e03-06-0395] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 07/18/2003] [Accepted: 08/08/2003] [Indexed: 11/11/2022] Open
Abstract
Although the complex process of ribosome assembly in the nucleolus is beginning to be understood, little is known about how the ribosomal subunits move from the nucleolus to the nuclear membrane for transport to the cytoplasm. We show here that large ribosomal subunits move out from the nucleolus and into the nucleoplasm in all directions, with no evidence of concentrated movement along directed paths. Mobility was slowed compared with that expected in aqueous solution in a manner consistent with anomalous diffusion. Once nucleoplasmic, the subunits moved in the same random manner and also sometimes visited another nucleolus before leaving the nucleus.
Collapse
Affiliation(s)
- Joan C Ritland Politz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | |
Collapse
|
26
|
Abstract
The recently solved X-ray crystal structures of the ribosome have provided opportunities for studying the molecular basis of translation with a variety of methods including cryo-electron microscopy. The recently solved X-ray crystal structures of the ribosome have provided opportunities for studying the molecular basis of translation with a variety of methods including cryo-electron microscopy - where maps give the first glimpses of ribosomal evolution - and fluorescence spectroscopy techniques.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Health Research, Inc, at the Wadsworth Center and Department of Biomedical Sciences, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA.
| |
Collapse
|
27
|
Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, Agrawal RK. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 2003; 115:97-108. [PMID: 14532006 DOI: 10.1016/s0092-8674(03)00762-1] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mitochondrial ribosome is responsible for the biosynthesis of protein components crucial to the generation of ATP in the eukaryotic cell. Because the protein:RNA ratio in the mitochondrial ribosome (approximately 69:approximately 31) is the inverse of that of its prokaryotic counterpart (approximately 33:approximately 67), it was thought that the additional and/or larger proteins of the mitochondrial ribosome must compensate for the shortened rRNAs. Here, we present a three-dimensional cryo-electron microscopic map of the mammalian mitochondrial 55S ribosome carrying a tRNA at its P site, and we find that instead, many of the proteins occupy new positions in the ribosome. Furthermore, unlike cytoplasmic ribosomes, the mitochondrial ribosome possesses intersubunit bridges composed largely of proteins; it has a gatelike structure at its mRNA entrance, perhaps involved in recruiting unique mitochondrial mRNAs; and it has a polypeptide exit tunnel that allows access to the solvent before the exit site, suggesting a unique nascent-polypeptide exit mechanism.
Collapse
Affiliation(s)
- Manjuli R Sharma
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
| | | | | | | | | | | |
Collapse
|
28
|
Andersen GR, Nyborg J. Structural studies of eukaryotic elongation factors. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:425-37. [PMID: 12762045 DOI: 10.1101/sqb.2001.66.425] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- G R Andersen
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
29
|
Beckmann R, Spahn CM, Frank J, Blobel G. The active 80S ribosome-Sec61 complex. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:543-54. [PMID: 12762056 DOI: 10.1101/sqb.2001.66.543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R Beckmann
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
30
|
Brierley I, Pennell S. Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:233-48. [PMID: 12762025 DOI: 10.1101/sqb.2001.66.233] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- I Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | |
Collapse
|
31
|
Cudna RE, Dickson AJ. Endoplasmic reticulum signaling as a determinant of recombinant protein expression. Biotechnol Bioeng 2003; 81:56-65. [PMID: 12432581 DOI: 10.1002/bit.10445] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Generation of functional recombinant proteins requires efficient and undisturbed functioning of the ER-Golgi secretory pathway in host cells. In large-scale production, where target proteins are highly overexpressed, this pathway can be easily congested with unfolded or misfolded proteins. Accumulating evidence suggests that, in addition to responsibility for protein processing, ER is also an important signaling compartment and a sensor of cellular stress. Two ER responses have been described to arise from the overaccumulation of proteins: unfolded protein response (UPR) and ER overload response (EOR). UPR and EOR employ various mechanisms at the transcriptional and the translational levels to deal efficiently and appropriately with encountered stress. This review will outline the molecular bases of ER functioning and stress response, highlight the relevance of ER signaling to the large-scale cell culture productivity and discuss possible approaches to the improvement of the secretion capacities of recombinant cells.
Collapse
Affiliation(s)
- Renata E Cudna
- Biochemistry Research Division, School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, United Kingdom.
| | | |
Collapse
|
32
|
Morgan DG, Ménétret JF, Neuhof A, Rapoport TA, Akey CW. Structure of the mammalian ribosome-channel complex at 17A resolution. J Mol Biol 2002; 324:871-86. [PMID: 12460584 DOI: 10.1016/s0022-2836(02)01111-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The co-translational translocation of proteins into the endoplasmic reticulum (ER) lumen and the biogenesis of membrane proteins require ribosome binding to a membrane channel formed by the Sec61p complex. We now report the 17A structure of a mammalian ribosome-channel complex derived from ER membranes. Atomic models of the ribosomal subunits were aligned to the programmed ribosome from Thermus thermophilus, to provide a common reference frame. The T.thermophilus ribosome, and by extension all known high resolution subunit models, were then docked within our map of the ribosome-channel complex. The structure shows that the ribosome contains a putative tRNA in the exit site, and a comparison with a non-programmed, yeast ribosome suggests that the L1 stalk may function as a gate in the tRNA exit path. We have localized six major expansion segments in the large subunit of the vertebrate ribosome including ES27, and suggest a function for ES30. The large ribosomal subunit is linked to the channel by four connections. We identified regions in the large subunit rRNA and four proteins that may help form the connections. These regions of the ribosome probably serve as a template to guide the assembly of the asymmetric translocation channel. Three of the connections form a picket fence that separates the putative translocation pore from the attachment site of an additional membrane component. The ribosome-channel connections also create an open junction that would allow egress of a nascent chain into the cytosol. At a threshold that is appropriate for the entire complex, the channel is rather solid and the lumenal half of the putative translocation pore is closed. These data suggest that the flow of small molecules across the membrane may be impeded by the channel itself, rather than the ribosome-channel junction.
Collapse
Affiliation(s)
- David Gene Morgan
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118-2526, USA
| | | | | | | | | |
Collapse
|
33
|
Wuyts J, Van de Peer Y, De Wachter R. Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucleic Acids Res 2001; 29:5017-28. [PMID: 11812832 PMCID: PMC97625 DOI: 10.1093/nar/29.24.5017] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The relative substitution rate of each nucleotide site in bacterial small subunit rRNA, large subunit rRNA and 5S rRNA was calculated from sequence alignments for each molecule. Two-dimensional and three-dimensional variability maps of the rRNAs were obtained by plotting the substitution rates on secondary structure models and on the tertiary structure of the rRNAs available from X-ray diffraction results. This showed that the substitution rates are generally low near the centre of the ribosome, where the nucleotides essential for its function are situated, and that they increase towards the surface. An inventory was made of insertions characteristic of the Archaea, Bacteria and Eucarya domains, and for additional insertions present in specific eukaryotic taxa. All these insertions occur at the ribosome surface. The taxon-specific insertions seem to arise randomly in the eukaryotic evolutionary tree, without any phylogenetic relatedness between the taxa possessing them.
Collapse
Affiliation(s)
- J Wuyts
- Departement Biochemie, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | | | | |
Collapse
|
34
|
Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J. Structure of the 80S ribosome from Saccharomyces cerevisiae--tRNA-ribosome and subunit-subunit interactions. Cell 2001; 107:373-86. [PMID: 11701127 DOI: 10.1016/s0092-8674(01)00539-6] [Citation(s) in RCA: 385] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A cryo-EM reconstruction of the translating yeast 80S ribosome was analyzed. Computationally separated rRNA and protein densities were used for docking of appropriately modified rRNA models and homology models of yeast ribosomal proteins. The core of the ribosome shows a remarkable degree of conservation. However, some significant differences in functionally important regions and dramatic changes in the periphery due to expansion segments and additional ribosomal proteins are evident. As in the bacterial ribosome, bridges between the subunits are mainly formed by RNA contacts. Four new bridges are present at the periphery. The position of the P site tRNA coincides precisely with its prokaryotic counterpart, with mainly rRNA contributing to its molecular environment. This analysis presents an exhaustive inventory of an eukaryotic ribosome at the molecular level.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Cryoelectron Microscopy/methods
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 5.8S/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Saccharomyces cerevisiae/genetics
Collapse
Affiliation(s)
- C M Spahn
- Howard Hughes Medical Institute, Health Research Inc., Albany, NY 12201, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cryo-electron microscopy allows the visualization of macromolecules in their native state. Combined with techniques of three-dimensional reconstruction, cryo-EM images of single molecules can be used to study macromolecular interactions. The ribosome, a large RNA-protein complex with multiple binding interactions, is an excellent test case illustrating the power of these new techniques. Conformational changes during the binding of tRNA and protein factors to the ribosome can now be studied without the interference of crystal packing. Now that the first X-ray structures of ribosomal subunits have become available, conformational changes observed by cryo-EM in different functional states can be traced back to internal rearrangements of the underlying structural framework. Electron microscopy, X-ray crystallography, and modeling should be used together in the endeavor to understand the functioning of the translational machinery.
Collapse
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Health Research, Inc. at the Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| |
Collapse
|
36
|
Matadeen R, Sergiev P, Leonov A, Pape T, van der Sluis E, Mueller F, Osswald M, von Knoblauch K, Brimacombe R, Bogdanov A, van Heel M, Dontsova O. Direct localization by cryo-electron microscopy of secondary structural elements in Escherichia coli 23 S rRNA which differ from the corresponding regions in Haloarcula marismortui. J Mol Biol 2001; 307:1341-9. [PMID: 11292346 DOI: 10.1006/jmbi.2001.4547] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insertions were introduced by a two-step mutagenesis procedure into each of five double-helical regions of Escherichia coli 23 S rRNA, so as to extend the helix concerned by 17 bp. The helices chosen were at sites within the 23 S molecule (h9, h25, h45, h63 and h98) where significant length variations between different species are known to occur. At each of these positions, with the exception of h45, there are also significant differences between the 23 S rRNAs of E. coli and Haloarcula marismortui. Plasmids carrying the insertions were introduced into an E. coli strain lacking all seven rrn operons. In four of the five cases the cells were viable and 50 S subunits could be isolated; only the insertion in h63 was lethal. The modified subunits were examined by cryo-electron microscopy (cryo-EM), with a view to locating extra electron density corresponding to the insertion elements. The results were compared both with the recently determined atomic structure of H. marismortui 23 S rRNA in the 50 S subunit, and with previous 23 S rRNA modelling studies based on cryo-EM reconstructions of E. coli ribosomes. The insertion element in h45 was located by cryo-EM at a position corresponding precisely to that of the equivalent helix in H. marismortui. The insertion in h98 (which is entirely absent in H. marismortui) was similarly located at a position corresponding precisely to that predicted from the E. coli modelling studies. In the region of h9, the difference between the E. coli and H. marismortui secondary structures is ambiguous, and the extra electron density corresponding to the insertion was seen at a location intermediate between the position of the nearest helix in the atomic structure and that in the modelled structure. In the case of h25 (which is about 50 nucleotides longer in H. marismortui), no clear extra cryo-EM density corresponding to the insertion could be observed.
Collapse
MESH Headings
- Base Sequence
- Cell Division
- Computer Graphics
- Cryoelectron Microscopy
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Genes, Lethal/genetics
- Haloarcula marismortui/chemistry
- Haloarcula marismortui/genetics
- Haloarcula marismortui/growth & development
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis/genetics
- Nucleic Acid Conformation
- Operon/genetics
- Protein Conformation
- Protein Subunits
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Bacterial/ultrastructure
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/ultrastructure
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- R Matadeen
- Medicine and Technology Department of Biochemistry, Imperial College of Science, London, SW7 2AY, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gieffers C, Dube P, Harris JR, Stark H, Peters JM. Three-dimensional structure of the anaphase-promoting complex. Mol Cell 2001; 7:907-13. [PMID: 11336713 DOI: 10.1016/s1097-2765(01)00234-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The anaphase-promoting complex (APC) is a cell cycle-regulated ubiquitin-protein ligase, composed of at least 11 subunits, that controls progression through mitosis and G1. Using cryo-electron microscopy and angular reconstitution, we have obtained a three-dimensional model of the human APC at a resolution of 24 A. The APC has a complex asymmetric structure 140 A x 140 A x 135 A in size, in which an outer protein wall surrounds a large inner cavity. We discuss the possibility that this cavity represents a reaction chamber in which ubiquitination reactions take place, analogous to the inner cavities formed by other protein machines such as the 26S proteasome and chaperone complexes. This cage hypothesis could help to explain the great subunit complexity of the APC.
Collapse
Affiliation(s)
- C Gieffers
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
38
|
Larsson SL, Nygård O. Proposed secondary structure of eukaryote specific expansion segment 15 in 28S rRNA from mice, rats, and rabbits. Biochemistry 2001; 40:3222-31. [PMID: 11258939 DOI: 10.1021/bi002286q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The expansion segments in eukaryotic ribosomal RNAs are additional RNA sequences not found in the RNA core common to both prokaryotes and eukaryotes. These regions show large species-dependent variations in sequence and size. This makes it difficult to create secondary structure models for the expansion segments exclusively based on phylogenetic sequence comparison. Here we have used a combination of experimental data and computational methods to generate secondary structure models for expansion segment 15 in 28S rRNA in mice, rats, and rabbits. The experimental data were collected using the structure sensitive reagents DMS, CMCT, kethoxal, micrococcal nuclease, RNase T(1), RNase CL3, RNase V(1), and lead(II) acetate. ES15 was folded with the computer program RNAStructure 3.5 using modification data and phylogenetic similarities between different ES15 sequences. This program uses energy minimization to find the most stable secondary structure of an RNA sequence. The presented secondary structure models include several common structural motifs, but they also have characteristics unique to each organism. Overall, the secondary structure models showed indications of an energetically stable but dynamic structure, easily accessible from the solution by the modification reagents, suggesting that the expansion segment is located on the ribosomal surface.
Collapse
Affiliation(s)
- S L Larsson
- Natural Science Section, Södertörn University College, S-141 04 Huddinge, Sweden, and Department of Zoological Cell Biology, Arrhenius Laboratories E5, Stockholm University, S-106 91 Stockholm, Sweden
| | | |
Collapse
|
39
|
Patel VB, Cunningham CC, Hantgan RR. Physiochemical properties of rat liver mitochondrial ribosomes. J Biol Chem 2001; 276:6739-46. [PMID: 11106644 DOI: 10.1074/jbc.m005781200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, the physiochemical properties of rat liver mitochondrial ribosomes were examined and compared with Escherichia coli ribosomes. The sedimentation and translational diffusion coefficients as well as the molecular weight and buoyant density of rat mitochondrial ribosomes were determined. Sedimentation coefficients were established using the time-derivative algorithm (Philo, J. S. (2000) Anal. Biochem. 279, 151-163). The sedimentation coefficients of the intact monosome, large subunit, and small subunit were 55, 39, and 28 S, respectively. Mitochondrial ribosomes had a particle composition of 75% protein and 25% RNA. The partial specific volume was 0.688 ml/g, as determined from the protein and RNA composition. The buoyant density of formaldehyde-fixed ribosomes in cesium chloride was 1.41 g/cm(3). The molecular masses of mitochondrial and E. coli ribosomes determined by static light-scattering experiments were 3.57 +/- 0.14 MDa and 2.49 +/- 0.06 MDa, respectively. The diffusion coefficient obtained from dynamic light-scattering measurements was 1.10 +/- 0.01 x 10(-7) cm(2) s(-1) for mitochondrial ribosomes and 1.72 +/- 0.03 x 10(-7) cm(2) s(-1) for the 70 S E. coli monosome. The hydration factor determined from these hydrodynamic parameters were 4.6 g of water/g of ribosome and 1.3 g/g for mitochondrial and E. coli ribosomes, respectively. A calculated hydration factor of 3.3 g/g for mitochondrial ribosomes was also obtained utilizing a calculated molecular mass and the Svedberg equation. These measurements of solvation suggest that ribosomes are highly hydrated structures. They are also in agreement with current models depicting ribosomes as porous structures containing numerous gaps and tunnels.
Collapse
Affiliation(s)
- V B Patel
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1016, USA
| | | | | |
Collapse
|
40
|
Al-Karadaghi S, Kristensen O, Liljas A. A decade of progress in understanding the structural basis of protein synthesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 73:167-93. [PMID: 10958930 DOI: 10.1016/s0079-6107(00)00005-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The key reaction of protein synthesis, peptidyl transfer, is catalysed in all living organisms by the ribosome - an advanced and highly efficient molecular machine. During the last decade extensive X-ray crystallographic and NMR studies of the three-dimensional structure of ribosomal proteins, ribosomal RNA components and their complexes with ribosomal proteins, and of several translation factors in different functional states have taken us to a new level of understanding of the mechanism of function of the protein synthesis machinery. Among the new remarkable features revealed by structural studies, is the mimicry of the tRNA molecule by elongation factor G, ribosomal recycling factor and the eukaryotic release factor 1. Several other translation factors, for which three-dimensional structures are not yet known, are also expected to show some form of tRNA mimicry. The efforts of several crystallographic and biochemical groups have resulted in the determination by X-ray crystallography of the structures of the 30S and 50S subunits at moderate resolution, and of the structure of the 70S subunit both by X-ray crystallography and cryo-electron microscopy (EM). In addition, low resolution cryo-EM models of the ribosome with different translation factors and tRNA have been obtained. The new ribosomal models allowed for the first time a clear identification of the functional centres of the ribosome and of the binding sites for tRNA and ribosomal proteins with known three-dimensional structure. The new structural data have opened a way for the design of new experiments aimed at deeper understanding at an atomic level of the dynamics of the system.
Collapse
Affiliation(s)
- S Al-Karadaghi
- Department of Molecular Biophysics, Lund University, Box 124, 221 00, Lund, Sweden.
| | | | | |
Collapse
|
41
|
Bamford DH, Gilbert RJ, Grimes JM, Stuart DI. Macromolecular assemblies: greater than their parts. Curr Opin Struct Biol 2001; 11:107-13. [PMID: 11179899 DOI: 10.1016/s0959-440x(00)00177-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Increasingly powerful methods of analysis have opened up complex macromolecular assemblies to scrutiny at atomic detail. They reveal not only examples of assembly from preformed and prefolded components, but also examples in which the act of assembly drives changes to the components. In the most extreme of these examples, some of the components only achieve a folded state when the complex is formed. Striking results have appeared for systems ranging from the already mature field of virus structure and assembly, where notable progress has been made for rather complex capsids, to descriptions of ribosome structures in atomic detail, where recent results have emerged at breathtaking speed.
Collapse
Affiliation(s)
- D H Bamford
- Institute of Biotechnology and Department of Biosciences, Biocentre 2 (room 6002), PO Box 56 (Viikinkaari 5), 00014 University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
42
|
Iwawaki T, Hosoda A, Okuda T, Kamigori Y, Nomura-Furuwatari C, Kimata Y, Tsuru A, Kohno K. Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nat Cell Biol 2001; 3:158-64. [PMID: 11175748 DOI: 10.1038/35055065] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Under conditions of endoplasmic reticulum (ER) stress, mammalian cells induce both translational repression and the unfolded protein response that transcriptionally activates genes encoding ER-resident molecular chaperones. To date, the only known pathway for translational repression in response to ER stress has been the phosphorylation of eIF-2alpha by the double-stranded RNA-activated protein kinase (PKR) or the transmembrane PKR-like ER kinase (PERK). Here we report another pathway in which the ER transmembrane kinase/ribonuclease IRE1beta induces translational repression through 28S ribosomal RNA cleavage in response to ER stress. The evidence suggests that both pathways are important for efficient translational repression during the ER stress response.
Collapse
Affiliation(s)
- T Iwawaki
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Ruprecht J, Nield J. Determining the structure of biological macromolecules by transmission electron microscopy, single particle analysis and 3D reconstruction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 75:121-64. [PMID: 11376797 DOI: 10.1016/s0079-6107(01)00004-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Single particle analysis and 3D reconstruction of molecules imaged by transmission electron microscopy have provided a wealth of medium to low resolution structures of biological molecules and macromolecular complexes, such as the ribosome, viruses, molecular chaperones and photosystem II. In this review, the principles of these techniques are introduced in a non-mathematical way, and single particle analysis is compared to other methods used for structural studies. In particular, the recent X-ray structures of the ribosome and of ribosomal subunits allow a critical comparison of single particle analysis and X-ray crystallography. This has emphasised the rapidity with which single particle analysis can produce medium resolution structures of complexes that are difficult to crystallise. Once crystals are available, X-ray crystallography can produce structures at a much higher resolution. The great similarities now seen between the structures obtained by the two techniques reinforce confidence in the use of single particle analysis and 3D reconstruction, and show that for electron cryo-microscopy structure distortion during sample preparation and imaging has not been a significant problem. The ability to analyse conformational flexibility and the ease with which time-resolved studies can be performed are significant advantages for single particle analysis. Future improvements in single particle analysis and electron microscopy should increase the attainable resolution. Combining single particle analysis of macromolecular complexes and electron tomography of subcellular structures with high-resolution X-ray structures may enable us to realise the ultimate dream of structural biology-a complete description of the macromolecular complexes of the cell in their different functional states.
Collapse
Affiliation(s)
- J Ruprecht
- University of Cambridge, Department of Biochemistry, Hopkins Building, CB2 1QW, Cambridge, UK.
| | | |
Collapse
|
45
|
Abstract
X-ray crystallographic structures have just been published for the 30S ribosomal subunit of Thermus thermophilus at 3.4 A resolution and for the 50S subunit of Haloarcula marismortui at 2.4 A. These eagerly awaited structures will provide an enormous boost to research into the mechanisms involved in protein biosynthesis.
Collapse
Affiliation(s)
- R Brimacombe
- Max-Planck-Institut für Molekulare Genetik Ihnestrasse 73 14195, Berlin, Germany.
| |
Collapse
|
46
|
Spahn CM, Penczek PA, Leith A, Frank J. A method for differentiating proteins from nucleic acids in intermediate-resolution density maps: cryo-electron microscopy defines the quaternary structure of the Escherichia coli 70S ribosome. Structure 2000; 8:937-48. [PMID: 10986461 DOI: 10.1016/s0969-2126(00)00185-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND This study addresses the general problem of dividing a density map of a nucleic-acid-protein complex obtained by cryo-electron microscopy (cryo-EM) or X-ray crystallography into its two components. When the resolution of the density map approaches approximately 3 A it is generally possible to interpret its shape (i. e., the envelope obtained for a standard choice of threshold) in terms of molecular structure, and assign protein and nucleic acid elements on the basis of their known sequences. The interpretation of low-resolution maps in terms of proteins and nucleic acid elements of known structure is of increasing importance in the study of large macromolecular complexes, but such analyses are difficult. RESULTS Here we show that it is possible to separate proteins from nucleic acids in a cryo-EM density map, even at 11.5 A resolution. This is achieved by analysing the (continuous-valued) densities using the difference in scattering density between protein and nucleic acids, the contiguity constraints that the image of any nucleic acid molecule must obey, and the knowledge of the molecular volumes of all proteins. CONCLUSIONS The new method, when applied to an 11.5 A cryo-EM map of the Escherichia coli 70S ribosome, reproduces boundary assignments between rRNA and proteins made from higher-resolution X-ray maps of the ribosomal subunits with a high degree of accuracy. Plausible predictions for the positions of as yet unassigned proteins and RNA components are also possible. One of the conclusions derived from this separation is that 23S rRNA is solely responsible for the catalysis of peptide bond formation. Application of the separation method to any nucleoprotein complex appears feasible.
Collapse
MESH Headings
- Bacterial Proteins/ultrastructure
- Binding Sites
- Cryoelectron Microscopy/methods
- Escherichia coli/ultrastructure
- Models, Molecular
- Protein Conformation
- Protein Structure, Quaternary
- RNA, Bacterial/ultrastructure
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/ultrastructure
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/ultrastructure
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/ultrastructure
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- C M Spahn
- Howard Hughes Medical Institute, Health Research Inc., Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
47
|
Dissociation of proteins from the human 40S ribosomal subunit in a lithium chloride gradient. Mol Biol 2000. [DOI: 10.1007/bf02759619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Morgan DG, Ménétret JF, Radermacher M, Neuhof A, Akey IV, Rapoport TA, Akey CW. A comparison of the yeast and rabbit 80 S ribosome reveals the topology of the nascent chain exit tunnel, inter-subunit bridges and mammalian rRNA expansion segments. J Mol Biol 2000; 301:301-21. [PMID: 10926511 DOI: 10.1006/jmbi.2000.3947] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein synthesis in eukaryotes is mediated by both cytoplasmic and membrane-bound ribosomes. During the co-translational translocation of secretory and membrane proteins, eukaryotic ribosomes dock with the protein conducting channel of the endoplasmic reticulum. An understanding of these processes will require the detailed structure of a eukaryotic ribosome. To this end, we have compared the three-dimensional structures of yeast and rabbit ribosomes at 24 A resolution. In general, we find that the active sites for protein synthesis and translocation have been highly conserved. It is interesting that a channel was visualized in the neck of the small subunit whose entrance is formed by a deep groove. By analogy with the prokaryotic small subunit, this channel may provide a conserved portal through which mRNA is threaded into the decoding center. In addition, both the small and large subunits are built around a dense tubular network. Our analysis further suggests that the nascent chain exit tunnel and the docking surface for the endoplasmic reticulum channel are formed by this network. We surmise that many of these features correspond to rRNA, based on biochemical and structural data. Ribosomal function is critically dependent on the specific association of small and large subunits. Our analysis of eukaryotic ribosomes reveals four conserved inter-subunit bridges with a geometry similar to that found in prokaryotes. In particular, a double-bridge connects the small subunit platform with the interface canyon on the large subunit. Moreover, a novel bridge is formed between the platform and the base of the L1 domain. Finally, size differences between mammalian and yeast large subunit rRNAs have been correlated with five expansion segments that form two large spines and three extended fingers. Overall, we find that expansion segments within the large subunit rRNA have been incorporated at positions distinct from the active sites for protein synthesis and translocation.
Collapse
Affiliation(s)
- D G Morgan
- Department of Physiology and Structural Biology, Boston University School of Medicine, 700 Albany St., Boston, MA 02218-2526, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Gomez-Lorenzo MG, Spahn CM, Agrawal RK, Grassucci RA, Penczek P, Chakraburtty K, Ballesta JP, Lavandera JL, Garcia-Bustos JF, Frank J. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolution. EMBO J 2000; 19:2710-8. [PMID: 10835368 PMCID: PMC212750 DOI: 10.1093/emboj/19.11.2710] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2000] [Revised: 03/28/2000] [Accepted: 04/04/2000] [Indexed: 11/14/2022] Open
Abstract
Using a sordarin derivative, an antifungal drug, it was possible to determine the structure of a eukaryotic ribosome small middle dotEF2 complex at 17.5 A resolution by three-dimensional (3D) cryo-electron microscopy. EF2 is directly visible in the 3D map and the overall arrangement of the complex from Saccharomyces cerevisiae corresponds to that previously seen in Escherichia coli. However, pronounced differences were found in two prominent regions. First, in the yeast system the interaction between the elongation factor and the stalk region of the large subunit is much more extensive. Secondly, domain IV of EF2 contains additional mass that appears to interact with the head of the 40S subunit and the region of the main bridge of the 60S subunit. The shape and position of domain IV of EF2 suggest that it might interact directly with P-site-bound tRNA.
Collapse
Affiliation(s)
- M G Gomez-Lorenzo
- Health Research Inc. at Wadsworth Center, State University of New York at Albany, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mueller F, Sommer I, Baranov P, Matadeen R, Stoldt M, Wöhnert J, Görlach M, van Heel M, Brimacombe R. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution. J Mol Biol 2000; 298:35-59. [PMID: 10756104 DOI: 10.1006/jmbi.2000.3635] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli 23 S and 5 S rRNA molecules have been fitted helix by helix to a cryo-electron microscopic (EM) reconstruction of the 50 S ribosomal subunit, using an unfiltered version of the recently published 50 S reconstruction at 7.5 A resolution. At this resolution, the EM density shows a well-defined network of fine structural elements, in which the major and minor grooves of the rRNA helices can be discerned at many locations. The 3D folding of the rRNA molecules within this EM density is constrained by their well-established secondary structures, and further constraints are provided by intra and inter-rRNA crosslinking data, as well as by tertiary interactions and pseudoknots. RNA-protein cross-link and foot-print sites on the 23 S and 5 S rRNA were used to position the rRNA elements concerned in relation to the known arrangement of the ribosomal proteins as determined by immuno-electron microscopy. The published X-ray or NMR structures of seven 50 S ribosomal proteins or RNA-protein complexes were incorporated into the EM density. The 3D locations of cross-link and foot-print sites to the 23 S rRNA from tRNA bound to the ribosomal A, P or E sites were correlated with the positions of the tRNA molecules directly observed in earlier reconstructions of the 70 S ribosome at 13 A or 20 A. Similarly, the positions of cross-link sites within the peptidyl transferase ring of the 23 S rRNA from the aminoacyl residue of tRNA were correlated with the locations of the CCA ends of the A and P site tRNA. Sites on the 23 S rRNA that are cross-linked to the N termini of peptides of different lengths were all found to lie within or close to the internal tunnel connecting the peptidyl transferase region with the presumed peptide exit site on the solvent side of the 50 S subunit. The post-transcriptionally modified bases in the 23 S rRNA form a cluster close to the peptidyl transferase area. The minimum conserved core elements of the secondary structure of the 23 S rRNA form a compact block within the 3D structure and, conversely, the points corresponding to the locations of expansion segments in 28 S rRNA all lie on the outside of the structure.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Computer Simulation
- Conserved Sequence/genetics
- Cross-Linking Reagents
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Fungal Proteins/metabolism
- Microscopy, Immunoelectron
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- Peptide Elongation Factor Tu/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Bacterial/ultrastructure
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/ultrastructure
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- RNA, Ribosomal, 5S/ultrastructure
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/ultrastructure
- Ribonucleases/metabolism
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Ricin/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- F Mueller
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|